Mean convex properly embedded [[phi], [??]]-minimal surfaces in [??]

We establish curvature estimates and a convexity result for mean convex properly embedded [[phi], [??]]-minimal surfaces in [??], i.e., [phi]-minimal surfaces when [phi] depends only on the third coordinate of [??]. Led by the works on curvature estimates for surfaces in 3-manifolds, due to White fo...

Full description

Saved in:
Bibliographic Details
Published inRevista matemática iberoamericana Vol. 38; no. 4; p. 1349
Main Authors Ma, dos Santos, Joao Paulo
Format Journal Article
LanguageEnglish
Published European Mathematical Society Publishing House 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We establish curvature estimates and a convexity result for mean convex properly embedded [[phi], [??]]-minimal surfaces in [??], i.e., [phi]-minimal surfaces when [phi] depends only on the third coordinate of [??]. Led by the works on curvature estimates for surfaces in 3-manifolds, due to White for minimal surfaces, to Rosenberg, Souam and Toubiana for stable CMC surfaces, and to Spruck and Xiao for stable translating solitons in [??], we use a compactness argument to provide curvature estimates for a family of mean convex [[phi], [??]]-minimal surfaces in [??]. We apply this result to generalize the convexity property of Spruck and Xiao for translating solitons. More precisely, we characterize the convexity of a properly embedded [[phi], [??]]-minimal surface in [??] with non-positive mean curvature when the growth at infinity of [phi] is at most quadratic. 2020 Mathematics Subject Classification: Primary 35J60; Secondary 53C42. Keywords: [phi]-minimal surface, mean convex, area estimates, curvature estimates, convexity.
AbstractList We establish curvature estimates and a convexity result for mean convex properly embedded [[phi], [??]]-minimal surfaces in [??], i.e., [phi]-minimal surfaces when [phi] depends only on the third coordinate of [??]. Led by the works on curvature estimates for surfaces in 3-manifolds, due to White for minimal surfaces, to Rosenberg, Souam and Toubiana for stable CMC surfaces, and to Spruck and Xiao for stable translating solitons in [??], we use a compactness argument to provide curvature estimates for a family of mean convex [[phi], [??]]-minimal surfaces in [??]. We apply this result to generalize the convexity property of Spruck and Xiao for translating solitons. More precisely, we characterize the convexity of a properly embedded [[phi], [??]]-minimal surface in [??] with non-positive mean curvature when the growth at infinity of [phi] is at most quadratic. 2020 Mathematics Subject Classification: Primary 35J60; Secondary 53C42. Keywords: [phi]-minimal surface, mean convex, area estimates, curvature estimates, convexity.
We establish curvature estimates and a convexity result for mean convex properly embedded [[phi], [??]]-minimal surfaces in [??], i.e., [phi]-minimal surfaces when [phi] depends only on the third coordinate of [??]. Led by the works on curvature estimates for surfaces in 3-manifolds, due to White for minimal surfaces, to Rosenberg, Souam and Toubiana for stable CMC surfaces, and to Spruck and Xiao for stable translating solitons in [??], we use a compactness argument to provide curvature estimates for a family of mean convex [[phi], [??]]-minimal surfaces in [??]. We apply this result to generalize the convexity property of Spruck and Xiao for translating solitons. More precisely, we characterize the convexity of a properly embedded [[phi], [??]]-minimal surface in [??] with non-positive mean curvature when the growth at infinity of [phi] is at most quadratic.
Audience Academic
Author Ma
dos Santos, Joao Paulo
Author_xml – sequence: 1
  fullname: Ma
– sequence: 2
  fullname: Ma
– sequence: 3
  fullname: dos Santos, Joao Paulo
BookMark eNptT8tKw0AUnUUF2yr4CQNuTXvnlUlXpVSrhRZBuguhTGfu1JFkEhIV_XtTdeFCzuLAecEZkUGsIxJyxWAimWbTp-16yoTiAzIEzkTCuYBzMuq6FwAuAWBIbrdoIrV1fMcP2rR1g235SbE6oHPoaJ43z6G4ofl8XhRJFWKoTEm7t9Ybix0N8du5IGfelB1e_vKY7FZ3u-VDsnm8Xy8Xm-SYapXwTBiFkvnMyhSY9mrGtHMgMoup9I5zBj47-dJa4WyK3jHQB6c0plYoMSbXP7NHU-I-RF-_tsZWobP7hYaZ4lrIU2ryT6qHwyr0R9GHXv9T-ALaB1jd
ContentType Journal Article
Copyright COPYRIGHT 2022 European Mathematical Society Publishing House
Copyright_xml – notice: COPYRIGHT 2022 European Mathematical Society Publishing House
DBID INF
DOI 10.4171/RMI/1352
DatabaseName Gale Cengage Informe Academico
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID A709527345
GeographicLocations España
GeographicLocations_xml – name: España
GroupedDBID -~X
123
70C
AENEX
AKZPS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AUREJ
E3Z
EBS
EJD
FAEIB
FEDTE
FRP
GROUPED_DOAJ
HVGLF
IAO
INF
ITC
OK1
P2P
RBV
REW
VH7
ID FETCH-LOGICAL-g675-283a5e41f8c46017f5917dd038ce64fd2210f841f84cc3dc6efd107bd57e6c353
ISSN 0213-2230
IngestDate Tue Jun 17 21:43:32 EDT 2025
Tue Jun 10 20:31:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g675-283a5e41f8c46017f5917dd038ce64fd2210f841f84cc3dc6efd107bd57e6c353
ParticipantIDs gale_infotracmisc_A709527345
gale_infotracacademiconefile_A709527345
PublicationCentury 2000
PublicationDate 20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 20220601
  day: 01
PublicationDecade 2020
PublicationTitle Revista matemática iberoamericana
PublicationYear 2022
Publisher European Mathematical Society Publishing House
Publisher_xml – name: European Mathematical Society Publishing House
SSID ssj0024000
Score 2.2713804
Snippet We establish curvature estimates and a convexity result for mean convex properly embedded [[phi], [??]]-minimal surfaces in [??], i.e., [phi]-minimal surfaces...
SourceID gale
SourceType Aggregation Database
StartPage 1349
Title Mean convex properly embedded [[phi], [??]]-minimal surfaces in [??]
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6V9AKHqk9BSas9FHFwXbxeb2yfItoUpUjuAYKEFEVovQ_gkBiFREL99Z2xdxNT5QCVLMv2Oqtkv8l4Ht-MCfmi05KpjKkwN_AnTyJuwhwe1GGkJSs5PD9YhPXOxe_e8CI5vRSXa55uXV2yKL-pPxvrSv4HVbgGuGKV7DOQXU0KF-AY8IU9IAz7J2FcYBi95o0_INHqDsmZgZmWBrSJDg7Ed9jubm4PxABXEs_5CW5wLgYhdhWZYrnIcm4dMevRPW27FVMIYEcGYN-aaZ1cZxgED2q-iXRZn5WGLzYc6eo-OMc3FrvEg6xqVmLVDjuAx7qiRzWxMJ8rKFbdZbF7iWOatkJow2rpskyNUosZD8EkidoamGctSUta6hR7J27S8wlLUc-fFb8w8MCbHrj_9M0-TsF6xOY9You8jMGJiL3D7TsxRk2Bkv9GTWtinPoIJj5idTFax3MkncUxek1eOVeBHje4vyEvzOwt2VmvxP07MkAJoI0EUC8B1EsAHY8B_clXOu73JxOPN_V409tZPfKejE5-jn4MQ_dejPAa3LsQDEIpTMJsphJwp1MrwOXWOuKZMr3E6hi8eJvheKIU16pnrAYnv9QiNT3FBf9AOrNqZnYJzTW4u7nKtI3BkoxyGXNl4zzKpJBWZXyPHOLvv8K1X8ylkq5mAz6NbcOu1mu8R7qP7gQlpVrDH5880T7ZXotbl3QW86X5BHbfovxcw_cX4k1Uqw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mean+convex+properly+embedded+%5B%5Bphi%5D%2C+%5B%3F%3F%5D%5D-minimal+surfaces+in+%5B%3F%3F%5D&rft.jtitle=Revista+matem%C3%A1tica+iberoamericana&rft.au=Ma&rft.au=Ma&rft.au=dos+Santos%2C+Joao+Paulo&rft.date=2022-06-01&rft.pub=European+Mathematical+Society+Publishing+House&rft.issn=0213-2230&rft.volume=38&rft.issue=4&rft.spage=1349&rft_id=info:doi/10.4171%2FRMI%2F1352&rft.externalDocID=A709527345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0213-2230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0213-2230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0213-2230&client=summon