How to Design a Channel-Resilient Database for Radio Frequency Fingerprint Identification?
This paper proposes to explore the Radio Frequency Fingerprint (RFF) identification with a virtual database generator. RFF is a unique signature created in the emitter transmission chain by hardware flaws. These flaws may be used as a secure identifier as they cannot be easily replicated for spoofin...
Saved in:
Published in | ICC 2024 - IEEE International Conference on Communications pp. 1655 - 1660 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
09.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes to explore the Radio Frequency Fingerprint (RFF) identification with a virtual database generator. RFF is a unique signature created in the emitter transmission chain by hardware flaws. These flaws may be used as a secure identifier as they cannot be easily replicated for spoofing purposes. In recent years, the RFF identification relies mainly on Deep Learning (DL), and large databases are consequently needed to improve identification in different environmental conditions. In this paper, we introduce a virtual database and suggest utilizing it for the examination of three crucial aspects when creating a RFF database: the number of signals required to perform DL classification, the impact of RFF similarities between emitters, and the propagation channel impact in static and dynamic contexts. For instance, such analysis shows that data augmentation with 10 channels improves accuracy classification up to 70% in a scenario where RFFs are close from a transmitter to another. |
---|---|
AbstractList | This paper proposes to explore the Radio Frequency Fingerprint (RFF) identification with a virtual database generator. RFF is a unique signature created in the emitter transmission chain by hardware flaws. These flaws may be used as a secure identifier as they cannot be easily replicated for spoofing purposes. In recent years, the RFF identification relies mainly on Deep Learning (DL), and large databases are consequently needed to improve identification in different environmental conditions. In this paper, we introduce a virtual database and suggest utilizing it for the examination of three crucial aspects when creating a RFF database: the number of signals required to perform DL classification, the impact of RFF similarities between emitters, and the propagation channel impact in static and dynamic contexts. For instance, such analysis shows that data augmentation with 10 channels improves accuracy classification up to 70% in a scenario where RFFs are close from a transmitter to another. |
Author | CHILLET, Alice VALKAMA, Mikko DESNOS, Karol NOGUES, Erwan LOHAN, Elena Simona GERZAGUET, Robin GAUTIER, Matthieu |
Author_xml | – sequence: 1 givenname: Alice surname: CHILLET fullname: CHILLET, Alice email: Alice.chillet@irisa.fr organization: Univ Rennes, CNRS, IRISA – sequence: 2 givenname: Robin surname: GERZAGUET fullname: GERZAGUET, Robin email: robin.gerzaguet@irisa.fr organization: Univ Rennes, CNRS, IRISA – sequence: 3 givenname: Karol surname: DESNOS fullname: DESNOS, Karol email: karol.desnos@insa-rennes.fr organization: Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164,Rennes,France – sequence: 4 givenname: Matthieu surname: GAUTIER fullname: GAUTIER, Matthieu email: Matthieu.gautier@irisa.fr organization: Univ Rennes, CNRS, IRISA – sequence: 5 givenname: Elena Simona surname: LOHAN fullname: LOHAN, Elena Simona email: elenasimonalohan@insa-rennes.fr organization: Tampere University,Faculty of Information Technology and Communication Sciences,Tampere,Finland – sequence: 6 givenname: Erwan surname: NOGUES fullname: NOGUES, Erwan organization: DGA-MI – sequence: 7 givenname: Mikko surname: VALKAMA fullname: VALKAMA, Mikko email: mikko.valkama@insa-rennes.fr organization: Tampere University,Faculty of Information Technology and Communication Sciences,Tampere,Finland |
BookMark | eNo1kN1Kw0AUhFdRsK19A5F9gcQ92f8rkbSxhYJQ9MabsumebVfiRpOI9O0NqFcDMx_DMFNykdqEhNwCywGYvVuXpQRQKi9YIXJgquDMqDMyt9qALgxYJoU9JxOw3GRgDL8i075_Y0wWlsOEvK7abzq0dIF9PCTqaHl0KWGTbUejiZgGunCDq12PNLQd3TofW1p1-PmFaX-iVUwH7D66OIJrP-IxxL0bYpvur8llcE2P8z-dkZdq-Vyuss3T47p82GRHYFxlao-m1hwE10w4UQfjpdSqBsfAhiC0NWPCgy98MEpJ5Np7KYw0HGsdLJ-Rm9_eiIi7ccq76067_y_4D-uWVL4 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICC51166.2024.10623086 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781728190549 1728190541 |
EISSN | 1938-1883 |
EndPage | 1660 |
ExternalDocumentID | 10623086 |
Genre | orig-research |
GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IM AAJGR ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI JC5 RIE RIO |
ID | FETCH-LOGICAL-h1036-6ce8b73143704a4bf8d5576b1a019ff47983703fd2df8665e37dd548583eb7f93 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 28 05:46:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-h1036-6ce8b73143704a4bf8d5576b1a019ff47983703fd2df8665e37dd548583eb7f93 |
OpenAccessLink | https://inria.hal.science/hal-04617952 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10623086 |
PublicationCentury | 2000 |
PublicationDate | 2024-June-9 |
PublicationDateYYYYMMDD | 2024-06-09 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-9 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | ICC 2024 - IEEE International Conference on Communications |
PublicationTitleAbbrev | ICC |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0052931 |
Score | 2.3053653 |
Snippet | This paper proposes to explore the Radio Frequency Fingerprint (RFF) identification with a virtual database generator. RFF is a unique signature created in the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1655 |
SubjectTerms | Accuracy Deep Learning Fingerprint recognition Generators Hardware Radio Frequency Fingerprint Radio transmitters RF impairments models Wireless communication |
Title | How to Design a Channel-Resilient Database for Radio Frequency Fingerprint Identification? |
URI | https://ieeexplore.ieee.org/document/10623086 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1uT_ribeKdPPja2kvaNE8-bJYpOGQ4GL6MZPmC4mjH6BD99X5JW28g-FYCpSEhPSdfzjkh5AJYKhMmUy_NpLXkCFxSUigPOAiNiBJExtYh70bpcMJup8m0Mas7LwwAOPEZ-PbRneXrcr62pTJc4QjWyME7pMOFqM1a7W83QdwKGwtwGIjLm34fuURqVQgR89s3f9yh4iAk3yaj9uO1cuTFX1fKn7__ymX8d-92SO_LrUfvP3Fol2xAsUe2vgUN7pPHYflKq5IOnF6DSmpNBQUsvDE2LKwlkg5kJS2kUWSxdCz1c0nzVa2zfqO5K_7ZGmBFa2uvaWp9Vz0yya8f-kOvuVXBewpt-nA6h0zxGHkSD5hkymQ6wU2HCiWyPWMYFzYPJzY60saG4UHMtcZ9TZLFoLgR8QHpFmUBh4Qam6QTK0DWYJhUQaYYD6SRwoDKdBgdkZ4dptmyDs6YtSN0_Ef7Cdm0s-WUWOKUdKvVGs4Q8yt17ub6A9Cwqus |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA06H9QXbxPv5sHX1l7S25MPm6XqNmRsMHwZyfIFxdHK6BD99X5JW28g-FYCpSEhPSdfzjkh5AJYyAPGQyuMubbkJLikeCIsiCCRiCiOp3Qdsj8IszG7nQST2qxuvDAAYMRnYOtHc5Yvi9lSl8pwhSNYIwdfJWtIrOOwsms1P94AkcutTcCuk1zedDrIJkKtQ_CY3bz74xYVAyLpFhk0n6-0I8_2shT27P1XMuO_-7dN2l9-PXr_iUQ7ZAXyXbL5LWpwjzxkxSstC9o1ig3KqbYV5DC3htgw16ZI2uUl16BGkcfSIZdPBU0XldL6jaam_KergCWtzL2qrvZdtck4vR51Mqu-V8F6dHX-cDiDWEQ-MqXIYZwJFcsAtx3C5cj3lGJRohNxfCU9qXQcHviRlLizCWIfRKQSf5-08iKHA0KVztLxBSBvUIwLJxYscrjiiQIRS9c7JG09TNOXKjpj2ozQ0R_t52Q9G_V7097N4O6YbOiZM7qs5IS0ysUSTpEBlOLMzPsH726uNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ICC+2024+-+IEEE+International+Conference+on+Communications&rft.atitle=How+to+Design+a+Channel-Resilient+Database+for+Radio+Frequency+Fingerprint+Identification%3F&rft.au=CHILLET%2C+Alice&rft.au=GERZAGUET%2C+Robin&rft.au=DESNOS%2C+Karol&rft.au=GAUTIER%2C+Matthieu&rft.date=2024-06-09&rft.pub=IEEE&rft.eissn=1938-1883&rft.spage=1655&rft.epage=1660&rft_id=info:doi/10.1109%2FICC51166.2024.10623086&rft.externalDocID=10623086 |