An iterative method for cauchy problems subject to the convection-diffusion equation

In this text, we presented the Nachaoui’s iterative alternating method for solving the Cauchy problemgoverned by the convection-diffusion equation. The method is an iterative algorithm that alternates betweensolving two subproblems of the same type with boundary conditions of the Dirichlet and Neuma...

Full description

Saved in:
Bibliographic Details
Published inAdvanced mathematical models & applications Vol. 8; pp. 327 - 338
Main Author Nachaoui, Abdeljalil
Format Journal Article
LanguageEnglish
Published Jomard Publishing 30.11.2023
Subjects
Online AccessGet full text
ISSN2519-4445
2519-4445

Cover

Loading…
Abstract In this text, we presented the Nachaoui’s iterative alternating method for solving the Cauchy problemgoverned by the convection-diffusion equation. The method is an iterative algorithm that alternates betweensolving two subproblems of the same type with boundary conditions of the Dirichlet and Neuman type on theinaccessible part of the boundary. The algorithm continues iterating until a convergence criterion is met. Wediscussed the convergence and computational efficiency of the method. The numerical results show that themethod is computationally efficient and that the relaxation parameter can greatly reduce the number ofiterations.
AbstractList In this text, we presented the Nachaoui’s iterative alternating method for solving the Cauchy problemgoverned by the convection-diffusion equation. The method is an iterative algorithm that alternates betweensolving two subproblems of the same type with boundary conditions of the Dirichlet and Neuman type on theinaccessible part of the boundary. The algorithm continues iterating until a convergence criterion is met. Wediscussed the convergence and computational efficiency of the method. The numerical results show that themethod is computationally efficient and that the relaxation parameter can greatly reduce the number ofiterations.
Author Nachaoui, Abdeljalil
Author_xml – sequence: 1
  givenname: Abdeljalil
  surname: Nachaoui
  fullname: Nachaoui, Abdeljalil
  organization: Laboratoire de Mathématiques Jean Leray
BackLink https://hal.science/hal-05137216$$DView record in HAL
BookMark eNpNjL1qwzAYRUVJoWmad9DawaBfWx5NaJuCIUs6G1n6hBVsK7VkQ96-Du3Q6Z5zhvuMNmMY4QFtmaRlJoSQm3_8hPYxXgghnJOCiXyLztWIfYJJJ78AHiB1wWIXJmz0bLobvk6h7WGIOM7tBUzCKeDUATZhXFb1Ycysd26OK2H4nvU9vaBHp_sI-7_doa_3t_PhmNWnj89DVWcdJSJl3ClQbW405TZ3yqwirXKaOCekcFTlVtGWMCELaiUIJjXQEkptmCo0c3yHXn9_O90318kPero1QfvmWNXNvRFJecFovlD-A8EnUx4
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
DatabaseName Hyper Article en Ligne (HAL)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 2519-4445
EndPage 338
ExternalDocumentID oai_HAL_hal_05137216v1
GroupedDBID 1XC
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
EAP
EN8
ESX
OK1
ID FETCH-LOGICAL-h104t-3f8e8b6ca13d6f8ce8b5d8fa0ff454f186d81b024571d5e425ae19e9ac287a2f3
ISSN 2519-4445
IngestDate Thu Jul 17 06:22:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Keywords Convection-diffusion equations
Ill-posed problems
Inverse problems
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-h104t-3f8e8b6ca13d6f8ce8b5d8fa0ff454f186d81b024571d5e425ae19e9ac287a2f3
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_05137216v1
PublicationCentury 2000
PublicationDate 2023-11-30
PublicationDateYYYYMMDD 2023-11-30
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-30
  day: 30
PublicationDecade 2020
PublicationTitle Advanced mathematical models & applications
PublicationYear 2023
Publisher Jomard Publishing
Publisher_xml – name: Jomard Publishing
SSID ssj0003307246
Score 2.2674675
Snippet In this text, we presented the Nachaoui’s iterative alternating method for solving the Cauchy problemgoverned by the convection-diffusion equation. The method...
SourceID hal
SourceType Open Access Repository
StartPage 327
SubjectTerms Mathematics
Title An iterative method for cauchy problems subject to the convection-diffusion equation
URI https://hal.science/hal-05137216
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3La-MwEIdFNr10D33u0jdi2VtQsSP50VNxHyF9srAp9BYkWcKU1mlru9D-9R1ZspNCDm0vJlGcEPSZ8cx45jcI_Q1o5MVRPyVCi4jA_VgQEfKUMOVJoSWjYZ3vuLoOhzfs_Da47XQOZ6qWqlLsy7e5fSXfoQprwNV0yX6BbPujsACvgS8cgTAcP8U4yXtWFdmU_9hZ0HXZoOSVzF57blhM0SsqYdItjZ9ZV5rX_QzEzEepTMKsp56qKaRGlrYpEHhoxV1Ns4kZnlPU18zs4-82rcxlxidVXSWQCDj1Dlz9-9nsQp82qoaN5Z88mGzGNCU2NU-m5ZUwZsUg99WcNWdf4xn7SK0QgLvVUivs8lEFe5j8H_87GYwvz64vPn7aymEPk8txBrTAoFAjPvQC4e8P6rMuWkiOTo4GbZKNggXr181a7T8DHyJrcua1DzFaQUvO-ceJJbmKOipfQ8suEMDOzBZr6OdVu9_FOholOW4xY4sZA2ZsMeMGM3aYcTnB8HU8DzNuMP9CN4PT0fGQuGEYJIOIuSRUxyoWoeQ-TUMdS3gTpLHmntYsYNqPwxQiEPMgPfLTQIEp5so_UAdcQkzM-5r-Rt18kqsNhCV4KFpCHC-4YJ5gQsacMU-n3IsUONSb6I_Z3UcrdzKev-NbnzlpGy1OL6od1C2fK7ULTlwp9hyqd-PGUgo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+iterative+method+for+cauchy+problems+subject+to+the+convection-diffusion+equation&rft.jtitle=Advanced+mathematical+models+%26+applications&rft.au=Nachaoui%2C+Abdeljalil&rft.date=2023-11-30&rft.pub=Jomard+Publishing&rft.issn=2519-4445&rft.eissn=2519-4445&rft.volume=8&rft.spage=327&rft.epage=338&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_05137216v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2519-4445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2519-4445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2519-4445&client=summon