Cu3(hexaiminotriphenylene)2: An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing
The utility of metal–organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11‐hexaiminotriphenyle...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 54; no. 14; pp. 4349 - 4352 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
27.03.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The utility of metal–organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11‐hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm−1 (pellet, two‐point‐probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub‐ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.
A MOF with a nose: Previous efforts to use metal–organic frameworks (MOFs) for chemical sensing have been hindered by poor signal transduction due to a lack of electrical conductivity. A new conductive 2D MOF can be used for the chemiresistive sensing of ammonia. It is shown that the sensing response can be varied by the choice of the metal node. |
---|---|
AbstractList | The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm(-1) (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs. The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2Scm-1 (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs. The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm(-1) (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm(-1) (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs. The utility of metal–organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11‐hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm−1 (pellet, two‐point‐probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub‐ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs. A MOF with a nose: Previous efforts to use metal–organic frameworks (MOFs) for chemical sensing have been hindered by poor signal transduction due to a lack of electrical conductivity. A new conductive 2D MOF can be used for the chemiresistive sensing of ammonia. It is shown that the sensing response can be varied by the choice of the metal node. |
Author | Liu, Sophie F. Dincă, Mircea Campbell, Michael G. Sheberla, Dennis Swager, Timothy M. |
Author_xml | – sequence: 1 givenname: Michael G. surname: Campbell fullname: Campbell, Michael G. organization: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) http://web.mit.edu/dincalab – sequence: 2 givenname: Dennis surname: Sheberla fullname: Sheberla, Dennis organization: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) http://web.mit.edu/dincalab – sequence: 3 givenname: Sophie F. surname: Liu fullname: Liu, Sophie F. organization: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) http://web.mit.edu/dincalab – sequence: 4 givenname: Timothy M. surname: Swager fullname: Swager, Timothy M. organization: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) http://web.mit.edu/dincalab – sequence: 5 givenname: Mircea surname: Dincă fullname: Dincă, Mircea email: mdinca@mit.edu organization: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) http://web.mit.edu/dincalab |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25678397$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtvEzEUhS1URF9sWaKR2JTFFL89wy4a0lCpj0VbgdhYHudO4tbjCXaGNv8etylZsLq-9neso3MO0V4YAiD0geBTgjH9YoKDU4oJJ6QS_A06IIKSkinF9vKZM1aqSpB9dJjSfearCst3aJ8KqSpWqwPUNyM7WcKTcb0Lwzq61RLCxkOAz_RrMQnF1IPN19Z4vymaIcxHu3Z_oKDfiktYG19ex0U2YYuzaHp4HOJD0Q2xaJbQuwjJpRf6BkJyYXGM3nbGJ3j_Oo_Q3dn0tvleXlzPzpvJRbkQCvOSGzA1GCxpq4ziNbF117atMZRLqpgRbS2koB10wlo8B9sKoJh1GOOKK2bZETrZ_ruKw-8R0lr3Llnw3gQYxqSJlIpxpiTN6Kf_0PthjCG7e6EkwxLLTH18pca2h7leRdebuNH_gsxAvQUenYfN7p1g_VyTfq5J72rSk6vz6W7L2nKrzWHB005r4oPONpXQP65mesZ_qdkl_akb9heXo5cn |
CODEN | ACIEAY |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201411854 |
DatabaseName | Istex PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 4352 |
ExternalDocumentID | 3633410361 25678397 ANIE201411854 ark_67375_WNG_G4Z7GM2X_C |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: NSF funderid: ECS‐0335765 – fundername: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences funderid: DE‐SC0001088 – fundername: Research Corporation for Science Advancement – fundername: Army Research Office – fundername: Sloan Foundation |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ ABDBF ABJNI AETEA AEYWJ AGQPQ AGYGG NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-g5704-4aea9ea062b7a7491c9fbbbaa246273a5b95652fef5cc0decb5e203f0008473c3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 06:36:43 EDT 2025 Sun Jul 13 04:21:41 EDT 2025 Mon Jul 21 05:27:52 EDT 2025 Wed Jan 22 16:22:04 EST 2025 Wed Oct 30 10:05:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | ammonia copper sensors conductivity metal-organic frameworks |
Language | English |
License | 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g5704-4aea9ea062b7a7491c9fbbbaa246273a5b95652fef5cc0decb5e203f0008473c3 |
Notes | Sloan Foundation istex:CC9A77CBA1C5ADDE766362BF4DBD24327AA38C0E Research Corporation for Science Advancement U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences - No. DE-SC0001088 ArticleID:ANIE201411854 NSF - No. ECS-0335765 Synthetic and characterization work (excluding vapor sensing experiments) was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001088 (MIT). M.D. thanks the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry for support of M.G.C. We thank Miller Li for assistance with acquiring SEM images and Lei Sun for helpful discussions. M.D. gratefully acknowledges early career support from the Sloan Foundation, the Research Corporation for Science Advancement (Cottrell Scholar), and 3M. S.F.L. and T.M.S. acknowledge support from a Graduate Research Fellowship under Grant No. 1122374, as well as the Army Research Office through the Institute for Soldier Nanotechnologies (sensing experiments). The SEM and XPS characterization data were obtained at the Harvard Center for Nanoscale Systems, which is supported by NSF Grant ECS-0335765. Army Research Office ark:/67375/WNG-G4Z7GM2X-C Synthetic and characterization work (excluding vapor sensing experiments) was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE‐SC0001088 (MIT). M.D. thanks the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry for support of M.G.C. We thank Miller Li for assistance with acquiring SEM images and Lei Sun for helpful discussions. M.D. gratefully acknowledges early career support from the Sloan Foundation, the Research Corporation for Science Advancement (Cottrell Scholar), and 3M. S.F.L. and T.M.S. acknowledge support from a Graduate Research Fellowship under Grant No. 1122374, as well as the Army Research Office through the Institute for Soldier Nanotechnologies (sensing experiments). The SEM and XPS characterization data were obtained at the Harvard Center for Nanoscale Systems, which is supported by NSF Grant ECS‐0335765. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25678397 |
PQID | 1667630606 |
PQPubID | 946352 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1667343762 proquest_journals_1667630606 pubmed_primary_25678397 wiley_primary_10_1002_anie_201411854_ANIE201411854 istex_primary_ark_67375_WNG_G4Z7GM2X_C |
PublicationCentury | 2000 |
PublicationDate | March 27, 2015 |
PublicationDateYYYYMMDD | 2015-03-27 |
PublicationDate_xml | – month: 03 year: 2015 text: March 27, 2015 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, E. B. Lobkovsky, Adv. Mater. 2007, 19, 1693-1696. S. Yahav, Anim. Res. 2004, 53, 289-293. M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 2000, 287, 622-625. Z. Xie, L. Ma, K. E. deKrafft, A. Jin, W. Lin, J. Am. Chem. Soc. 2010, 132, 922-923. B. Zhao, J. Zhang, W. Feng, Y. Yao, Z. Yang, Phys. Rev. B 2014, 90, 201403. J. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, et al., Nat. Commun. 2013, 4, 1-8. S. Achmann, G. Hagen, J. Kita, I. M. Malkowsky, C. Kiener, R. Moos, Sensors 2009, 9, 1574-1589. M. D. Allendorf, R. J. T. Houk, L. Andruszkiewicz, A. A. Talin, J. Pikarsky, A. Choudhury, K. A. Gall, P. J. Hesketh, J. Am. Chem. Soc. 2008, 130, 14404-14405. Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120-4122. E. Biemmi, A. Darga, N. Stock, T. Bein, Microporous Mesoporous Mater. 2008, 114, 380-386. R. Breslow, B. Jaun, R. Q. Kluttz, C.-Z. Xia, Tetrahedron 1982, 38, 863-867. M. Dogru, A. Sonnauer, A. Gavryushin, P. Knochel, T. Bein, Chem. Commun. 2011, 47, 1707. P. Chaudhuri, C. N. Verani, E. Bill, E. Bothe, T. Weyhermüller, K. Wieghardt, J. Am. Chem. Soc. 2001, 123, 2213-2223. S. W. Gay, K. F. Knowlton, Va Coop Ext Publ 2005, 442-110. N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, M. Dincă, J. Am. Chem. Soc. 2013, 135, 13326-13329. T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, et al., J. Am. Chem. Soc. 2013, 135, 2462-2465. D. M. D'Alessandro, J. R. R. Kanga, J. S. Caddy, Aust. J. Chem. 2011, 64, 718-722. R. Gutzler, D. F. Perepichka, J. Am. Chem. Soc. 2013, 135, 16585-16594. V. Stavila, A. A. Talin, M. D. Allendorf, Chem. Soc. Rev. 2014, 43, 5994-6010. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105-1125. Angew. Chem. 2012, 124, 10898-10903. T. Kambe, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui, K. Hoshiko, T. Shimojima, Z. Wang, T. Hirahara, K. Ishizaka, et al., J. Am. Chem. Soc. 2014, 136, 14357-14360. G. Ricciardi, A. Rosa, G. Morelli, F. Lelj, Polyhedron 1991, 10, 955-961. J. W. Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453-465. B. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi, C. Zhou, ACS Nano 2014, 8, 5304-5314. C. M. Hangarter, N. Chartuprayoon, S. C. Hernández, Y. Choa, N. V. Myung, Nano Today 2013, 8, 39-55. F. Gándara, F. J. Uribe-Romo, D. K. Britt, H. Furukawa, L. Lei, R. Cheng, X. Duan, M. O'Keeffe, O. M. Yaghi, Chem. Eur. J. 2012, 18, 10595-10601. T. C. Narayan, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc. 2012, 134, 12932-12935. Y. Wang, J. T. W. Yeow, J. Sens. 2009, 2009, 1-24. A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, et al., Science 2014, 343, 66-69. D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 2014, 136, 8859-8862. M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, et al., Chem. Mater. 2012, 24, 3511-3513. D. Banerjee, Z. Hu, J. Li, Dalton Trans. 2014, 43, 10668. K. A. Mirica, J. G. Weis, J. M. Schnorr, B. Esser, T. M. Swager, Angew. Chem. Int. Ed. 2012, 51, 10740-10745 J. Cui, Z. Xu, Chem. Commun. 2014, 50, 3986-3988. M. D. Allendorf, A. Schwartzberg, V. Stavila, A. A. Talin, Chem. Eur. J. 2011, 17, 11372-11388. O. Zybaylo, O. Shekhah, H. Wang, M. Tafipolsky, R. Schmid, D. Johannsmann, C. Wöll, Phys. Chem. Chem. Phys. 2010, 12, 8092. F. Shao, M. W. G. Hoffmann, J. D. Prades, J. R. Morante, N. López, F. Hernández-Ramírez, J. Phys. Chem. C 2013, 117, 3520-3526. L. Sun, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc. 2013, 135, 8185-8188. B. Chen, L. Wang, F. Zapata, G. Qian, E. B. Lobkovsky, J. Am. Chem. Soc. 2008, 130, 6718-6719. R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B. F. Sels, D. E. De Vos, Chem. Mater. 2009, 21, 2580-2582. E. L. Spitler, W. R. Dichtel, Nat. Chem. 2010, 2, 672-677. E. Park, O. S. Kwon, S. J. Park, J. S. Lee, S. You, J. Jang, J. Mater. Chem. 2012, 22, 1521. 2010; 12 2007; 19 2001; 123 1982; 38 2013; 4 2009; 21 2014; 90 1991; 10 2012; 18 2005 2011; 17 2013; 8 2013; 5 2014; 136 2014; 43 2010; 22 2004; 53 2009; 2009 2012; 112 2012; 134 2012 2012; 51 124 2013; 117 2011; 64 2010; 132 2009; 9 2013; 135 2008; 114 2000; 287 2011; 47 2012; 24 2010; 2 2014; 8 2014; 50 2012; 22 2008; 130 2009; 38 2014; 343 |
References_xml | – reference: P. Chaudhuri, C. N. Verani, E. Bill, E. Bothe, T. Weyhermüller, K. Wieghardt, J. Am. Chem. Soc. 2001, 123, 2213-2223. – reference: Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120-4122. – reference: S. Yahav, Anim. Res. 2004, 53, 289-293. – reference: S. W. Gay, K. F. Knowlton, Va Coop Ext Publ 2005, 442-110. – reference: B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, E. B. Lobkovsky, Adv. Mater. 2007, 19, 1693-1696. – reference: A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, et al., Science 2014, 343, 66-69. – reference: M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330. – reference: Angew. Chem. 2012, 124, 10898-10903. – reference: O. Zybaylo, O. Shekhah, H. Wang, M. Tafipolsky, R. Schmid, D. Johannsmann, C. Wöll, Phys. Chem. Chem. Phys. 2010, 12, 8092. – reference: V. Stavila, A. A. Talin, M. D. Allendorf, Chem. Soc. Rev. 2014, 43, 5994-6010. – reference: Y. Wang, J. T. W. Yeow, J. Sens. 2009, 2009, 1-24. – reference: F. Gándara, F. J. Uribe-Romo, D. K. Britt, H. Furukawa, L. Lei, R. Cheng, X. Duan, M. O'Keeffe, O. M. Yaghi, Chem. Eur. J. 2012, 18, 10595-10601. – reference: F. Shao, M. W. G. Hoffmann, J. D. Prades, J. R. Morante, N. López, F. Hernández-Ramírez, J. Phys. Chem. C 2013, 117, 3520-3526. – reference: C. M. Hangarter, N. Chartuprayoon, S. C. Hernández, Y. Choa, N. V. Myung, Nano Today 2013, 8, 39-55. – reference: T. C. Narayan, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc. 2012, 134, 12932-12935. – reference: B. Chen, L. Wang, F. Zapata, G. Qian, E. B. Lobkovsky, J. Am. Chem. Soc. 2008, 130, 6718-6719. – reference: E. Biemmi, A. Darga, N. Stock, T. Bein, Microporous Mesoporous Mater. 2008, 114, 380-386. – reference: D. Banerjee, Z. Hu, J. Li, Dalton Trans. 2014, 43, 10668. – reference: S. Achmann, G. Hagen, J. Kita, I. M. Malkowsky, C. Kiener, R. Moos, Sensors 2009, 9, 1574-1589. – reference: E. Park, O. S. Kwon, S. J. Park, J. S. Lee, S. You, J. Jang, J. Mater. Chem. 2012, 22, 1521. – reference: R. Gutzler, D. F. Perepichka, J. Am. Chem. Soc. 2013, 135, 16585-16594. – reference: T. Kambe, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui, K. Hoshiko, T. Shimojima, Z. Wang, T. Hirahara, K. Ishizaka, et al., J. Am. Chem. Soc. 2014, 136, 14357-14360. – reference: M. D. Allendorf, A. Schwartzberg, V. Stavila, A. A. Talin, Chem. Eur. J. 2011, 17, 11372-11388. – reference: M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, et al., Chem. Mater. 2012, 24, 3511-3513. – reference: Z. Xie, L. Ma, K. E. deKrafft, A. Jin, W. Lin, J. Am. Chem. Soc. 2010, 132, 922-923. – reference: D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 2014, 136, 8859-8862. – reference: R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B. F. Sels, D. E. De Vos, Chem. Mater. 2009, 21, 2580-2582. – reference: T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, et al., J. Am. Chem. Soc. 2013, 135, 2462-2465. – reference: K. A. Mirica, J. G. Weis, J. M. Schnorr, B. Esser, T. M. Swager, Angew. Chem. Int. Ed. 2012, 51, 10740-10745; – reference: J. W. Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453-465. – reference: E. L. Spitler, W. R. Dichtel, Nat. Chem. 2010, 2, 672-677. – reference: L. Sun, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc. 2013, 135, 8185-8188. – reference: J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 2000, 287, 622-625. – reference: M. Dogru, A. Sonnauer, A. Gavryushin, P. Knochel, T. Bein, Chem. Commun. 2011, 47, 1707. – reference: N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, M. Dincă, J. Am. Chem. Soc. 2013, 135, 13326-13329. – reference: B. Zhao, J. Zhang, W. Feng, Y. Yao, Z. Yang, Phys. Rev. B 2014, 90, 201403. – reference: J. Cui, Z. Xu, Chem. Commun. 2014, 50, 3986-3988. – reference: J. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, et al., Nat. Commun. 2013, 4, 1-8. – reference: L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105-1125. – reference: B. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi, C. Zhou, ACS Nano 2014, 8, 5304-5314. – reference: R. Breslow, B. Jaun, R. Q. Kluttz, C.-Z. Xia, Tetrahedron 1982, 38, 863-867. – reference: G. Ricciardi, A. Rosa, G. Morelli, F. Lelj, Polyhedron 1991, 10, 955-961. – reference: M. D. Allendorf, R. J. T. Houk, L. Andruszkiewicz, A. A. Talin, J. Pikarsky, A. Choudhury, K. A. Gall, P. J. Hesketh, J. Am. Chem. Soc. 2008, 130, 14404-14405. – reference: D. M. D'Alessandro, J. R. R. Kanga, J. S. Caddy, Aust. J. Chem. 2011, 64, 718-722. – volume: 64 start-page: 718 year: 2011 end-page: 722 publication-title: Aust. J. Chem. – volume: 43 start-page: 10668 year: 2014 publication-title: Dalton Trans. – volume: 8 start-page: 5304 year: 2014 end-page: 5314 publication-title: ACS Nano – volume: 130 start-page: 6718 year: 2008 end-page: 6719 publication-title: J. Am. Chem. Soc. – volume: 343 start-page: 66 year: 2014 end-page: 69 publication-title: Science – volume: 5 start-page: 453 year: 2013 end-page: 465 publication-title: Nat. Chem. – volume: 10 start-page: 955 year: 1991 end-page: 961 publication-title: Polyhedron – volume: 21 start-page: 2580 year: 2009 end-page: 2582 publication-title: Chem. Mater. – volume: 51 124 start-page: 10740 10898 year: 2012 2012 end-page: 10745 10903 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 3986 year: 2014 end-page: 3988 publication-title: Chem. Commun. – volume: 117 start-page: 3520 year: 2013 end-page: 3526 publication-title: J. Phys. Chem. C – volume: 22 start-page: 1521 year: 2012 publication-title: J. Mater. Chem. – volume: 135 start-page: 13326 year: 2013 end-page: 13329 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 289 year: 2004 end-page: 293 publication-title: Anim. Res. – volume: 2009 start-page: 1 year: 2009 end-page: 24 publication-title: J. Sens. – volume: 43 start-page: 5994 year: 2014 end-page: 6010 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 8092 year: 2010 publication-title: Phys. Chem. Chem. Phys. – volume: 114 start-page: 380 year: 2008 end-page: 386 publication-title: Microporous Mesoporous Mater. – volume: 90 start-page: 201403 year: 2014 publication-title: Phys. Rev. B – volume: 18 start-page: 10595 year: 2012 end-page: 10601 publication-title: Chem. Eur. J. – start-page: 442 year: 2005 end-page: 110 publication-title: Va Coop Ext Publ – volume: 19 start-page: 1693 year: 2007 end-page: 1696 publication-title: Adv. Mater. – volume: 136 start-page: 14357 year: 2014 end-page: 14360 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 8185 year: 2013 end-page: 8188 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1574 year: 2009 end-page: 1589 publication-title: Sensors – volume: 123 start-page: 2213 year: 2001 end-page: 2223 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 1707 year: 2011 publication-title: Chem. Commun. – volume: 135 start-page: 2462 year: 2013 end-page: 2465 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 16585 year: 2013 end-page: 16594 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 4120 year: 2010 end-page: 4122 publication-title: Chem. Mater. – volume: 4 start-page: 1 year: 2013 end-page: 8 publication-title: Nat. Commun. – volume: 8 start-page: 39 year: 2013 end-page: 55 publication-title: Nano Today – volume: 38 start-page: 1330 year: 2009 publication-title: Chem. Soc. Rev. – volume: 17 start-page: 11372 year: 2011 end-page: 11388 publication-title: Chem. Eur. J. – volume: 287 start-page: 622 year: 2000 end-page: 625 publication-title: Science – volume: 132 start-page: 922 year: 2010 end-page: 923 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 3511 year: 2012 end-page: 3513 publication-title: Chem. Mater. – volume: 2 start-page: 672 year: 2010 end-page: 677 publication-title: Nat. Chem. – volume: 136 start-page: 8859 year: 2014 end-page: 8862 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 14404 year: 2008 end-page: 14405 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 1105 year: 2012 end-page: 1125 publication-title: Chem. Rev. – volume: 134 start-page: 12932 year: 2012 end-page: 12935 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 863 year: 1982 end-page: 867 publication-title: Tetrahedron |
SSID | ssj0028806 |
Score | 2.649378 |
Snippet | The utility of metal–organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high... The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high... |
SourceID | proquest pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4349 |
SubjectTerms | Ammonia conductivity copper metal-organic frameworks sensors |
Title | Cu3(hexaiminotriphenylene)2: An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing |
URI | https://api.istex.fr/ark:/67375/WNG-G4Z7GM2X-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201411854 https://www.ncbi.nlm.nih.gov/pubmed/25678397 https://www.proquest.com/docview/1667630606 https://www.proquest.com/docview/1667343762 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuACLc_QFhkJITikdfyId7mtwu4WpN0DULHiYtmp00pFSdXuSi0n_gP_kF_SmXgTKOIEt0S28_CMx98kM98AvODcKV56nfJBQAdFDnQ6OFImzSrcfEOmvZeU4Dyb5weH6v1CL37L4o_8EP0HN1oZrb2mBe78xf4v0lDKwKbQLIUQWRMhKAVsESr60PNHCVTOmF4kZUpV6DvWRi72bw5HaEqzevk3nHkTtrb7zuQeuO6JY7jJ6d5q6ffKb3-QOf7PK23C3TUoZaOoRVtwK9T34XbR1YJ7AE2xkq9OwqWjGmDNEg3NSaivcMMKr8UbNqrZuK2mQwL_esWKpiYWWbSjTLxls4D4_uf3HzHrs2STLhyMIV5m7U3Q5SdTg_0_Ujx9ffwQDifjT8VBui7VkB5rw1WqXHDD4HguvHFGDbNyWHnvnRMqR4DktEc_TIsqVLos-VFA7QiCy4ogiDKylI9go27q8ARYWak8oOTwal4hWBoiJkEfSVdBD7xXWQIvW1HZs0jHYd35KUWnGW0_z6d2qr6Y6UwsbJHATidLu16YFzajmF50k3iewPO-GWeT_pO4OjSr2EcqtLwigcdRB_qbIUI0iClNAqKVZN8Q6Z-FJRnaXoZ2NH837s-e_sugbbiDx5ri3oTZgY3l-SrsIhBa-metsl8DwN0AZg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZRLKc8GChgJITikdfyId7mt0n0UunuAVlRcLDt1WqlVUpVdqeXEf-g_5Jcwk2yCijjBMXEcJ57x-Jtk5huA15w7xXOvY94L6KDIno57R8rESYGbb0i095ISnKezdHKgPhzqNpqQcmEafojugxutjNpe0wKnD9Lbv1lDKQWbYrMUYmStbsMdKutN9Pk7nzoGKYHq2SQYSRlTHfqWt5GL7Zv9EZzSvF7-DWneBK71zjO6B7595ibg5HRrMfdb-fc_6Bz_66XWYW2JS9mgUaT7cCuUD2A1a8vBPYQqW8i3J-HSURmwao625iSUV7hnhXfiPRuUbFgX1CGZn12xrCqJSBZNKRM7bBoQ4v_8cd0kfuZs1EaEMYTMrB4EvX6yNnj9ZwqpL48fwcFouJ9N4mW1hvhYG65i5YLrB8dT4Y0zqp_k_cJ775xQKWIkpz26YloUodB5zo8CKkgQXBaEQpSRuXwMK2VVhg1geaHSgKLDu3mFeKmPsATdJF0E3fNeJRG8qWVlzxtGDusuTilAzWj7ZTa2Y_XVjKfi0GYRbLbCtMu1-c0mFNaLnhJPI3jVNeNs0q8SV4Zq0VwjFRpfEcGTRgm6wRAkGoSVJgJRi7JraBighSUZ2k6GdjDbHXZHT_-l00tYnexP9-ze7uzjM7iL5zWFwQmzCSvzi0V4jrho7l_Umv8Lx1AEgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL5U1oASMhBIe0jmPHG26r7KMFdoWAqisulp11Wqkoqcqu1HLqf-g_5Jcwk2wCRZzgmNjOwzMef5PMfAPwgnMree5UyHseHZS4p8LeXOowKnDz9ZFyLqYE58k02dmTb2dq9lsWf8MP0X1wo5VR22ta4MfzYvsXaShlYFNolkSIrORVuCYTnlLxhsHHjkBKoHY2-UVxHFIZ-pa2kYvty-MRm9K0nv4NaF7GrfXGM1oH2z5yE29ytLVcuK38-x9sjv_zTrfh1gqVsn6jRnfgii_vwo2sLQZ3D6psGb869KeWioBVC7Q0h748wx3LvxZvWL9kw7qcDkn86xnLqpJoZNGQMjFgE48A_8f5RZP2mbNRGw_GEDCz-ibo85Otwf6fKKC-PLgPe6Ph52wnXNVqCA-U5jKU1tvUW54Ip62WaZSnhXPOWiETREhWOXTElCh8ofKczz2qhxc8LgiDSB3n8QNYK6vSPwKWFzLxKDm8mpOIllIEJegkqcKrnnMyCuBlLSpz3PBxGHtyROFpWpn96diM5Rc9noiZyQLYbGVpVivzm4koqBf9JJ4E8LxrxtmkHyW29NWy6RNLNL0igIeNDnQ3Q4ioEVTqAEQtya6h4X8WhmRoOhma_nR32B09_pdBz-D6h8HIvN-dvtuAm3haUQyc0JuwtjhZ-icIihbuaa33PwG05wMx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu3%28hexaiminotriphenylene%292%3A+An+Electrically+Conductive+2D+Metal-Organic+Framework+for+Chemiresistive+Sensing&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Campbell%2C+Michael+G.&rft.au=Sheberla%2C+Dennis&rft.au=Liu%2C+Sophie+F.&rft.au=Swager%2C+Timothy+M.&rft.date=2015-03-27&rft.pub=WILEY-VCH+Verlag&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=14&rft.spage=4349&rft.epage=4352&rft_id=info:doi/10.1002%2Fanie.201411854&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_G4Z7GM2X_C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |