Cu3(hexaiminotriphenylene)2: An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing

The utility of metal–organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11‐hexaiminotriphenyle...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 54; no. 14; pp. 4349 - 4352
Main Authors Campbell, Michael G., Sheberla, Dennis, Liu, Sophie F., Swager, Timothy M., Dincă, Mircea
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 27.03.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The utility of metal–organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11‐hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm−1 (pellet, two‐point‐probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub‐ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs. A MOF with a nose: Previous efforts to use metal–organic frameworks (MOFs) for chemical sensing have been hindered by poor signal transduction due to a lack of electrical conductivity. A new conductive 2D MOF can be used for the chemiresistive sensing of ammonia. It is shown that the sensing response can be varied by the choice of the metal node.
AbstractList The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm(-1) (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.
The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2Scm-1 (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.
The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm(-1) (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm(-1) (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.
The utility of metal–organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11‐hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm−1 (pellet, two‐point‐probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub‐ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs. A MOF with a nose: Previous efforts to use metal–organic frameworks (MOFs) for chemical sensing have been hindered by poor signal transduction due to a lack of electrical conductivity. A new conductive 2D MOF can be used for the chemiresistive sensing of ammonia. It is shown that the sensing response can be varied by the choice of the metal node.
Author Liu, Sophie F.
Dincă, Mircea
Campbell, Michael G.
Sheberla, Dennis
Swager, Timothy M.
Author_xml – sequence: 1
  givenname: Michael G.
  surname: Campbell
  fullname: Campbell, Michael G.
  organization: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) http://web.mit.edu/dincalab
– sequence: 2
  givenname: Dennis
  surname: Sheberla
  fullname: Sheberla, Dennis
  organization: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) http://web.mit.edu/dincalab
– sequence: 3
  givenname: Sophie F.
  surname: Liu
  fullname: Liu, Sophie F.
  organization: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) http://web.mit.edu/dincalab
– sequence: 4
  givenname: Timothy M.
  surname: Swager
  fullname: Swager, Timothy M.
  organization: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) http://web.mit.edu/dincalab
– sequence: 5
  givenname: Mircea
  surname: Dincă
  fullname: Dincă, Mircea
  email: mdinca@mit.edu
  organization: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) http://web.mit.edu/dincalab
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25678397$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtvEzEUhS1URF9sWaKR2JTFFL89wy4a0lCpj0VbgdhYHudO4tbjCXaGNv8etylZsLq-9neso3MO0V4YAiD0geBTgjH9YoKDU4oJJ6QS_A06IIKSkinF9vKZM1aqSpB9dJjSfearCst3aJ8KqSpWqwPUNyM7WcKTcb0Lwzq61RLCxkOAz_RrMQnF1IPN19Z4vymaIcxHu3Z_oKDfiktYG19ex0U2YYuzaHp4HOJD0Q2xaJbQuwjJpRf6BkJyYXGM3nbGJ3j_Oo_Q3dn0tvleXlzPzpvJRbkQCvOSGzA1GCxpq4ziNbF117atMZRLqpgRbS2koB10wlo8B9sKoJh1GOOKK2bZETrZ_ruKw-8R0lr3Llnw3gQYxqSJlIpxpiTN6Kf_0PthjCG7e6EkwxLLTH18pca2h7leRdebuNH_gsxAvQUenYfN7p1g_VyTfq5J72rSk6vz6W7L2nKrzWHB005r4oPONpXQP65mesZ_qdkl_akb9heXo5cn
CODEN ACIEAY
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201411854
DatabaseName Istex
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 4352
ExternalDocumentID 3633410361
25678397
ANIE201411854
ark_67375_WNG_G4Z7GM2X_C
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: NSF
  funderid: ECS‐0335765
– fundername: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
  funderid: DE‐SC0001088
– fundername: Research Corporation for Science Advancement
– fundername: Army Research Office
– fundername: Sloan Foundation
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
ABDBF
ABJNI
AETEA
AEYWJ
AGQPQ
AGYGG
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-g5704-4aea9ea062b7a7491c9fbbbaa246273a5b95652fef5cc0decb5e203f0008473c3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 06:36:43 EDT 2025
Sun Jul 13 04:21:41 EDT 2025
Mon Jul 21 05:27:52 EDT 2025
Wed Jan 22 16:22:04 EST 2025
Wed Oct 30 10:05:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords ammonia
copper
sensors
conductivity
metal-organic frameworks
Language English
License 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g5704-4aea9ea062b7a7491c9fbbbaa246273a5b95652fef5cc0decb5e203f0008473c3
Notes Sloan Foundation
istex:CC9A77CBA1C5ADDE766362BF4DBD24327AA38C0E
Research Corporation for Science Advancement
U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences - No. DE-SC0001088
ArticleID:ANIE201411854
NSF - No. ECS-0335765
Synthetic and characterization work (excluding vapor sensing experiments) was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001088 (MIT). M.D. thanks the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry for support of M.G.C. We thank Miller Li for assistance with acquiring SEM images and Lei Sun for helpful discussions. M.D. gratefully acknowledges early career support from the Sloan Foundation, the Research Corporation for Science Advancement (Cottrell Scholar), and 3M. S.F.L. and T.M.S. acknowledge support from a Graduate Research Fellowship under Grant No. 1122374, as well as the Army Research Office through the Institute for Soldier Nanotechnologies (sensing experiments). The SEM and XPS characterization data were obtained at the Harvard Center for Nanoscale Systems, which is supported by NSF Grant ECS-0335765.
Army Research Office
ark:/67375/WNG-G4Z7GM2X-C
Synthetic and characterization work (excluding vapor sensing experiments) was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE‐SC0001088 (MIT). M.D. thanks the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry for support of M.G.C. We thank Miller Li for assistance with acquiring SEM images and Lei Sun for helpful discussions. M.D. gratefully acknowledges early career support from the Sloan Foundation, the Research Corporation for Science Advancement (Cottrell Scholar), and 3M. S.F.L. and T.M.S. acknowledge support from a Graduate Research Fellowship under Grant No. 1122374, as well as the Army Research Office through the Institute for Soldier Nanotechnologies (sensing experiments). The SEM and XPS characterization data were obtained at the Harvard Center for Nanoscale Systems, which is supported by NSF Grant ECS‐0335765.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25678397
PQID 1667630606
PQPubID 946352
PageCount 4
ParticipantIDs proquest_miscellaneous_1667343762
proquest_journals_1667630606
pubmed_primary_25678397
wiley_primary_10_1002_anie_201411854_ANIE201411854
istex_primary_ark_67375_WNG_G4Z7GM2X_C
PublicationCentury 2000
PublicationDate March 27, 2015
PublicationDateYYYYMMDD 2015-03-27
PublicationDate_xml – month: 03
  year: 2015
  text: March 27, 2015
  day: 27
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, E. B. Lobkovsky, Adv. Mater. 2007, 19, 1693-1696.
S. Yahav, Anim. Res. 2004, 53, 289-293.
M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 2000, 287, 622-625.
Z. Xie, L. Ma, K. E. deKrafft, A. Jin, W. Lin, J. Am. Chem. Soc. 2010, 132, 922-923.
B. Zhao, J. Zhang, W. Feng, Y. Yao, Z. Yang, Phys. Rev. B 2014, 90, 201403.
J. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, et al., Nat. Commun. 2013, 4, 1-8.
S. Achmann, G. Hagen, J. Kita, I. M. Malkowsky, C. Kiener, R. Moos, Sensors 2009, 9, 1574-1589.
M. D. Allendorf, R. J. T. Houk, L. Andruszkiewicz, A. A. Talin, J. Pikarsky, A. Choudhury, K. A. Gall, P. J. Hesketh, J. Am. Chem. Soc. 2008, 130, 14404-14405.
Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120-4122.
E. Biemmi, A. Darga, N. Stock, T. Bein, Microporous Mesoporous Mater. 2008, 114, 380-386.
R. Breslow, B. Jaun, R. Q. Kluttz, C.-Z. Xia, Tetrahedron 1982, 38, 863-867.
M. Dogru, A. Sonnauer, A. Gavryushin, P. Knochel, T. Bein, Chem. Commun. 2011, 47, 1707.
P. Chaudhuri, C. N. Verani, E. Bill, E. Bothe, T. Weyhermüller, K. Wieghardt, J. Am. Chem. Soc. 2001, 123, 2213-2223.
S. W. Gay, K. F. Knowlton, Va Coop Ext Publ 2005, 442-110.
N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, M. Dincă, J. Am. Chem. Soc. 2013, 135, 13326-13329.
T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, et al., J. Am. Chem. Soc. 2013, 135, 2462-2465.
D. M. D'Alessandro, J. R. R. Kanga, J. S. Caddy, Aust. J. Chem. 2011, 64, 718-722.
R. Gutzler, D. F. Perepichka, J. Am. Chem. Soc. 2013, 135, 16585-16594.
V. Stavila, A. A. Talin, M. D. Allendorf, Chem. Soc. Rev. 2014, 43, 5994-6010.
L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105-1125.
Angew. Chem. 2012, 124, 10898-10903.
T. Kambe, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui, K. Hoshiko, T. Shimojima, Z. Wang, T. Hirahara, K. Ishizaka, et al., J. Am. Chem. Soc. 2014, 136, 14357-14360.
G. Ricciardi, A. Rosa, G. Morelli, F. Lelj, Polyhedron 1991, 10, 955-961.
J. W. Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453-465.
B. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi, C. Zhou, ACS Nano 2014, 8, 5304-5314.
C. M. Hangarter, N. Chartuprayoon, S. C. Hernández, Y. Choa, N. V. Myung, Nano Today 2013, 8, 39-55.
F. Gándara, F. J. Uribe-Romo, D. K. Britt, H. Furukawa, L. Lei, R. Cheng, X. Duan, M. O'Keeffe, O. M. Yaghi, Chem. Eur. J. 2012, 18, 10595-10601.
T. C. Narayan, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc. 2012, 134, 12932-12935.
Y. Wang, J. T. W. Yeow, J. Sens. 2009, 2009, 1-24.
A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, et al., Science 2014, 343, 66-69.
D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 2014, 136, 8859-8862.
M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, et al., Chem. Mater. 2012, 24, 3511-3513.
D. Banerjee, Z. Hu, J. Li, Dalton Trans. 2014, 43, 10668.
K. A. Mirica, J. G. Weis, J. M. Schnorr, B. Esser, T. M. Swager, Angew. Chem. Int. Ed. 2012, 51, 10740-10745
J. Cui, Z. Xu, Chem. Commun. 2014, 50, 3986-3988.
M. D. Allendorf, A. Schwartzberg, V. Stavila, A. A. Talin, Chem. Eur. J. 2011, 17, 11372-11388.
O. Zybaylo, O. Shekhah, H. Wang, M. Tafipolsky, R. Schmid, D. Johannsmann, C. Wöll, Phys. Chem. Chem. Phys. 2010, 12, 8092.
F. Shao, M. W. G. Hoffmann, J. D. Prades, J. R. Morante, N. López, F. Hernández-Ramírez, J. Phys. Chem. C 2013, 117, 3520-3526.
L. Sun, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc. 2013, 135, 8185-8188.
B. Chen, L. Wang, F. Zapata, G. Qian, E. B. Lobkovsky, J. Am. Chem. Soc. 2008, 130, 6718-6719.
R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B. F. Sels, D. E. De Vos, Chem. Mater. 2009, 21, 2580-2582.
E. L. Spitler, W. R. Dichtel, Nat. Chem. 2010, 2, 672-677.
E. Park, O. S. Kwon, S. J. Park, J. S. Lee, S. You, J. Jang, J. Mater. Chem. 2012, 22, 1521.
2010; 12
2007; 19
2001; 123
1982; 38
2013; 4
2009; 21
2014; 90
1991; 10
2012; 18
2005
2011; 17
2013; 8
2013; 5
2014; 136
2014; 43
2010; 22
2004; 53
2009; 2009
2012; 112
2012; 134
2012 2012; 51 124
2013; 117
2011; 64
2010; 132
2009; 9
2013; 135
2008; 114
2000; 287
2011; 47
2012; 24
2010; 2
2014; 8
2014; 50
2012; 22
2008; 130
2009; 38
2014; 343
References_xml – reference: P. Chaudhuri, C. N. Verani, E. Bill, E. Bothe, T. Weyhermüller, K. Wieghardt, J. Am. Chem. Soc. 2001, 123, 2213-2223.
– reference: Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120-4122.
– reference: S. Yahav, Anim. Res. 2004, 53, 289-293.
– reference: S. W. Gay, K. F. Knowlton, Va Coop Ext Publ 2005, 442-110.
– reference: B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, E. B. Lobkovsky, Adv. Mater. 2007, 19, 1693-1696.
– reference: A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, et al., Science 2014, 343, 66-69.
– reference: M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
– reference: Angew. Chem. 2012, 124, 10898-10903.
– reference: O. Zybaylo, O. Shekhah, H. Wang, M. Tafipolsky, R. Schmid, D. Johannsmann, C. Wöll, Phys. Chem. Chem. Phys. 2010, 12, 8092.
– reference: V. Stavila, A. A. Talin, M. D. Allendorf, Chem. Soc. Rev. 2014, 43, 5994-6010.
– reference: Y. Wang, J. T. W. Yeow, J. Sens. 2009, 2009, 1-24.
– reference: F. Gándara, F. J. Uribe-Romo, D. K. Britt, H. Furukawa, L. Lei, R. Cheng, X. Duan, M. O'Keeffe, O. M. Yaghi, Chem. Eur. J. 2012, 18, 10595-10601.
– reference: F. Shao, M. W. G. Hoffmann, J. D. Prades, J. R. Morante, N. López, F. Hernández-Ramírez, J. Phys. Chem. C 2013, 117, 3520-3526.
– reference: C. M. Hangarter, N. Chartuprayoon, S. C. Hernández, Y. Choa, N. V. Myung, Nano Today 2013, 8, 39-55.
– reference: T. C. Narayan, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc. 2012, 134, 12932-12935.
– reference: B. Chen, L. Wang, F. Zapata, G. Qian, E. B. Lobkovsky, J. Am. Chem. Soc. 2008, 130, 6718-6719.
– reference: E. Biemmi, A. Darga, N. Stock, T. Bein, Microporous Mesoporous Mater. 2008, 114, 380-386.
– reference: D. Banerjee, Z. Hu, J. Li, Dalton Trans. 2014, 43, 10668.
– reference: S. Achmann, G. Hagen, J. Kita, I. M. Malkowsky, C. Kiener, R. Moos, Sensors 2009, 9, 1574-1589.
– reference: E. Park, O. S. Kwon, S. J. Park, J. S. Lee, S. You, J. Jang, J. Mater. Chem. 2012, 22, 1521.
– reference: R. Gutzler, D. F. Perepichka, J. Am. Chem. Soc. 2013, 135, 16585-16594.
– reference: T. Kambe, R. Sakamoto, T. Kusamoto, T. Pal, N. Fukui, K. Hoshiko, T. Shimojima, Z. Wang, T. Hirahara, K. Ishizaka, et al., J. Am. Chem. Soc. 2014, 136, 14357-14360.
– reference: M. D. Allendorf, A. Schwartzberg, V. Stavila, A. A. Talin, Chem. Eur. J. 2011, 17, 11372-11388.
– reference: M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, et al., Chem. Mater. 2012, 24, 3511-3513.
– reference: Z. Xie, L. Ma, K. E. deKrafft, A. Jin, W. Lin, J. Am. Chem. Soc. 2010, 132, 922-923.
– reference: D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 2014, 136, 8859-8862.
– reference: R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B. F. Sels, D. E. De Vos, Chem. Mater. 2009, 21, 2580-2582.
– reference: T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.-H. Ryu, S. Sasaki, J. Kim, K. Nakazato, M. Takata, et al., J. Am. Chem. Soc. 2013, 135, 2462-2465.
– reference: K. A. Mirica, J. G. Weis, J. M. Schnorr, B. Esser, T. M. Swager, Angew. Chem. Int. Ed. 2012, 51, 10740-10745;
– reference: J. W. Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453-465.
– reference: E. L. Spitler, W. R. Dichtel, Nat. Chem. 2010, 2, 672-677.
– reference: L. Sun, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc. 2013, 135, 8185-8188.
– reference: J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science 2000, 287, 622-625.
– reference: M. Dogru, A. Sonnauer, A. Gavryushin, P. Knochel, T. Bein, Chem. Commun. 2011, 47, 1707.
– reference: N. B. Shustova, A. F. Cozzolino, S. Reineke, M. Baldo, M. Dincă, J. Am. Chem. Soc. 2013, 135, 13326-13329.
– reference: B. Zhao, J. Zhang, W. Feng, Y. Yao, Z. Yang, Phys. Rev. B 2014, 90, 201403.
– reference: J. Cui, Z. Xu, Chem. Commun. 2014, 50, 3986-3988.
– reference: J. Guo, Y. Xu, S. Jin, L. Chen, T. Kaji, Y. Honsho, M. A. Addicoat, J. Kim, A. Saeki, H. Ihee, et al., Nat. Commun. 2013, 4, 1-8.
– reference: L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105-1125.
– reference: B. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi, C. Zhou, ACS Nano 2014, 8, 5304-5314.
– reference: R. Breslow, B. Jaun, R. Q. Kluttz, C.-Z. Xia, Tetrahedron 1982, 38, 863-867.
– reference: G. Ricciardi, A. Rosa, G. Morelli, F. Lelj, Polyhedron 1991, 10, 955-961.
– reference: M. D. Allendorf, R. J. T. Houk, L. Andruszkiewicz, A. A. Talin, J. Pikarsky, A. Choudhury, K. A. Gall, P. J. Hesketh, J. Am. Chem. Soc. 2008, 130, 14404-14405.
– reference: D. M. D'Alessandro, J. R. R. Kanga, J. S. Caddy, Aust. J. Chem. 2011, 64, 718-722.
– volume: 64
  start-page: 718
  year: 2011
  end-page: 722
  publication-title: Aust. J. Chem.
– volume: 43
  start-page: 10668
  year: 2014
  publication-title: Dalton Trans.
– volume: 8
  start-page: 5304
  year: 2014
  end-page: 5314
  publication-title: ACS Nano
– volume: 130
  start-page: 6718
  year: 2008
  end-page: 6719
  publication-title: J. Am. Chem. Soc.
– volume: 343
  start-page: 66
  year: 2014
  end-page: 69
  publication-title: Science
– volume: 5
  start-page: 453
  year: 2013
  end-page: 465
  publication-title: Nat. Chem.
– volume: 10
  start-page: 955
  year: 1991
  end-page: 961
  publication-title: Polyhedron
– volume: 21
  start-page: 2580
  year: 2009
  end-page: 2582
  publication-title: Chem. Mater.
– volume: 51 124
  start-page: 10740 10898
  year: 2012 2012
  end-page: 10745 10903
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 3986
  year: 2014
  end-page: 3988
  publication-title: Chem. Commun.
– volume: 117
  start-page: 3520
  year: 2013
  end-page: 3526
  publication-title: J. Phys. Chem. C
– volume: 22
  start-page: 1521
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 135
  start-page: 13326
  year: 2013
  end-page: 13329
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 289
  year: 2004
  end-page: 293
  publication-title: Anim. Res.
– volume: 2009
  start-page: 1
  year: 2009
  end-page: 24
  publication-title: J. Sens.
– volume: 43
  start-page: 5994
  year: 2014
  end-page: 6010
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 8092
  year: 2010
  publication-title: Phys. Chem. Chem. Phys.
– volume: 114
  start-page: 380
  year: 2008
  end-page: 386
  publication-title: Microporous Mesoporous Mater.
– volume: 90
  start-page: 201403
  year: 2014
  publication-title: Phys. Rev. B
– volume: 18
  start-page: 10595
  year: 2012
  end-page: 10601
  publication-title: Chem. Eur. J.
– start-page: 442
  year: 2005
  end-page: 110
  publication-title: Va Coop Ext Publ
– volume: 19
  start-page: 1693
  year: 2007
  end-page: 1696
  publication-title: Adv. Mater.
– volume: 136
  start-page: 14357
  year: 2014
  end-page: 14360
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 8185
  year: 2013
  end-page: 8188
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1574
  year: 2009
  end-page: 1589
  publication-title: Sensors
– volume: 123
  start-page: 2213
  year: 2001
  end-page: 2223
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 1707
  year: 2011
  publication-title: Chem. Commun.
– volume: 135
  start-page: 2462
  year: 2013
  end-page: 2465
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 16585
  year: 2013
  end-page: 16594
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 4120
  year: 2010
  end-page: 4122
  publication-title: Chem. Mater.
– volume: 4
  start-page: 1
  year: 2013
  end-page: 8
  publication-title: Nat. Commun.
– volume: 8
  start-page: 39
  year: 2013
  end-page: 55
  publication-title: Nano Today
– volume: 38
  start-page: 1330
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 17
  start-page: 11372
  year: 2011
  end-page: 11388
  publication-title: Chem. Eur. J.
– volume: 287
  start-page: 622
  year: 2000
  end-page: 625
  publication-title: Science
– volume: 132
  start-page: 922
  year: 2010
  end-page: 923
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 3511
  year: 2012
  end-page: 3513
  publication-title: Chem. Mater.
– volume: 2
  start-page: 672
  year: 2010
  end-page: 677
  publication-title: Nat. Chem.
– volume: 136
  start-page: 8859
  year: 2014
  end-page: 8862
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 14404
  year: 2008
  end-page: 14405
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 1105
  year: 2012
  end-page: 1125
  publication-title: Chem. Rev.
– volume: 134
  start-page: 12932
  year: 2012
  end-page: 12935
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 863
  year: 1982
  end-page: 867
  publication-title: Tetrahedron
SSID ssj0028806
Score 2.649378
Snippet The utility of metal–organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high...
The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 4349
SubjectTerms Ammonia
conductivity
copper
metal-organic frameworks
sensors
Title Cu3(hexaiminotriphenylene)2: An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing
URI https://api.istex.fr/ark:/67375/WNG-G4Z7GM2X-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201411854
https://www.ncbi.nlm.nih.gov/pubmed/25678397
https://www.proquest.com/docview/1667630606
https://www.proquest.com/docview/1667343762
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuACLc_QFhkJITikdfyId7mtwu4WpN0DULHiYtmp00pFSdXuSi0n_gP_kF_SmXgTKOIEt0S28_CMx98kM98AvODcKV56nfJBQAdFDnQ6OFImzSrcfEOmvZeU4Dyb5weH6v1CL37L4o_8EP0HN1oZrb2mBe78xf4v0lDKwKbQLIUQWRMhKAVsESr60PNHCVTOmF4kZUpV6DvWRi72bw5HaEqzevk3nHkTtrb7zuQeuO6JY7jJ6d5q6ffKb3-QOf7PK23C3TUoZaOoRVtwK9T34XbR1YJ7AE2xkq9OwqWjGmDNEg3NSaivcMMKr8UbNqrZuK2mQwL_esWKpiYWWbSjTLxls4D4_uf3HzHrs2STLhyMIV5m7U3Q5SdTg_0_Ujx9ffwQDifjT8VBui7VkB5rw1WqXHDD4HguvHFGDbNyWHnvnRMqR4DktEc_TIsqVLos-VFA7QiCy4ogiDKylI9go27q8ARYWak8oOTwal4hWBoiJkEfSVdBD7xXWQIvW1HZs0jHYd35KUWnGW0_z6d2qr6Y6UwsbJHATidLu16YFzajmF50k3iewPO-GWeT_pO4OjSr2EcqtLwigcdRB_qbIUI0iClNAqKVZN8Q6Z-FJRnaXoZ2NH837s-e_sugbbiDx5ri3oTZgY3l-SrsIhBa-metsl8DwN0AZg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZRLKc8GChgJITikdfyId7mt0n0UunuAVlRcLDt1WqlVUpVdqeXEf-g_5Jcwk2yCijjBMXEcJ57x-Jtk5huA15w7xXOvY94L6KDIno57R8rESYGbb0i095ISnKezdHKgPhzqNpqQcmEafojugxutjNpe0wKnD9Lbv1lDKQWbYrMUYmStbsMdKutN9Pk7nzoGKYHq2SQYSRlTHfqWt5GL7Zv9EZzSvF7-DWneBK71zjO6B7595ibg5HRrMfdb-fc_6Bz_66XWYW2JS9mgUaT7cCuUD2A1a8vBPYQqW8i3J-HSURmwao625iSUV7hnhXfiPRuUbFgX1CGZn12xrCqJSBZNKRM7bBoQ4v_8cd0kfuZs1EaEMYTMrB4EvX6yNnj9ZwqpL48fwcFouJ9N4mW1hvhYG65i5YLrB8dT4Y0zqp_k_cJ775xQKWIkpz26YloUodB5zo8CKkgQXBaEQpSRuXwMK2VVhg1geaHSgKLDu3mFeKmPsATdJF0E3fNeJRG8qWVlzxtGDusuTilAzWj7ZTa2Y_XVjKfi0GYRbLbCtMu1-c0mFNaLnhJPI3jVNeNs0q8SV4Zq0VwjFRpfEcGTRgm6wRAkGoSVJgJRi7JraBighSUZ2k6GdjDbHXZHT_-l00tYnexP9-ze7uzjM7iL5zWFwQmzCSvzi0V4jrho7l_Umv8Lx1AEgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL5U1oASMhBIe0jmPHG26r7KMFdoWAqisulp11Wqkoqcqu1HLqf-g_5Jcwk2wCRZzgmNjOwzMef5PMfAPwgnMree5UyHseHZS4p8LeXOowKnDz9ZFyLqYE58k02dmTb2dq9lsWf8MP0X1wo5VR22ta4MfzYvsXaShlYFNolkSIrORVuCYTnlLxhsHHjkBKoHY2-UVxHFIZ-pa2kYvty-MRm9K0nv4NaF7GrfXGM1oH2z5yE29ytLVcuK38-x9sjv_zTrfh1gqVsn6jRnfgii_vwo2sLQZ3D6psGb869KeWioBVC7Q0h748wx3LvxZvWL9kw7qcDkn86xnLqpJoZNGQMjFgE48A_8f5RZP2mbNRGw_GEDCz-ibo85Otwf6fKKC-PLgPe6Ph52wnXNVqCA-U5jKU1tvUW54Ip62WaZSnhXPOWiETREhWOXTElCh8ofKczz2qhxc8LgiDSB3n8QNYK6vSPwKWFzLxKDm8mpOIllIEJegkqcKrnnMyCuBlLSpz3PBxGHtyROFpWpn96diM5Rc9noiZyQLYbGVpVivzm4koqBf9JJ4E8LxrxtmkHyW29NWy6RNLNL0igIeNDnQ3Q4ioEVTqAEQtya6h4X8WhmRoOhma_nR32B09_pdBz-D6h8HIvN-dvtuAm3haUQyc0JuwtjhZ-icIihbuaa33PwG05wMx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu3%28hexaiminotriphenylene%292%3A+An+Electrically+Conductive+2D+Metal-Organic+Framework+for+Chemiresistive+Sensing&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Campbell%2C+Michael+G.&rft.au=Sheberla%2C+Dennis&rft.au=Liu%2C+Sophie+F.&rft.au=Swager%2C+Timothy+M.&rft.date=2015-03-27&rft.pub=WILEY-VCH+Verlag&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=14&rft.spage=4349&rft.epage=4352&rft_id=info:doi/10.1002%2Fanie.201411854&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_G4Z7GM2X_C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon