3D Point Cloud Coarse Registration based on Convex Hull Refined by ICP and NDT
Non-rigid registration is a crucial step for many applications such as motion tracking, model retrieval, and object recognition. The accuracy of these applications is highly dependent on the initial position used in registration step. In this paper we propose a novel Convex Hull Aided Coarse Registr...
Saved in:
Published in | 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) pp. 1 - 6 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-rigid registration is a crucial step for many applications such as motion tracking, model retrieval, and object recognition. The accuracy of these applications is highly dependent on the initial position used in registration step. In this paper we propose a novel Convex Hull Aided Coarse Registration refined by two algorithms applied on projected points. Firstly, the proposed approach uses a statistical method to find the best plane that represents each point cloud. Secondly, all the points of each cloud are projected onto the corresponding planes. Then, two convex hulls are extracted from the two projected point sets and then matched optimally. Next, the non-rigid transformation from the reference to the model is robustly estimated through minimizing the distance between the matched point's pairs of the two convex hulls. Finally, this transformation estimation is refined by two methods. The first one is the refinement of coarse registration by Iterative Closest Point (ICP). The second one consists of the refinement of coarse registration by the Normal Distribution Transform (NDT). An experimental study, carried out on several clouds, shows that the refinement of coarse registration with ICP gives, in the most cases, a better result than refinement with NDT. |
---|---|
AbstractList | Non-rigid registration is a crucial step for many applications such as motion tracking, model retrieval, and object recognition. The accuracy of these applications is highly dependent on the initial position used in registration step. In this paper we propose a novel Convex Hull Aided Coarse Registration refined by two algorithms applied on projected points. Firstly, the proposed approach uses a statistical method to find the best plane that represents each point cloud. Secondly, all the points of each cloud are projected onto the corresponding planes. Then, two convex hulls are extracted from the two projected point sets and then matched optimally. Next, the non-rigid transformation from the reference to the model is robustly estimated through minimizing the distance between the matched point's pairs of the two convex hulls. Finally, this transformation estimation is refined by two methods. The first one is the refinement of coarse registration by Iterative Closest Point (ICP). The second one consists of the refinement of coarse registration by the Normal Distribution Transform (NDT). An experimental study, carried out on several clouds, shows that the refinement of coarse registration with ICP gives, in the most cases, a better result than refinement with NDT. |
Author | Peyrodie, Laurent Slama, Yosr Attia, Mouna Haddad, Farah Cao, Hua |
Author_xml | – sequence: 1 givenname: Mouna surname: Attia fullname: Attia, Mouna organization: Université de Tunis El Manar Faculté des Sciences de Tunis Laboratory: LIPAH, LR11ES14 2092, Tunis, Tunisie – sequence: 2 givenname: Yosr surname: Slama fullname: Slama, Yosr organization: Université de Tunis El Manar Faculté des Sciences de Tunis Laboratory: LIPAH, LR11ES14 2092, Tunis, Tunisie – sequence: 3 givenname: Laurent surname: Peyrodie fullname: Peyrodie, Laurent organization: I3MTO Orléans HEI-UTSB groupe Yncrea Hauts de France, Lille, France – sequence: 4 givenname: Hua surname: Cao fullname: Cao, Hua organization: I3MTO Orléans HEI-UTSB groupe Yncrea Hauts de France, Lille, France – sequence: 5 givenname: Farah surname: Haddad fullname: Haddad, Farah organization: FMM-UTSB, ICL Lille, Lille, France |
BookMark | eNotj99KwzAchSMo6OZeQG_yAq2_NG3-XEqmW2HOItPbkTSpRmoiTSfu7S24q3P4OHxwZug8xOAQuiGQEwLy7ql4q5u8ACJywQBESc_QjFRUMF6VJb9Ei5Q-AaBggkpgV2hLl7iJPoxY9fFgsYp6SA6_uHefxkGPPgZsdHIWT0XF8ON-8frQ99Oi82HC5ohr1WAdLN4ud9footN9cotTztHr48NOrbPN86pW95vsgxTlmFVcWANlBZxyC4ITYwpJeGtAtp3WmgnjOqdt1UrTCkcYpxUnoiWdlkxyQ-fo9t_rnXP778F_6eG4P12mf3QOTPU |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/M2VIP.2018.8600843 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 1538675447 9781538675441 |
EndPage | 6 |
ExternalDocumentID | 8600843 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-h124t-578db0450737d0871bb2917cb09cfaaa68befead5c9bc8e16735718c1fa9697b3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:22 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h124t-578db0450737d0871bb2917cb09cfaaa68befead5c9bc8e16735718c1fa9697b3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8600843 |
PublicationCentury | 2000 |
PublicationDate | 2018-Nov. |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) |
PublicationTitleAbbrev | M2VIP |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683906 |
Score | 1.7345053 |
Snippet | Non-rigid registration is a crucial step for many applications such as motion tracking, model retrieval, and object recognition. The accuracy of these... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | 3D point cloud Computational modeling Convex Hull Covariance matrices Estimation Feature extraction Iterative Closest Point (ICP) Iterative closest point algorithm Non rigid registration Normal Distribution Transform (NDT) Principal component analysis Principal Component Analysis PCA Three-dimensional displays |
Title | 3D Point Cloud Coarse Registration based on Convex Hull Refined by ICP and NDT |
URI | https://ieeexplore.ieee.org/document/8600843 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT56qtuI3e_Bo0nw0m91zammFliCt9Fb2U0VJRBNQf72zSRpRPHhbQkLC7g5v3mbeG4QuPRnF3ECkweYgzsgXxqFG-A7V1r2MmFBVvQHnCzJdjW7W0bqDrlotjNa6Kj7Trh1W__JVLkt7VDakxNq_hztoJ2as1mq15ykBAaj3yFYX47HhPLibpbZ4i7rNgz86qFQAMumh-fbVdd3Ik1sWwpWfv1wZ__tte2jwLdXDaQtC-6ijswPUa3JL3ETuWx8twjFO88eswMlzXiqc5MBoNb7V961zLraIpjAMEluK_o6nQE_hDgOJqMLiA8-SFPNM4cV4OUCryfUymTpNLwXnARC8cCAwlYD0DSI6Vh6wJCECYGpSeEwazjmhQhvYVZFkQlLtkziMALakbzgjLBbhIepmeaaPEA4im2kRHogQeDUjnFEtRtpXivuUS3GM-nZ6Ni-1XcammZmTvy-fol27RLW87wx1i9dSnwPOF-KiWuAv6d6mcw |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEN3UetBT1db47R48CuWjbJcztWm1kMa0prdmP9VowCgk6q93llKMxoO3DYFAdnfy3izz3iB04YigzzREGmwOYvVcri2quWtRZdzLiPZl2RswTsho3rteBIsGuqy1MEqpsvhM2WZY_suXmSjMUVmXEmP_7m-gTeDVlKzUWvWJikcA7B2yVsY4YTf27sZTU75F7erRHz1USggZtlC8fvmqcuTJLnJui89fvoz__bod1PkW6-FpDUO7qKHSPdSq2CWuYvetjRJ_gKfZY5rj6DkrJI4yyGkVvlX3tXcuNpgmMQwiU4z-jkeQoMIdGqioxPwDj6MpZqnEyWDWQfPh1SwaWVU3BesBMDy3IDQlBwIHMd2XDuRJnHuQqwnuhEIzxgjlSsO-CkTIBVUu6fsBAJdwNQtJ2Of-PmqmWaoOEPYCw7UI87gPmXVIWEgV7ylXSuZSJvghapvpWb6sDDOW1cwc_X35HG2NZvFkORknN8do2yzXSux3gpr5a6FOAfVzflYu9hfOwam- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+25th+International+Conference+on+Mechatronics+and+Machine+Vision+in+Practice+%28M2VIP%29&rft.atitle=3D+Point+Cloud+Coarse+Registration+based+on+Convex+Hull+Refined+by+ICP+and+NDT&rft.au=Attia%2C+Mouna&rft.au=Slama%2C+Yosr&rft.au=Peyrodie%2C+Laurent&rft.au=Cao%2C+Hua&rft.date=2018-11-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FM2VIP.2018.8600843&rft.externalDocID=8600843 |