Variants in the human insulin gene that affect pre-mRNA splicing : Is -23HphI a functional single nucleotide polymorphism at IDDM2?
Predisposition to type 1 diabetes and juvenile obesity is influenced by the susceptibility locus IDDM2 that includes the insulin gene (INS). Although the risk conferred by IDDM2 has been attributed to a minisatellite upstream of INS, intragenic variants have not been ruled out. We examined whether I...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 55; no. 1; pp. 260 - 264 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
2006
|
Subjects | |
Online Access | Get full text |
ISSN | 0012-1797 1939-327X |
DOI | 10.2337/diabetes.55.01.06.db05-0773 |
Cover
Summary: | Predisposition to type 1 diabetes and juvenile obesity is influenced by the susceptibility locus IDDM2 that includes the insulin gene (INS). Although the risk conferred by IDDM2 has been attributed to a minisatellite upstream of INS, intragenic variants have not been ruled out. We examined whether INS polymorphisms affect pre-mRNA splicing and proinsulin secretion using minigene reporter assays. We show that IVS1-6A/T (-23HphI+/-) is a key INS variant that influences alternative splicing of intron 1 through differential recognition of its 3' splice site. The A allele resulted in an increased production of mature transcripts with a long 5' leader in several cell lines, and the extended mRNAs generated more proinsulin in culture supernatants than natural transcripts. The longer mRNAs were significantly overrepresented among beta-cell-expressed sequenced tags containing the A allele as compared with those with T alleles. In addition, we show that a rare insertion/deletion polymorphism IVS1+5insTTGC (IVS-69), which is exclusively present in Africans, activated a downstream cryptic 5' splice site, extending the 5' leader by 30 bp. These results indicate that -23HphI and IVS-69 are the most important INS variants affecting pre-mRNA splicing and suggest that -23HphI+/- is a common functional single nucleotide polymorphism at IDDM2. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0012-1797 1939-327X |
DOI: | 10.2337/diabetes.55.01.06.db05-0773 |