Pitfalls Related To Computer-Aided Diagnosis System Learned From Multiple Databases

The growing availability of large neuroimaging databases offers exceptional opportunities to train more and more efficient machine learning algorithms. Nevertheless, these databases may be prone to several sources of variability (age, gender, acquisition parameters,...). These nuisance variables can...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) pp. 806 - 809
Main Authors Touvron, Hugo, Faisan, Sylvain, Tilquin, Florian, Noblet, Vincent
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2019
Subjects
Online AccessGet full text
ISSN1945-8452
DOI10.1109/ISBI.2019.8759550

Cover

Abstract The growing availability of large neuroimaging databases offers exceptional opportunities to train more and more efficient machine learning algorithms. Nevertheless, these databases may be prone to several sources of variability (age, gender, acquisition parameters,...). These nuisance variables can hamper the performance of a classification method and can even lead to misinterpret its behavior. We focus in this paper on how to account for data coming from different databases. First, we present experiments on simulated data that illustrate how interactions with other confounds such as age can be problematic for the adjustment of data from multiple databases. Then, we compare three standard strategies to adjust data and evaluate them in the scenario of a Computer-Aided Diagnosis system that discriminates healthy from Alzheimer's Disease subjects based on volumetric characteristics derived from MRI. We highlight that classifiers with apparently similar performance do not all rely on relevant information depending on the correction strategy.
AbstractList The growing availability of large neuroimaging databases offers exceptional opportunities to train more and more efficient machine learning algorithms. Nevertheless, these databases may be prone to several sources of variability (age, gender, acquisition parameters,...). These nuisance variables can hamper the performance of a classification method and can even lead to misinterpret its behavior. We focus in this paper on how to account for data coming from different databases. First, we present experiments on simulated data that illustrate how interactions with other confounds such as age can be problematic for the adjustment of data from multiple databases. Then, we compare three standard strategies to adjust data and evaluate them in the scenario of a Computer-Aided Diagnosis system that discriminates healthy from Alzheimer's Disease subjects based on volumetric characteristics derived from MRI. We highlight that classifiers with apparently similar performance do not all rely on relevant information depending on the correction strategy.
Author Tilquin, Florian
Faisan, Sylvain
Touvron, Hugo
Noblet, Vincent
Author_xml – sequence: 1
  givenname: Hugo
  surname: Touvron
  fullname: Touvron, Hugo
  organization: ICube UMR 7357, Strasbourg University, CNRS, FMTS, Strasbourg, France
– sequence: 2
  givenname: Sylvain
  surname: Faisan
  fullname: Faisan, Sylvain
  organization: ICube UMR 7357, Strasbourg University, CNRS, FMTS, Strasbourg, France
– sequence: 3
  givenname: Florian
  surname: Tilquin
  fullname: Tilquin, Florian
  organization: ICube UMR 7357, Strasbourg University, CNRS, FMTS, Strasbourg, France
– sequence: 4
  givenname: Vincent
  surname: Noblet
  fullname: Noblet, Vincent
  organization: ICube UMR 7357, Strasbourg University, CNRS, FMTS, Strasbourg, France
BookMark eNotUMtOwzAQNAgkSskHIC7-gRRv_D6WlkKkIhAt58qJt2CURxWnh_49luhcZjUzGq3mllx1fYeE3AObATD7WG6eylnBwM6MllZKdkEyqw1IbhRXAuCSTMAKmRshixuSxfjLErQQnIkJ2XyEce-aJtJPbNyInm57uujbw3HEIZ8Hn5RlcN9dH0Okm1McsaVrdEOXjNXQt_Tt2Izh0CBdutFVLmK8I9epMmJ25in5Wj1vF6_5-v2lXMzX-Q8ozXJeFdW-BqiNrCyiNUX6i6NWTqMwXHuurAKmvfKM7YV3WFTK1xbTBSJFp-Thvzcg4u4whNYNp915Bv4H2StSTg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI.2019.8759550
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISBN 9781538636411
1538636417
EISSN 1945-8452
EndPage 809
ExternalDocumentID 8759550
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-h1670-3b2bfc11c85b9ee9820003e76a7e4837d3696107d6d00f4dae2b6dc9edae14003
IEDL.DBID RIE
IngestDate Wed Aug 27 02:54:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h1670-3b2bfc11c85b9ee9820003e76a7e4837d3696107d6d00f4dae2b6dc9edae14003
OpenAccessLink https://hal.science/hal-04830204
PageCount 4
ParticipantIDs ieee_primary_8759550
PublicationCentury 2000
PublicationDate 2019-April
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-April
PublicationDecade 2010
PublicationTitle Proceedings (International Symposium on Biomedical Imaging)
PublicationTitleAbbrev ISBI
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.0621533
Snippet The growing availability of large neuroimaging databases offers exceptional opportunities to train more and more efficient machine learning algorithms....
SourceID ieee
SourceType Publisher
StartPage 806
SubjectTerms classification and regression
Computer-aided diagnosis
Magnetic resonance imaging
nuisance variables
Shape
Sociology
Solid modeling
Statistics
Testing
Title Pitfalls Related To Computer-Aided Diagnosis System Learned From Multiple Databases
URI https://ieeexplore.ieee.org/document/8759550
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gJ7yogPGdPXi00OeWHlUkYIIhARJuZB_TSFRqoFz89c52Cz7iwdtmm6bN7LTfzO433wBck-NK1NKkJX7khJo-RSGVcChYJ4QVXMiikHb4xPvT8HEWzSpws6uFQcSCfIYtMyzO8nWmNmarrE2xdRKZBH2P3MzWau32UwgKQ0rNy4NLz03ag_HdwHC3yBnsfT8aqBT40TuA4fbJljby0trksqU-foky_vfVDqH5VanHRjsMOoIKLuuw_01ksA41E09aOeYGjEeLPBWvr2tWsOBQs0nGtp0dnNuFppmuZd8t1szKmbNCg5Uu9FbZGxuWDETWFbkwGLhuwrT3MLnvO2VfBefZ4zH9dqUvU-V5qhPJBDHpmHKdAGMuYjQC89r0-KO0UHPtummoBfqSa5UgjSgfc4NjqC6zJZ4AC1wfYy09NLZXgZ8gR0-lgvupF0s3OoWGsdX83UpnzEsznf09fQ41s16WGHMB1Xy1wUvC_FxeFYv9CbCIrCU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6IHsSLChjf9uDRhX122aOKBJQlJEDCjfQxG4nIGlgu_nqn2wUf8eCt6WbTzbTbb6b95htCbnDhClBChyVuYPkKf0UuJLfQWUeE5YyLPJE27rPO2H-aBJMSud3mwgBATj6Dum7md_kqlWt9VNZA3zoKdIC-i7jvByZba3uigmDoY3BeXF06dtToDu-7mr2Fy8G8-aOESo4g7QMSb8Y2xJHX-joTdfnxS5bxvx93SGpfuXp0sEWhI1KCRYXsf5MZrJCy9iiNIHOVDAezLOHz-YrmPDhQdJTSTW0H626msKdl-HezFTWC5jRXYcUH7WX6RuOCg0hbPOMaBVc1Mm4_jh46VlFZwXpxWIgbr3BFIh1HNgMRAURNnbDjQch4CFpiXukqfxgYKqZsO_EVB1cwJSPAFkZktndMdhbpAk4I9WwXQiUc0LaXnhsBA0cmnLmJEwo7OCVVbavpuxHPmBZmOvu7-5rsdUZxb9rr9p_PSVnPnaHJXJCdbLmGS_QAMnGVT_wn4suvcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=Pitfalls+Related+To+Computer-Aided+Diagnosis+System+Learned+From+Multiple+Databases&rft.au=Touvron%2C+Hugo&rft.au=Faisan%2C+Sylvain&rft.au=Tilquin%2C+Florian&rft.au=Noblet%2C+Vincent&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=806&rft.epage=809&rft_id=info:doi/10.1109%2FISBI.2019.8759550&rft.externalDocID=8759550