Pitfalls Related To Computer-Aided Diagnosis System Learned From Multiple Databases
The growing availability of large neuroimaging databases offers exceptional opportunities to train more and more efficient machine learning algorithms. Nevertheless, these databases may be prone to several sources of variability (age, gender, acquisition parameters,...). These nuisance variables can...
Saved in:
Published in | Proceedings (International Symposium on Biomedical Imaging) pp. 806 - 809 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1945-8452 |
DOI | 10.1109/ISBI.2019.8759550 |
Cover
Abstract | The growing availability of large neuroimaging databases offers exceptional opportunities to train more and more efficient machine learning algorithms. Nevertheless, these databases may be prone to several sources of variability (age, gender, acquisition parameters,...). These nuisance variables can hamper the performance of a classification method and can even lead to misinterpret its behavior. We focus in this paper on how to account for data coming from different databases. First, we present experiments on simulated data that illustrate how interactions with other confounds such as age can be problematic for the adjustment of data from multiple databases. Then, we compare three standard strategies to adjust data and evaluate them in the scenario of a Computer-Aided Diagnosis system that discriminates healthy from Alzheimer's Disease subjects based on volumetric characteristics derived from MRI. We highlight that classifiers with apparently similar performance do not all rely on relevant information depending on the correction strategy. |
---|---|
AbstractList | The growing availability of large neuroimaging databases offers exceptional opportunities to train more and more efficient machine learning algorithms. Nevertheless, these databases may be prone to several sources of variability (age, gender, acquisition parameters,...). These nuisance variables can hamper the performance of a classification method and can even lead to misinterpret its behavior. We focus in this paper on how to account for data coming from different databases. First, we present experiments on simulated data that illustrate how interactions with other confounds such as age can be problematic for the adjustment of data from multiple databases. Then, we compare three standard strategies to adjust data and evaluate them in the scenario of a Computer-Aided Diagnosis system that discriminates healthy from Alzheimer's Disease subjects based on volumetric characteristics derived from MRI. We highlight that classifiers with apparently similar performance do not all rely on relevant information depending on the correction strategy. |
Author | Tilquin, Florian Faisan, Sylvain Touvron, Hugo Noblet, Vincent |
Author_xml | – sequence: 1 givenname: Hugo surname: Touvron fullname: Touvron, Hugo organization: ICube UMR 7357, Strasbourg University, CNRS, FMTS, Strasbourg, France – sequence: 2 givenname: Sylvain surname: Faisan fullname: Faisan, Sylvain organization: ICube UMR 7357, Strasbourg University, CNRS, FMTS, Strasbourg, France – sequence: 3 givenname: Florian surname: Tilquin fullname: Tilquin, Florian organization: ICube UMR 7357, Strasbourg University, CNRS, FMTS, Strasbourg, France – sequence: 4 givenname: Vincent surname: Noblet fullname: Noblet, Vincent organization: ICube UMR 7357, Strasbourg University, CNRS, FMTS, Strasbourg, France |
BookMark | eNotUMtOwzAQNAgkSskHIC7-gRRv_D6WlkKkIhAt58qJt2CURxWnh_49luhcZjUzGq3mllx1fYeE3AObATD7WG6eylnBwM6MllZKdkEyqw1IbhRXAuCSTMAKmRshixuSxfjLErQQnIkJ2XyEce-aJtJPbNyInm57uujbw3HEIZ8Hn5RlcN9dH0Okm1McsaVrdEOXjNXQt_Tt2Izh0CBdutFVLmK8I9epMmJ25in5Wj1vF6_5-v2lXMzX-Q8ozXJeFdW-BqiNrCyiNUX6i6NWTqMwXHuurAKmvfKM7YV3WFTK1xbTBSJFp-Thvzcg4u4whNYNp915Bv4H2StSTg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISBI.2019.8759550 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISBN | 9781538636411 1538636417 |
EISSN | 1945-8452 |
EndPage | 809 |
ExternalDocumentID | 8759550 |
Genre | orig-research |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-h1670-3b2bfc11c85b9ee9820003e76a7e4837d3696107d6d00f4dae2b6dc9edae14003 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:54:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h1670-3b2bfc11c85b9ee9820003e76a7e4837d3696107d6d00f4dae2b6dc9edae14003 |
OpenAccessLink | https://hal.science/hal-04830204 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8759550 |
PublicationCentury | 2000 |
PublicationDate | 2019-April |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-April |
PublicationDecade | 2010 |
PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 2.0621533 |
Snippet | The growing availability of large neuroimaging databases offers exceptional opportunities to train more and more efficient machine learning algorithms.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 806 |
SubjectTerms | classification and regression Computer-aided diagnosis Magnetic resonance imaging nuisance variables Shape Sociology Solid modeling Statistics Testing |
Title | Pitfalls Related To Computer-Aided Diagnosis System Learned From Multiple Databases |
URI | https://ieeexplore.ieee.org/document/8759550 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gJ7yogPGdPXi00OeWHlUkYIIhARJuZB_TSFRqoFz89c52Cz7iwdtmm6bN7LTfzO433wBck-NK1NKkJX7khJo-RSGVcChYJ4QVXMiikHb4xPvT8HEWzSpws6uFQcSCfIYtMyzO8nWmNmarrE2xdRKZBH2P3MzWau32UwgKQ0rNy4NLz03ag_HdwHC3yBnsfT8aqBT40TuA4fbJljby0trksqU-foky_vfVDqH5VanHRjsMOoIKLuuw_01ksA41E09aOeYGjEeLPBWvr2tWsOBQs0nGtp0dnNuFppmuZd8t1szKmbNCg5Uu9FbZGxuWDETWFbkwGLhuwrT3MLnvO2VfBefZ4zH9dqUvU-V5qhPJBDHpmHKdAGMuYjQC89r0-KO0UHPtummoBfqSa5UgjSgfc4NjqC6zJZ4AC1wfYy09NLZXgZ8gR0-lgvupF0s3OoWGsdX83UpnzEsznf09fQ41s16WGHMB1Xy1wUvC_FxeFYv9CbCIrCU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6IHsSLChjf9uDRhX122aOKBJQlJEDCjfQxG4nIGlgu_nqn2wUf8eCt6WbTzbTbb6b95htCbnDhClBChyVuYPkKf0UuJLfQWUeE5YyLPJE27rPO2H-aBJMSud3mwgBATj6Dum7md_kqlWt9VNZA3zoKdIC-i7jvByZba3uigmDoY3BeXF06dtToDu-7mr2Fy8G8-aOESo4g7QMSb8Y2xJHX-joTdfnxS5bxvx93SGpfuXp0sEWhI1KCRYXsf5MZrJCy9iiNIHOVDAezLOHz-YrmPDhQdJTSTW0H626msKdl-HezFTWC5jRXYcUH7WX6RuOCg0hbPOMaBVc1Mm4_jh46VlFZwXpxWIgbr3BFIh1HNgMRAURNnbDjQch4CFpiXukqfxgYKqZsO_EVB1cwJSPAFkZktndMdhbpAk4I9WwXQiUc0LaXnhsBA0cmnLmJEwo7OCVVbavpuxHPmBZmOvu7-5rsdUZxb9rr9p_PSVnPnaHJXJCdbLmGS_QAMnGVT_wn4suvcg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Pitfalls+Related+To+Computer-Aided+Diagnosis+System+Learned+From+Multiple+Databases&rft.au=Touvron%2C+Hugo&rft.au=Faisan%2C+Sylvain&rft.au=Tilquin%2C+Florian&rft.au=Noblet%2C+Vincent&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=806&rft.epage=809&rft_id=info:doi/10.1109%2FISBI.2019.8759550&rft.externalDocID=8759550 |