3D Point Cloud Coarse Registration based on Convex Hull Refined by ICP and NDT

Non-rigid registration is a crucial step for many applications such as motion tracking, model retrieval, and object recognition. The accuracy of these applications is highly dependent on the initial position used in registration step. In this paper we propose a novel Convex Hull Aided Coarse Registr...

Full description

Saved in:
Bibliographic Details
Published in2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) pp. 1 - 6
Main Authors Attia, Mouna, Slama, Yosr, Peyrodie, Laurent, Cao, Hua, Haddad, Farah
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-rigid registration is a crucial step for many applications such as motion tracking, model retrieval, and object recognition. The accuracy of these applications is highly dependent on the initial position used in registration step. In this paper we propose a novel Convex Hull Aided Coarse Registration refined by two algorithms applied on projected points. Firstly, the proposed approach uses a statistical method to find the best plane that represents each point cloud. Secondly, all the points of each cloud are projected onto the corresponding planes. Then, two convex hulls are extracted from the two projected point sets and then matched optimally. Next, the non-rigid transformation from the reference to the model is robustly estimated through minimizing the distance between the matched point's pairs of the two convex hulls. Finally, this transformation estimation is refined by two methods. The first one is the refinement of coarse registration by Iterative Closest Point (ICP). The second one consists of the refinement of coarse registration by the Normal Distribution Transform (NDT). An experimental study, carried out on several clouds, shows that the refinement of coarse registration with ICP gives, in the most cases, a better result than refinement with NDT.
AbstractList Non-rigid registration is a crucial step for many applications such as motion tracking, model retrieval, and object recognition. The accuracy of these applications is highly dependent on the initial position used in registration step. In this paper we propose a novel Convex Hull Aided Coarse Registration refined by two algorithms applied on projected points. Firstly, the proposed approach uses a statistical method to find the best plane that represents each point cloud. Secondly, all the points of each cloud are projected onto the corresponding planes. Then, two convex hulls are extracted from the two projected point sets and then matched optimally. Next, the non-rigid transformation from the reference to the model is robustly estimated through minimizing the distance between the matched point's pairs of the two convex hulls. Finally, this transformation estimation is refined by two methods. The first one is the refinement of coarse registration by Iterative Closest Point (ICP). The second one consists of the refinement of coarse registration by the Normal Distribution Transform (NDT). An experimental study, carried out on several clouds, shows that the refinement of coarse registration with ICP gives, in the most cases, a better result than refinement with NDT.
Author Peyrodie, Laurent
Slama, Yosr
Attia, Mouna
Haddad, Farah
Cao, Hua
Author_xml – sequence: 1
  givenname: Mouna
  surname: Attia
  fullname: Attia, Mouna
  organization: Université de Tunis El Manar Faculté des Sciences de Tunis Laboratory: LIPAH, LR11ES14 2092, Tunis, Tunisie
– sequence: 2
  givenname: Yosr
  surname: Slama
  fullname: Slama, Yosr
  organization: Université de Tunis El Manar Faculté des Sciences de Tunis Laboratory: LIPAH, LR11ES14 2092, Tunis, Tunisie
– sequence: 3
  givenname: Laurent
  surname: Peyrodie
  fullname: Peyrodie, Laurent
  organization: I3MTO Orléans HEI-UTSB groupe Yncrea Hauts de France, Lille, France
– sequence: 4
  givenname: Hua
  surname: Cao
  fullname: Cao, Hua
  organization: I3MTO Orléans HEI-UTSB groupe Yncrea Hauts de France, Lille, France
– sequence: 5
  givenname: Farah
  surname: Haddad
  fullname: Haddad, Farah
  organization: FMM-UTSB, ICL Lille, Lille, France
BookMark eNotj99KwzAchSMo6OZeQG_yAq2_NG3-XEqmW2HOItPbkTSpRmoiTSfu7S24q3P4OHxwZug8xOAQuiGQEwLy7ql4q5u8ACJywQBESc_QjFRUMF6VJb9Ei5Q-AaBggkpgV2hLl7iJPoxY9fFgsYp6SA6_uHefxkGPPgZsdHIWT0XF8ON-8frQ99Oi82HC5ohr1WAdLN4ud9footN9cotTztHr48NOrbPN86pW95vsgxTlmFVcWANlBZxyC4ITYwpJeGtAtp3WmgnjOqdt1UrTCkcYpxUnoiWdlkxyQ-fo9t_rnXP778F_6eG4P12mf3QOTPU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/M2VIP.2018.8600843
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1538675447
9781538675441
EndPage 6
ExternalDocumentID 8600843
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-h124t-578db0450737d0871bb2917cb09cfaaa68befead5c9bc8e16735718c1fa9697b3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:22 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h124t-578db0450737d0871bb2917cb09cfaaa68befead5c9bc8e16735718c1fa9697b3
PageCount 6
ParticipantIDs ieee_primary_8600843
PublicationCentury 2000
PublicationDate 2018-Nov.
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov.
PublicationDecade 2010
PublicationTitle 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
PublicationTitleAbbrev M2VIP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683906
Score 1.7345053
Snippet Non-rigid registration is a crucial step for many applications such as motion tracking, model retrieval, and object recognition. The accuracy of these...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms 3D point cloud
Computational modeling
Convex Hull
Covariance matrices
Estimation
Feature extraction
Iterative Closest Point (ICP)
Iterative closest point algorithm
Non rigid registration
Normal Distribution Transform (NDT)
Principal component analysis
Principal Component Analysis PCA
Three-dimensional displays
Title 3D Point Cloud Coarse Registration based on Convex Hull Refined by ICP and NDT
URI https://ieeexplore.ieee.org/document/8600843
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT56qtuI3e_Bo0nw0m91zammFliCt9Fb2U0VJRBNQf72zSRpRPHhbQkLC7g5v3mbeG4QuPRnF3ECkweYgzsgXxqFG-A7V1r2MmFBVvQHnCzJdjW7W0bqDrlotjNa6Kj7Trh1W__JVLkt7VDakxNq_hztoJ2as1mq15ykBAaj3yFYX47HhPLibpbZ4i7rNgz86qFQAMumh-fbVdd3Ik1sWwpWfv1wZ__tte2jwLdXDaQtC-6ijswPUa3JL3ETuWx8twjFO88eswMlzXiqc5MBoNb7V961zLraIpjAMEluK_o6nQE_hDgOJqMLiA8-SFPNM4cV4OUCryfUymTpNLwXnARC8cCAwlYD0DSI6Vh6wJCECYGpSeEwazjmhQhvYVZFkQlLtkziMALakbzgjLBbhIepmeaaPEA4im2kRHogQeDUjnFEtRtpXivuUS3GM-nZ6Ni-1XcammZmTvy-fol27RLW87wx1i9dSnwPOF-KiWuAv6d6mcw
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEN3UetBT1db47R48CuWjbJcztWm1kMa0prdmP9VowCgk6q93llKMxoO3DYFAdnfy3izz3iB04YigzzREGmwOYvVcri2quWtRZdzLiPZl2RswTsho3rteBIsGuqy1MEqpsvhM2WZY_suXmSjMUVmXEmP_7m-gTeDVlKzUWvWJikcA7B2yVsY4YTf27sZTU75F7erRHz1USggZtlC8fvmqcuTJLnJui89fvoz__bod1PkW6-FpDUO7qKHSPdSq2CWuYvetjRJ_gKfZY5rj6DkrJI4yyGkVvlX3tXcuNpgmMQwiU4z-jkeQoMIdGqioxPwDj6MpZqnEyWDWQfPh1SwaWVU3BesBMDy3IDQlBwIHMd2XDuRJnHuQqwnuhEIzxgjlSsO-CkTIBVUu6fsBAJdwNQtJ2Of-PmqmWaoOEPYCw7UI87gPmXVIWEgV7ylXSuZSJvghapvpWb6sDDOW1cwc_X35HG2NZvFkORknN8do2yzXSux3gpr5a6FOAfVzflYu9hfOwam-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+25th+International+Conference+on+Mechatronics+and+Machine+Vision+in+Practice+%28M2VIP%29&rft.atitle=3D+Point+Cloud+Coarse+Registration+based+on+Convex+Hull+Refined+by+ICP+and+NDT&rft.au=Attia%2C+Mouna&rft.au=Slama%2C+Yosr&rft.au=Peyrodie%2C+Laurent&rft.au=Cao%2C+Hua&rft.date=2018-11-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FM2VIP.2018.8600843&rft.externalDocID=8600843