How to Design a Channel-Resilient Database for Radio Frequency Fingerprint Identification?

This paper proposes to explore the Radio Frequency Fingerprint (RFF) identification with a virtual database generator. RFF is a unique signature created in the emitter transmission chain by hardware flaws. These flaws may be used as a secure identifier as they cannot be easily replicated for spoofin...

Full description

Saved in:
Bibliographic Details
Published inICC 2024 - IEEE International Conference on Communications pp. 1655 - 1660
Main Authors CHILLET, Alice, GERZAGUET, Robin, DESNOS, Karol, GAUTIER, Matthieu, LOHAN, Elena Simona, NOGUES, Erwan, VALKAMA, Mikko
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes to explore the Radio Frequency Fingerprint (RFF) identification with a virtual database generator. RFF is a unique signature created in the emitter transmission chain by hardware flaws. These flaws may be used as a secure identifier as they cannot be easily replicated for spoofing purposes. In recent years, the RFF identification relies mainly on Deep Learning (DL), and large databases are consequently needed to improve identification in different environmental conditions. In this paper, we introduce a virtual database and suggest utilizing it for the examination of three crucial aspects when creating a RFF database: the number of signals required to perform DL classification, the impact of RFF similarities between emitters, and the propagation channel impact in static and dynamic contexts. For instance, such analysis shows that data augmentation with 10 channels improves accuracy classification up to 70% in a scenario where RFFs are close from a transmitter to another.
AbstractList This paper proposes to explore the Radio Frequency Fingerprint (RFF) identification with a virtual database generator. RFF is a unique signature created in the emitter transmission chain by hardware flaws. These flaws may be used as a secure identifier as they cannot be easily replicated for spoofing purposes. In recent years, the RFF identification relies mainly on Deep Learning (DL), and large databases are consequently needed to improve identification in different environmental conditions. In this paper, we introduce a virtual database and suggest utilizing it for the examination of three crucial aspects when creating a RFF database: the number of signals required to perform DL classification, the impact of RFF similarities between emitters, and the propagation channel impact in static and dynamic contexts. For instance, such analysis shows that data augmentation with 10 channels improves accuracy classification up to 70% in a scenario where RFFs are close from a transmitter to another.
Author CHILLET, Alice
VALKAMA, Mikko
DESNOS, Karol
NOGUES, Erwan
LOHAN, Elena Simona
GERZAGUET, Robin
GAUTIER, Matthieu
Author_xml – sequence: 1
  givenname: Alice
  surname: CHILLET
  fullname: CHILLET, Alice
  email: Alice.chillet@irisa.fr
  organization: Univ Rennes, CNRS, IRISA
– sequence: 2
  givenname: Robin
  surname: GERZAGUET
  fullname: GERZAGUET, Robin
  email: robin.gerzaguet@irisa.fr
  organization: Univ Rennes, CNRS, IRISA
– sequence: 3
  givenname: Karol
  surname: DESNOS
  fullname: DESNOS, Karol
  email: karol.desnos@insa-rennes.fr
  organization: Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164,Rennes,France
– sequence: 4
  givenname: Matthieu
  surname: GAUTIER
  fullname: GAUTIER, Matthieu
  email: Matthieu.gautier@irisa.fr
  organization: Univ Rennes, CNRS, IRISA
– sequence: 5
  givenname: Elena Simona
  surname: LOHAN
  fullname: LOHAN, Elena Simona
  email: elenasimonalohan@insa-rennes.fr
  organization: Tampere University,Faculty of Information Technology and Communication Sciences,Tampere,Finland
– sequence: 6
  givenname: Erwan
  surname: NOGUES
  fullname: NOGUES, Erwan
  organization: DGA-MI
– sequence: 7
  givenname: Mikko
  surname: VALKAMA
  fullname: VALKAMA, Mikko
  email: mikko.valkama@insa-rennes.fr
  organization: Tampere University,Faculty of Information Technology and Communication Sciences,Tampere,Finland
BookMark eNo1kN1Kw0AUhFdRsK19A5F9gcQ92f8rkbSxhYJQ9MabsumebVfiRpOI9O0NqFcDMx_DMFNykdqEhNwCywGYvVuXpQRQKi9YIXJgquDMqDMyt9qALgxYJoU9JxOw3GRgDL8i075_Y0wWlsOEvK7abzq0dIF9PCTqaHl0KWGTbUejiZgGunCDq12PNLQd3TofW1p1-PmFaX-iVUwH7D66OIJrP-IxxL0bYpvur8llcE2P8z-dkZdq-Vyuss3T47p82GRHYFxlao-m1hwE10w4UQfjpdSqBsfAhiC0NWPCgy98MEpJ5Np7KYw0HGsdLJ-Rm9_eiIi7ccq76067_y_4D-uWVL4
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICC51166.2024.10623086
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728190549
1728190541
EISSN 1938-1883
EndPage 1660
ExternalDocumentID 10623086
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IM
AAJGR
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
JC5
RIE
RIO
ID FETCH-LOGICAL-h1036-6ce8b73143704a4bf8d5576b1a019ff47983703fd2df8665e37dd548583eb7f93
IEDL.DBID RIE
IngestDate Wed Aug 28 05:46:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h1036-6ce8b73143704a4bf8d5576b1a019ff47983703fd2df8665e37dd548583eb7f93
OpenAccessLink https://inria.hal.science/hal-04617952
PageCount 6
ParticipantIDs ieee_primary_10623086
PublicationCentury 2000
PublicationDate 2024-June-9
PublicationDateYYYYMMDD 2024-06-09
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-9
  day: 09
PublicationDecade 2020
PublicationTitle ICC 2024 - IEEE International Conference on Communications
PublicationTitleAbbrev ICC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0052931
Score 2.3053653
Snippet This paper proposes to explore the Radio Frequency Fingerprint (RFF) identification with a virtual database generator. RFF is a unique signature created in the...
SourceID ieee
SourceType Publisher
StartPage 1655
SubjectTerms Accuracy
Deep Learning
Fingerprint recognition
Generators
Hardware
Radio Frequency Fingerprint
Radio transmitters
RF impairments models
Wireless communication
Title How to Design a Channel-Resilient Database for Radio Frequency Fingerprint Identification?
URI https://ieeexplore.ieee.org/document/10623086
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1uT_ribeKdPPja2kvaNE8-bJYpOGQ4GL6MZPmC4mjH6BD99X5JW28g-FYCpSEhPSdfzjkh5AJYKhMmUy_NpLXkCFxSUigPOAiNiBJExtYh70bpcMJup8m0Mas7LwwAOPEZ-PbRneXrcr62pTJc4QjWyME7pMOFqM1a7W83QdwKGwtwGIjLm34fuURqVQgR89s3f9yh4iAk3yaj9uO1cuTFX1fKn7__ymX8d-92SO_LrUfvP3Fol2xAsUe2vgUN7pPHYflKq5IOnF6DSmpNBQUsvDE2LKwlkg5kJS2kUWSxdCz1c0nzVa2zfqO5K_7ZGmBFa2uvaWp9Vz0yya8f-kOvuVXBewpt-nA6h0zxGHkSD5hkymQ6wU2HCiWyPWMYFzYPJzY60saG4UHMtcZ9TZLFoLgR8QHpFmUBh4Qam6QTK0DWYJhUQaYYD6SRwoDKdBgdkZ4dptmyDs6YtSN0_Ef7Cdm0s-WUWOKUdKvVGs4Q8yt17ub6A9Cwqus
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA06H9QXbxPv5sHX1l7S25MPm6XqNmRsMHwZyfIFxdHK6BD99X5JW28g-FYCpSEhPSdfzjkh5AJYyAPGQyuMubbkJLikeCIsiCCRiCiOp3Qdsj8IszG7nQST2qxuvDAAYMRnYOtHc5Yvi9lSl8pwhSNYIwdfJWtIrOOwsms1P94AkcutTcCuk1zedDrIJkKtQ_CY3bz74xYVAyLpFhk0n6-0I8_2shT27P1XMuO_-7dN2l9-PXr_iUQ7ZAXyXbL5LWpwjzxkxSstC9o1ig3KqbYV5DC3htgw16ZI2uUl16BGkcfSIZdPBU0XldL6jaam_KergCWtzL2qrvZdtck4vR51Mqu-V8F6dHX-cDiDWEQ-MqXIYZwJFcsAtx3C5cj3lGJRohNxfCU9qXQcHviRlLizCWIfRKQSf5-08iKHA0KVztLxBSBvUIwLJxYscrjiiQIRS9c7JG09TNOXKjpj2ozQ0R_t52Q9G_V7097N4O6YbOiZM7qs5IS0ysUSTpEBlOLMzPsH726uNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ICC+2024+-+IEEE+International+Conference+on+Communications&rft.atitle=How+to+Design+a+Channel-Resilient+Database+for+Radio+Frequency+Fingerprint+Identification%3F&rft.au=CHILLET%2C+Alice&rft.au=GERZAGUET%2C+Robin&rft.au=DESNOS%2C+Karol&rft.au=GAUTIER%2C+Matthieu&rft.date=2024-06-09&rft.pub=IEEE&rft.eissn=1938-1883&rft.spage=1655&rft.epage=1660&rft_id=info:doi/10.1109%2FICC51166.2024.10623086&rft.externalDocID=10623086