ARGOS8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions

Summary Maize ARGOS8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS8 have reduced ethylene sensitivity and improved grain yield under drought stress conditions. To explore the targeted use of ARGOS8 native expressi...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 15; no. 2; pp. 207 - 216
Main Authors Shi, Jinrui, Gao, Huirong, Wang, Hongyu, Lafitte, H. Renee, Archibald, Rayeann L., Yang, Meizhu, Hakimi, Salim M., Mo, Hua, Habben, Jeffrey E.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.02.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Maize ARGOS8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS8 have reduced ethylene sensitivity and improved grain yield under drought stress conditions. To explore the targeted use of ARGOS8 native expression variation in drought‐tolerant breeding, a diverse set of over 400 maize inbreds was examined for ARGOS8 mRNA expression, but the expression levels in all lines were less than that created in the original ARGOS8 transgenic events. We then employed a CRISPR‐Cas‐enabled advanced breeding technology to generate novel variants of ARGOS8. The native maize GOS2 promoter, which confers a moderate level of constitutive expression, was inserted into the 5′‐untranslated region of the native ARGOS8 gene or was used to replace the native promoter of ARGOS8. Precise genomic DNA modification at the ARGOS8 locus was verified by PCR and sequencing. The ARGOS8 variants had elevated levels of ARGOS8 transcripts relative to the native allele and these transcripts were detectable in all the tissues tested, which was the expected results using the GOS2 promoter. A field study showed that compared to the WT, the ARGOS8 variants increased grain yield by five bushels per acre under flowering stress conditions and had no yield loss under well‐watered conditions. These results demonstrate the utility of the CRISPR‐Cas9 system in generating novel allelic variation for breeding drought‐tolerant crops.
AbstractList Maize ARGOS8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS8 have reduced ethylene sensitivity and improved grain yield under drought stress conditions. To explore the targeted use of ARGOS8 native expression variation in drought-tolerant breeding, a diverse set of over 400 maize inbreds was examined for ARGOS8 mRNA expression, but the expression levels in all lines were less than that created in the original ARGOS8 transgenic events. We then employed a CRISPR-Cas-enabled advanced breeding technology to generate novel variants of ARGOS8. The native maize GOS2 promoter, which confers a moderate level of constitutive expression, was inserted into the 5'-untranslated region of the native ARGOS8 gene or was used to replace the native promoter of ARGOS8. Precise genomic DNA modification at the ARGOS8 locus was verified by PCR and sequencing. The ARGOS8 variants had elevated levels of ARGOS8 transcripts relative to the native allele and these transcripts were detectable in all the tissues tested, which was the expected results using the GOS2 promoter. A field study showed that compared to the WT, the ARGOS8 variants increased grain yield by five bushels per acre under flowering stress conditions and had no yield loss under well-watered conditions. These results demonstrate the utility of the CRISPR-Cas9 system in generating novel allelic variation for breeding drought-tolerant crops.
Maize ARGOS8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS8 have reduced ethylene sensitivity and improved grain yield under drought stress conditions. To explore the targeted use of ARGOS8 native expression variation in drought-tolerant breeding, a diverse set of over 400 maize inbreds was examined for ARGOS8 mRNA expression, but the expression levels in all lines were less than that created in the original ARGOS8 transgenic events. We then employed a CRISPR-Cas-enabled advanced breeding technology to generate novel variants of ARGOS8. The native maize GOS2 promoter, which confers a moderate level of constitutive expression, was inserted into the 5'-untranslated region of the native ARGOS8 gene or was used to replace the native promoter of ARGOS8. Precise genomic DNA modification at the ARGOS8 locus was verified by PCR and sequencing. The ARGOS8 variants had elevated levels of ARGOS8 transcripts relative to the native allele and these transcripts were detectable in all the tissues tested, which was the expected results using the GOS2 promoter. A field study showed that compared to the WT, the ARGOS8 variants increased grain yield by five bushels per acre under flowering stress conditions and had no yield loss under well-watered conditions. These results demonstrate the utility of the CRISPR-Cas9 system in generating novel allelic variation for breeding drought-tolerant crops.Maize ARGOS8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS8 have reduced ethylene sensitivity and improved grain yield under drought stress conditions. To explore the targeted use of ARGOS8 native expression variation in drought-tolerant breeding, a diverse set of over 400 maize inbreds was examined for ARGOS8 mRNA expression, but the expression levels in all lines were less than that created in the original ARGOS8 transgenic events. We then employed a CRISPR-Cas-enabled advanced breeding technology to generate novel variants of ARGOS8. The native maize GOS2 promoter, which confers a moderate level of constitutive expression, was inserted into the 5'-untranslated region of the native ARGOS8 gene or was used to replace the native promoter of ARGOS8. Precise genomic DNA modification at the ARGOS8 locus was verified by PCR and sequencing. The ARGOS8 variants had elevated levels of ARGOS8 transcripts relative to the native allele and these transcripts were detectable in all the tissues tested, which was the expected results using the GOS2 promoter. A field study showed that compared to the WT, the ARGOS8 variants increased grain yield by five bushels per acre under flowering stress conditions and had no yield loss under well-watered conditions. These results demonstrate the utility of the CRISPR-Cas9 system in generating novel allelic variation for breeding drought-tolerant crops.
Maize ARGOS 8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS 8 have reduced ethylene sensitivity and improved grain yield under drought stress conditions. To explore the targeted use of ARGOS 8 native expression variation in drought‐tolerant breeding, a diverse set of over 400 maize inbreds was examined for ARGOS 8 mRNA expression, but the expression levels in all lines were less than that created in the original ARGOS 8 transgenic events. We then employed a CRISPR ‐Cas‐enabled advanced breeding technology to generate novel variants of ARGOS 8 . The native maize GOS 2 promoter, which confers a moderate level of constitutive expression, was inserted into the 5′‐untranslated region of the native ARGOS 8 gene or was used to replace the native promoter of ARGOS 8. Precise genomic DNA modification at the ARGOS 8 locus was verified by PCR and sequencing. The ARGOS 8 variants had elevated levels of ARGOS 8 transcripts relative to the native allele and these transcripts were detectable in all the tissues tested, which was the expected results using the GOS 2 promoter. A field study showed that compared to the WT , the ARGOS 8 variants increased grain yield by five bushels per acre under flowering stress conditions and had no yield loss under well‐watered conditions. These results demonstrate the utility of the CRISPR ‐Cas9 system in generating novel allelic variation for breeding drought‐tolerant crops.
Summary Maize ARGOS8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS8 have reduced ethylene sensitivity and improved grain yield under drought stress conditions. To explore the targeted use of ARGOS8 native expression variation in drought‐tolerant breeding, a diverse set of over 400 maize inbreds was examined for ARGOS8 mRNA expression, but the expression levels in all lines were less than that created in the original ARGOS8 transgenic events. We then employed a CRISPR‐Cas‐enabled advanced breeding technology to generate novel variants of ARGOS8. The native maize GOS2 promoter, which confers a moderate level of constitutive expression, was inserted into the 5′‐untranslated region of the native ARGOS8 gene or was used to replace the native promoter of ARGOS8. Precise genomic DNA modification at the ARGOS8 locus was verified by PCR and sequencing. The ARGOS8 variants had elevated levels of ARGOS8 transcripts relative to the native allele and these transcripts were detectable in all the tissues tested, which was the expected results using the GOS2 promoter. A field study showed that compared to the WT, the ARGOS8 variants increased grain yield by five bushels per acre under flowering stress conditions and had no yield loss under well‐watered conditions. These results demonstrate the utility of the CRISPR‐Cas9 system in generating novel allelic variation for breeding drought‐tolerant crops.
Audience Academic
Author Shi, Jinrui
Wang, Hongyu
Habben, Jeffrey E.
Archibald, Rayeann L.
Yang, Meizhu
Gao, Huirong
Mo, Hua
Lafitte, H. Renee
Hakimi, Salim M.
AuthorAffiliation 1 DuPont Pioneer Johnston IA USA
AuthorAffiliation_xml – name: 1 DuPont Pioneer Johnston IA USA
Author_xml – sequence: 1
  givenname: Jinrui
  surname: Shi
  fullname: Shi, Jinrui
  email: Jinrui.shi@Pioneer.com
  organization: DuPont Pioneer
– sequence: 2
  givenname: Huirong
  surname: Gao
  fullname: Gao, Huirong
  organization: DuPont Pioneer
– sequence: 3
  givenname: Hongyu
  surname: Wang
  fullname: Wang, Hongyu
  organization: DuPont Pioneer
– sequence: 4
  givenname: H. Renee
  surname: Lafitte
  fullname: Lafitte, H. Renee
  organization: DuPont Pioneer
– sequence: 5
  givenname: Rayeann L.
  surname: Archibald
  fullname: Archibald, Rayeann L.
  organization: DuPont Pioneer
– sequence: 6
  givenname: Meizhu
  surname: Yang
  fullname: Yang, Meizhu
  organization: DuPont Pioneer
– sequence: 7
  givenname: Salim M.
  surname: Hakimi
  fullname: Hakimi, Salim M.
  organization: DuPont Pioneer
– sequence: 8
  givenname: Hua
  surname: Mo
  fullname: Mo, Hua
  organization: DuPont Pioneer
– sequence: 9
  givenname: Jeffrey E.
  surname: Habben
  fullname: Habben, Jeffrey E.
  organization: DuPont Pioneer
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27442592$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhkeoiF5gwQsgS2zYJPVlfJkNUhrREqlSqxTWlmfmzNTRjB3smaCw6iPwjDwJblIiYAP2wkf2d375_PpPsyPnHWTZa4KnJK3zdWmnhArMnmUnJBdyIgWnR4c6z4-z0xhXGFMiuHiRHVOZ55QX9CRbzZZXN3cKbUywxg0RteAgmAFqVG7RfLm4u13-ePg-N7FAtl8HvwHUG_sNUBuMdWhroavR6GoIqNnVdfBjez-gOASIEVXe1Xaw3sWX2fPGdBFePZ1n2efLD5_mHyfXN1eL-ex60vIcs0llhOQCCGeYAQVJylJJ1jSmKXMqKBYllnXeKAlp5JJh0wheirIojKmk5JKdZe_3uuux7KGuwA3BdHodbG_CVntj9Z8vzt7r1m80p1wpXiSBd08CwX8ZIQ66t7GCrjMO_Bg1xZwpmSe__4kSJRQjiqj_QamQlFHy-IG3f6ErPwaXTNOUFpjmnEieqOmeak0H2rrGp2mqtGvobbIdGpvuZ5IlTZYCkRre_G7MwZFfaUjA-R74mjq3h3eC9WPMdIqZ3sVM314sdgX7CVVzxeM
ContentType Journal Article
Copyright 2016 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
COPYRIGHT 2017 John Wiley & Sons, Inc.
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
– notice: COPYRIGHT 2017 John Wiley & Sons, Inc.
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
7S9
L.6
5PM
DOI 10.1111/pbi.12603
DatabaseName Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
Publicly Available Content Database
MEDLINE - Academic
Engineering Research Database



Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Jinrui Shi et al
EISSN 1467-7652
EndPage 216
ExternalDocumentID PMC5258859
A733213652
27442592
PBI12603
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACCMX
ACIWK
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADKYN
ADNMO
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RPM
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PMFND
7QO
8FD
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-g5403-ca6756e15303e2e71bb873ffafb426206b07d4f87e126b30af65b6b99aac77573
IEDL.DBID BENPR
ISSN 1467-7644
1467-7652
IngestDate Thu Aug 21 18:27:02 EDT 2025
Fri Jul 11 18:36:48 EDT 2025
Fri Jul 11 02:11:19 EDT 2025
Thu Jul 10 23:07:37 EDT 2025
Wed Aug 13 07:58:44 EDT 2025
Tue Jun 10 20:15:46 EDT 2025
Wed Feb 19 02:42:54 EST 2025
Wed Jan 22 16:33:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ARGOS
genome editing
drought tolerance
grain yield
maize
CRISPR-Cas9
Language English
License Attribution
2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g5403-ca6756e15303e2e71bb873ffafb426206b07d4f87e126b30af65b6b99aac77573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2290245175?pq-origsite=%requestingapplication%
PMID 27442592
PQID 2290245175
PQPubID 1096352
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5258859
proquest_miscellaneous_2053874603
proquest_miscellaneous_1868318183
proquest_miscellaneous_1826723219
proquest_journals_2290245175
gale_infotracacademiconefile_A733213652
pubmed_primary_27442592
wiley_primary_10_1111_pbi_12603_PBI12603
PublicationCentury 2000
PublicationDate February 2017
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: February 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Southampton
– name: Hoboken
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2017
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2013; 4
2012; 2012
2002; 19
2015; 33
2002; 99
2003; 15
2011; 191
2008; 147
1996; 142
2008; 146
2011; 58
2009; 118
2005; 22
2014; 65
2010; 61
2007; 172
2015; 82
2010; 29
2000; 12
1998; 95
1998; 54
2014; 12
1992; 2
2003; 165
1989
1988
2009; 326
2015; 13
2015; 2
2015; 15
2015; 16
2015; 169
2015; 201
2008; 18
2015; 55
2015; 10
2013; 41
2009
1988; 241
2003
2014; 41
2009; 459
2005; 45
2012; 30
2014; 42
2013; 339
2016; 217
2004; 14
2013; 31
2016; 171
2016; 9
2014; 32
24596174 - J Exp Bot. 2014 Nov;65(21):6191-204
11752192 - Mol Biol Evol. 2002 Jan;19(1):76-84
26269544 - Plant Physiol. 2015 Oct;169(2):931-45
17981990 - Plant Physiol. 2008 Jan;146(1):5-21
23929339 - Nat Biotechnol. 2013 Aug;31(8):688-91
27268962 - Plant Physiol. 2016 Aug;171(4):2783-97
18524876 - Plant Physiol. 2008 Jun;147(2):446-55
11148280 - Plant Cell. 2000 Dec;12(12):2311-2322
19811621 - Plant J. 2010 Jan;61(1):176-87
21457262 - New Phytol. 2011 Aug;191(3):635-46
17747490 - Science. 1988 Aug 26;241(4869):1086-9
15466290 - Genome Res. 2004 Oct;14(10A):1924-31
24618117 - Plant Biotechnol J. 2014 Aug;12(6):685-93
26284791 - PLoS One. 2015 Aug 18;10(8):e0136064
23287722 - Science. 2013 Feb 15;339(6121):823-6
24854982 - Plant Biotechnol J. 2014 Aug;12(6):797-807
26434719 - Genetics. 2015 Nov;201(3):925-35
24576457 - J Genet Genomics. 2014 Feb 20;41(2):63-8
25824104 - Plant J. 2015 May;82(4):632-43
25200087 - Nucleic Acids Res. 2014;42(17):10903-14
18836034 - Genome Res. 2008 Dec;18(12):1924-37
26768120 - Mol Plant. 2016 Apr 4;9(4):628-31
23999092 - Nucleic Acids Res. 2013 Nov;41(20):e188
26473199 - Nat Biotechnol. 2015 Aug;33(8):862-9
24218327 - J Exp Bot. 2014 Jan;65(1):249-60
26603121 - J Biotechnol. 2016 Jan 10;217:90-7
9419382 - Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):370-5
25038773 - Nat Biotechnol. 2014 Sep;32(9):947-51
8770601 - Genetics. 1996 Jan;142(1):237-46
19965430 - Science. 2009 Nov 20;326(5956):1112-5
19404259 - Nature. 2009 May 21;459(7245):437-41
12953103 - Plant Cell. 2003 Sep;15(9):1951-61
25879861 - BMC Biotechnol. 2015 Mar 12;15:16
25599829 - Plant Biotechnol J. 2015 Aug;13(6):791-800
22919542 - Int J Evol Biol. 2012;2012:846421
1302635 - Plant J. 1992 Nov;2(6):837-44
26541286 - Genome Biol. 2015 Nov 06;16:232
12185243 - Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11975-80
19015867 - Chromosoma. 2009 Apr;118(2):157-77
26220950 - Plant Physiol. 2015 Sep;169(1):266-82
22565958 - Nat Biotechnol. 2012 May 07;30(5):390-2
15371527 - Mol Biol Evol. 2005 Jan;22(1):135-41
14504238 - Genetics. 2003 Sep;165(1):309-19
24851925 - Plant Biotechnol J. 2014 Sep;12(7):941-50
26294043 - Plant Physiol. 2015 Oct;169(2):960-70
26105742 - BMC Plant Biol. 2015 Jun 24;15:157
References_xml – volume: 169
  start-page: 960
  year: 2015
  end-page: 970
  article-title: Cas9‐guide RNA directed genome editing in soybean
  publication-title: Plant Physiol.
– year: 2009
– volume: 217
  start-page: 90
  year: 2016
  end-page: 97
  article-title: Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9
  publication-title: J. Biotechnol.
– volume: 2
  start-page: 837
  year: 1992
  end-page: 844
  article-title: The promoter of the rice gene GOS2 is active in various different monocot tissues and bind rice nuclear factor ASF‐1
  publication-title: Plant J.
– volume: 65
  start-page: 6191
  year: 2014
  end-page: 6204
  article-title: Breeding drought‐tolerant maize hybrids for the US corn‐belt: discovery to product
  publication-title: J. Exp. Bot.
– volume: 15
  start-page: 1951
  year: 2003
  end-page: 1961
  article-title: The Arabidopsis auxin‐inducible gene ARGOS controls lateral organ size
  publication-title: Plant Cell
– volume: 147
  start-page: 446
  year: 2008
  end-page: 455
  article-title: Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water‐limited conditions
  publication-title: Plant Physiol.
– volume: 29
  start-page: 280
  year: 2010
  end-page: 288
  article-title: Physiological effects of 1‐methylcyclopropene on well‐watered and water‐stressed cotton plants
  publication-title: J. Plant Growth Regul.
– year: 1989
– volume: 58
  start-page: 507
  year: 2011
  end-page: 515
  article-title: Constitutive expression of the ARGOS gene driven by dahlia mosaic virus promoter in tobacco plants
  publication-title: Rus. J. Plant Physiol.
– volume: 45
  start-page: 1708
  year: 2005
  end-page: 1716
  article-title: Classification of maize environments using crop simulation and geographic information systems
  publication-title: Crop Sci.
– volume: 55
  start-page: 1608
  year: 2015
  end-page: 1618
  article-title: Industry scale evaluation of maize hybrids selected for increased yield in drought stress conditions of the U.S. Corn Belt
  publication-title: Crop Sci.
– volume: 19
  start-page: 76
  year: 2002
  end-page: 84
  article-title: Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution
  publication-title: Mol. Biol. Evol.
– volume: 241
  start-page: 1086
  year: 1988
  end-page: 1089
  article-title: Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana
  publication-title: Science
– volume: 142
  start-page: 237
  year: 1996
  end-page: 246
  article-title: Adjacent sequences influence DNA repair accompanying transposon excision in maize
  publication-title: Genetics
– volume: 82
  start-page: 632
  year: 2015
  end-page: 643
  article-title: Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice
  publication-title: Plant J.
– volume: 31
  start-page: 688
  year: 2013
  end-page: 691
  article-title: Multiplex and homologous recombination‐mediated genome editing in Arabidopsis and using guide RNA and Cas9
  publication-title: Nat. Biotechnol.
– volume: 32
  start-page: 947
  year: 2014
  end-page: 951
  article-title: Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
  publication-title: Nat. Biotechnol.
– volume: 33
  start-page: 862
  year: 2015
  end-page: 869
  article-title: Expression of trehalose‐6‐phosphate phosphatase in maize ears improves yield in well‐watered and drought conditions
  publication-title: Nat. Biotechnol.
– volume: 42
  start-page: 10903
  year: 2014
  end-page: 10914
  article-title: Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice
  publication-title: Nucleic Acids Res.
– volume: 65
  start-page: 249
  year: 2014
  end-page: 260
  article-title: Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield
  publication-title: J. Exp. Bot.
– volume: 169
  start-page: 266
  year: 2015
  end-page: 282
  article-title: Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize
  publication-title: Plant Physiol.
– volume: 14
  start-page: 1924
  year: 2004
  end-page: 1931
  article-title: Gene loss and movement in the maize genome
  publication-title: Genome Res.
– volume: 41
  start-page: 63
  year: 2014
  end-page: 68
  article-title: Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system
  publication-title: J. Genet. Genom.
– volume: 41
  start-page: e188
  year: 2013
  article-title: Demonstration of CRISPR/Cas9/sgRNA‐mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
  publication-title: Nucleic Acids Res.
– volume: 146
  start-page: 5
  year: 2008
  end-page: 21
  article-title: Identification and characterization of nucleotide‐binding site‐leucine‐rich repeat genes in the model plant Medicago truncatula
  publication-title: Plant Physiol.
– volume: 9
  start-page: 628
  year: 2016
  end-page: 631
  article-title: Engineering herbicide‐resistant rice plants through CRISPR/Cas9‐mediated homologous recombination of acetolactate synthase
  publication-title: Mol. Plant
– volume: 326
  start-page: 1112
  year: 2009
  end-page: 1115
  article-title: The B73 maize genome: complexity, diversity, and dynamics
  publication-title: Science
– volume: 171
  start-page: 2783
  year: 2016
  end-page: 2797
  article-title: Maize and Arabidopsis ARGOS proteins interact with ethylene receptor signaling complex, supporting a regulatory role for ARGOS in ethylene signal transduction
  publication-title: Plant Physiol.
– volume: 61
  start-page: 176
  year: 2010
  end-page: 187
  article-title: Heritable targeted mutagenesis in maize using a designed endonuclease
  publication-title: Plant J.
– volume: 16
  start-page: 232
  year: 2015
  article-title: High‐frequency, precise modification of the tomato genome
  publication-title: Genome Biol.
– volume: 10
  start-page: e0136064
  year: 2015
  article-title: CRISPR/Cas9‐mediated genome editing in soybean hairy roots
  publication-title: PLoS ONE
– volume: 15
  start-page: 16
  year: 2015
  article-title: Targeted genome modifications in soybean with CRISPR/Cas9
  publication-title: BMC Biotechnol.
– volume: 12
  start-page: 685
  year: 2014
  end-page: 693
  article-title: Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought‐stress conditions
  publication-title: Plant Biotechnol. J.
– volume: 4
  start-page: 1400
  year: 2013
  end-page: 1408
  article-title: High temperature and the ethylene antagonist 1‐methylcyclopropene alter ethylene evolution patterns, antioxidant responses, and boll growth in Gossypium hirsutum
  publication-title: Am. J. Plant Sci.
– volume: 2012
  start-page: 846421
  year: 2012
  article-title: Mechanisms of gene duplication and translocation and progress towards understanding their relative contributions to animal genome evolution
  publication-title: Int. J. Evol. Biol.
– volume: 13
  start-page: 791
  year: 2015
  end-page: 800
  article-title: Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology
  publication-title: Plant Biotechnol. J.
– year: 2003
– volume: 201
  start-page: 925
  year: 2015
  end-page: 935
  article-title: Alternative transposition generates new chimeric genes and segmental duplications at the maize p1 locus
  publication-title: Genetics
– volume: 22
  start-page: 135
  year: 2005
  end-page: 141
  article-title: Patterns of segmental duplication in the human genome
  publication-title: Mol. Biol. Evol.
– volume: 12
  start-page: 941
  year: 2014
  end-page: 950
  article-title: Comparative analysis of maize (Zea mays) crop performance: natural variation, incremental improvements and economic impacts
  publication-title: Plant Biotechnol. J.
– volume: 12
  start-page: 2311
  year: 2000
  end-page: 2322
  article-title: A segmental gene duplication generated differentially expressed myb‐homologous genes in maize
  publication-title: Plant Cell
– volume: 12
  start-page: 797
  year: 2014
  end-page: 807
  article-title: The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
  publication-title: Plant Biotechnol. J.
– volume: 30
  start-page: 390
  year: 2012
  end-page: 392
  article-title: High‐efficiency TALEN‐based gene editing produces disease‐resistant rice
  publication-title: Nat. Biotechnol.
– volume: 118
  start-page: 157
  year: 2009
  end-page: 177
  article-title: Artificial chromosome formation in maize (Zea mays L.)
  publication-title: Chromosoma
– volume: 191
  start-page: 635
  year: 2011
  end-page: 646
  article-title: Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL
  publication-title: New Phytol.
– volume: 15
  start-page: 157
  year: 2015
  article-title: The ARGOS gene family functions in a negative feedback loop to desensitize plants to ethylene
  publication-title: BMC Plant Biol.
– volume: 99
  start-page: 11975
  year: 2002
  end-page: 11980
  article-title: Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 18
  start-page: 1924
  year: 2008
  end-page: 1937
  article-title: Many or most genes in Arabidopsis transposed after the origin of the order Brassicales
  publication-title: Genome Res.
– volume: 459
  start-page: 437
  year: 2009
  end-page: 441
  article-title: Precise genome modification in the crop species Zea mays using zinc‐finger nucleases
  publication-title: Nature
– volume: 54
  start-page: 1
  year: 1998
  end-page: 18
  article-title: Spatial analysis of multi‐environment early generation trials
  publication-title: Biometrics
– year: 1988
– volume: 165
  start-page: 309
  year: 2003
  end-page: 319
  article-title: Genome‐level evolution of resistance genes in Arabidopsis thaliana
  publication-title: Genetics
– volume: 172
  start-page: 1113
  year: 2007
  end-page: 1123
  article-title: Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar
  publication-title: Plant Sci.
– volume: 2
  start-page: 931
  year: 2015
  end-page: 945
  article-title: Targeted mutagenesis, precise gene editing and site‐specific gene insertion in maize using Cas9 and guide RNA
  publication-title: Plant Physiol.
– volume: 95
  start-page: 370
  year: 1998
  end-page: 375
  article-title: Rapid reorganization of resistance gene homologues in cereal genomes
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  article-title: RNA‐guided human genome engineering via Cas9
  publication-title: Science
– reference: 26284791 - PLoS One. 2015 Aug 18;10(8):e0136064
– reference: 15466290 - Genome Res. 2004 Oct;14(10A):1924-31
– reference: 14504238 - Genetics. 2003 Sep;165(1):309-19
– reference: 27268962 - Plant Physiol. 2016 Aug;171(4):2783-97
– reference: 25879861 - BMC Biotechnol. 2015 Mar 12;15:16
– reference: 24218327 - J Exp Bot. 2014 Jan;65(1):249-60
– reference: 19965430 - Science. 2009 Nov 20;326(5956):1112-5
– reference: 19015867 - Chromosoma. 2009 Apr;118(2):157-77
– reference: 25599829 - Plant Biotechnol J. 2015 Aug;13(6):791-800
– reference: 26768120 - Mol Plant. 2016 Apr 4;9(4):628-31
– reference: 26434719 - Genetics. 2015 Nov;201(3):925-35
– reference: 11752192 - Mol Biol Evol. 2002 Jan;19(1):76-84
– reference: 23999092 - Nucleic Acids Res. 2013 Nov;41(20):e188
– reference: 24576457 - J Genet Genomics. 2014 Feb 20;41(2):63-8
– reference: 15371527 - Mol Biol Evol. 2005 Jan;22(1):135-41
– reference: 26541286 - Genome Biol. 2015 Nov 06;16:232
– reference: 26473199 - Nat Biotechnol. 2015 Aug;33(8):862-9
– reference: 24851925 - Plant Biotechnol J. 2014 Sep;12(7):941-50
– reference: 25038773 - Nat Biotechnol. 2014 Sep;32(9):947-51
– reference: 12953103 - Plant Cell. 2003 Sep;15(9):1951-61
– reference: 19811621 - Plant J. 2010 Jan;61(1):176-87
– reference: 21457262 - New Phytol. 2011 Aug;191(3):635-46
– reference: 24618117 - Plant Biotechnol J. 2014 Aug;12(6):685-93
– reference: 17747490 - Science. 1988 Aug 26;241(4869):1086-9
– reference: 8770601 - Genetics. 1996 Jan;142(1):237-46
– reference: 26105742 - BMC Plant Biol. 2015 Jun 24;15:157
– reference: 19404259 - Nature. 2009 May 21;459(7245):437-41
– reference: 26294043 - Plant Physiol. 2015 Oct;169(2):960-70
– reference: 26603121 - J Biotechnol. 2016 Jan 10;217:90-7
– reference: 23929339 - Nat Biotechnol. 2013 Aug;31(8):688-91
– reference: 23287722 - Science. 2013 Feb 15;339(6121):823-6
– reference: 26269544 - Plant Physiol. 2015 Oct;169(2):931-45
– reference: 24596174 - J Exp Bot. 2014 Nov;65(21):6191-204
– reference: 22565958 - Nat Biotechnol. 2012 May 07;30(5):390-2
– reference: 25200087 - Nucleic Acids Res. 2014;42(17):10903-14
– reference: 18524876 - Plant Physiol. 2008 Jun;147(2):446-55
– reference: 25824104 - Plant J. 2015 May;82(4):632-43
– reference: 24854982 - Plant Biotechnol J. 2014 Aug;12(6):797-807
– reference: 22919542 - Int J Evol Biol. 2012;2012:846421
– reference: 11148280 - Plant Cell. 2000 Dec;12(12):2311-2322
– reference: 1302635 - Plant J. 1992 Nov;2(6):837-44
– reference: 17981990 - Plant Physiol. 2008 Jan;146(1):5-21
– reference: 12185243 - Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11975-80
– reference: 18836034 - Genome Res. 2008 Dec;18(12):1924-37
– reference: 9419382 - Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):370-5
– reference: 26220950 - Plant Physiol. 2015 Sep;169(1):266-82
SSID ssj0021656
Score 2.6499805
Snippet Summary Maize ARGOS8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS8 have...
Maize ARGOS8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS8 have reduced...
Maize ARGOS 8 is a negative regulator of ethylene responses. A previous study has shown that transgenic plants constitutively overexpressing ARGOS 8 have...
SourceID pubmedcentral
proquest
gale
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 207
SubjectTerms Agricultural production
alleles
Amino acids
ARGOS
Base Sequence
Biodiversity
breeding
Corn
CRISPR
CRISPR-Associated Proteins - metabolism
CRISPR-Cas Systems
CRISPR‐Cas9
Crop yield
Crop yields
crops
Crops, Agricultural - genetics
Deoxyribonucleic acid
DNA
DNA repair
DNA sequencing
Drought
Drought resistance
drought tolerance
Droughts
Edible Grain - genetics
Ethylene
Ethylenes
Flowering
Gene Editing
Gene expression
Gene Expression Regulation, Plant
Genes
Genetic engineering
Genetically modified plants
genome editing
Genomes
Grain
grain yield
loci
maize
messenger RNA
Plant breeding
Plant Proteins - genetics
Plants, Genetically Modified
Polymerase Chain Reaction
promoter regions
Promoter Regions, Genetic
Proteins
RNA
RNA, Messenger - genetics
sequence analysis
Signal transduction
Stress, Physiological - genetics
Transgenic plants
water stress
Zea mays
Zea mays - genetics
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp-bQR9LHtmlQodBevNiS9TA9bZc8D2nYNJBDQUiyvNmWOmEfheTUn9Df2F_SGdlrNiktpTeDJJDQzOgb-ZtPhLz2SngUAUlyX_oEjCJPrK3Ar1xQIrOZTKvItjiWB2f50bk4XyPvlrUwjT5Ed-GGnhHjNTq4dbMVJ79yk34GaByVPpGrhYBo1ElHMVSVaSqLVKLg0G9VhZDF0438PQyvnEN3OZKr2DUePnsPyKfltBvOyZf-Yu76_uaOouN_rushud-CUjporOgRWQv1JtkYjKetMEfYIp8Ho_0Pp5p-g9waqTN0HPWqAa9Sd02Ho8PTk9HP7z-GdlbQSbyoCPSrndwEOsZHKOg1MuUoVqxNaWTN0TI-EDSnTbUKhby8bOhjj8nZ3u7H4UHSvtOQjAHv8cRbyDpkgNiZ8sCCypzTileVrVzUu5cuVWVeaRVgXY6ntpLCSVcU1nqlhOJPyHp9WYdnhCrmtGWpZTLonDlZKF9aHtLguShKl_bIG9wxg94H2-JtW0QAo1HHygwU5wytgfXI9nJTTeuWM4Pi9iwXAJl65FXXDA6Ff0lsHS4XM4MJlwKcmRV_6yM1BEMIh3_uwyC8aZXDRvbI08aWzFWjIGJQlhHyTpikumVlXQcU_b7dUk8uovi3YEJrAXN7G42oG7FM5sB8TDQfc_L-MH48__euL8g9hrAlstK3yfp8uggvAXTN3U70rl-9vCn4
  priority: 102
  providerName: Wiley-Blackwell
Title ARGOS8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12603
https://www.ncbi.nlm.nih.gov/pubmed/27442592
https://www.proquest.com/docview/2290245175
https://www.proquest.com/docview/1826723219
https://www.proquest.com/docview/1868318183
https://www.proquest.com/docview/2053874603
https://pubmed.ncbi.nlm.nih.gov/PMC5258859
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdYd4ED4puOURkJCS6BxI4_ckJdtW7jMKqMSbtFtuN0PZCWtps0_nrec9yygdjFihRbsp6f34f98-8R8t4p4ZAEJMld7RJQijwxpoF9Zb0Smclk2gS0xak8Ps-_XoiLeOC2irDKjU0MhrqeOzwj_4y85CwX4O2-LH4mWDUKb1djCY0dsgsmWOse2T04PJ2U25QLuWW690UqUeD6I7cQYnkWdvYpg2ie_2uMb3mjv5GStyPY4ILGT8jjGDvSYbfYT8kD3z4jj4bTZeTP8M_J5bA8-nam6TWkwIhwodNAKw1hJbU3dFSenE3KZGRWBZ2F0wRPf5jZL0-nWCmC3iCcjeKzsiUN0DZahyo-a9o9KaGQPNcdxusFOR8ffh8dJ7GYQjKFoIwnzkBqID0YuJR75lVmrVa8aUxjAym9tKmq80YrD0KxPDWNFFbaojDGKSUUf0l67bz1rwlVzGrDUsOk1zmzslCuNtyn3nFR1Dbtkw8o0Aq3CEjNmYj0h9FINlUNFecM4XWsT_Y3Mq_i3llVf1a6T95tf4PW41WGaf38alVhVqQgGMyK-_pIDRYLbNb_-zCwQVrloAV98qpb6mrR0XxUyJ0IySFMUt1Rgm0HZOa--6edXQaGbsGE1gLm9jGoy3bEJuMC3auC7lWTg5PwsXe_JN6QhwzjiQAX3ye99fLKv4VoaG0HZIflE2j1-GgQ1X8QThawLdlvKvINPQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGeAAeEL_pGGAkELwEEju2kweESqFr2RhTt0l7M7bjdH1YWtoOVP4o_kbunLRsk9jb3iLFiaLLd-e75LvvCHnplHAoAhKlrnARgCKNjCnBr6xXIjGJjMvAttiVvcP0y5E4WiN_lr0wSKtcxsQQqIuxw2_k71CXnKUCdrsPkx8RTo3Cv6vLERo1LLb94heUbLP3_U_wfl8x1v180OlFzVSBaAjZCY-cgRxZevD0mHvmVWJtpnhZmtIGdXZpY1WkZaZ8wqTlsSmlsNLmuTFOKaE43PcauZ5y2MmxM727tSrwUMmm7mZSkYJEo1EyQubQxI7ewv1wNtfF0H9m77vIyzybL4cNr3uH3G4yVdquoXWXrPnqHrnVHk4btQ5_nxy3B1vf9jP6Ewpu5NPQYRCxhiSW2gXtDPr7e4OoY2Y5HYVvF56emNFvT4c4l4IukDxHsYltSgORjhZhZtCc1g0sFEr1omaUPSCHV2Lkh2S9Glf-MaGK2cyw2DDps5RZmStXGO5j77jICxu3yGs0qEaHBKs50_QVwNUobaXbinOGZD7WIptLm-vGU2f6H65a5MXqNPgY_jgxlR-fzjTWYApSzyS_bI3MID5ChPz_GgYRL1MpoKBFHtWvWk9qURGNSo1QisJDqnMgWC1AHfDzZ6rRcdADF0xkmYBnexPgsrpiWd8B9nTAnt772A8HG5db4jm50Tv4uqN3-rvbT8hNhplMIKpvkvX59NQ_hTxsbp8F8FPy_aq97S_4QERq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJyF4QPymMMBIIHjJljixnTwg1HUrK0Ol6pi0N2M7TtcH0tJ2oPKn8ddx5yRlm8Te9hYpThRdvjvfJd99R8hrK7lFEZAgsbkNABRJoHUBfmWc5JGORFh4tsVAHBwnn074yQb50_TCIK2yiYk-UOdTi9_Id1CXnCUcdrudoqZFDPd6H2Y_ApwghX9am3EaFUQO3eoXlG-L9_09eNdvGOvtf-0eBPWEgWAMmUocWA35snDg9WHsmJORMamMi0IXxiu1CxPKPClS6SImTBzqQnAjTJZpbaXkMob73iCbEquiFtnc3R8MR-tyD3Vtqt4mGUhIO2pdI-QRzcxkG-6Ik7oubwTndsLLLM3z2bPf_np3yZ06b6WdCmj3yIYr75PbnfG81u5wD8hpZ_Txy1FKf0L5jewaOvaS1pDSUrOi3VH_aDgKunqR0Yn_kuHodz357egYp1TQFVLpKLa0zamn1dHcTxBa0qqdhULhnlf8sofk-FrM_Ii0ymnpnhAqmUk1CzUTLk2YEZm0uY5d6GzMs9yEbfIWDarQPcFqVtddBnA1Cl2pjoxjhtQ-1iZbjc1V7bcL9Q9lbfJqfRo8Dn-j6NJNzxYKKzIJiWiUXbVGpBAtIV7-fw2D-JfKBFDQJo-rV61mlcSIQt1GKEzhIeUFEKwXoCr4xTPl5NSrg3PG05TDs73zcFlf0VR7gD3lsaeGu31_8PRqS7wkN8HT1Of-4PAZucUwrfGs9S3SWs7P3HNIypbmRY1-Sr5dt8P9BX8LSfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARGOS8+variants+generated+by+CRISPR-Cas9+improve+maize+grain+yield+under+field+drought+stress+conditions&rft.jtitle=Plant+biotechnology+journal&rft.au=Shi%2C+Jinrui&rft.au=Gao%2C+Huirong&rft.au=Wang%2C+Hongyu&rft.au=Lafitte%2C+H+Renee&rft.date=2017-02-01&rft.eissn=1467-7652&rft.volume=15&rft.issue=2&rft.spage=207&rft_id=info:doi/10.1111%2Fpbi.12603&rft_id=info%3Apmid%2F27442592&rft.externalDocID=27442592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon