Covalent Organic Frameworks for CO2 Capture

As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using C...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 28; no. 15; pp. 2855 - 2873
Main Authors Zeng, Yongfei, Zou, Ruqiang, Zhao, Yanli
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 20.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low‐ and high‐pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed. Covalent organic frameworks (COFs) are excellent candidates for various important applications. Recent research progress on: i) experimental CO2 capture of different COFs according to the covalent bonds formed during the synthetic procedure, and ii) theoretical calculations of CO2 capture by COFs is highlighted. Analyses and discussions based on experimental and theoretical results are also provided.
AbstractList As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low‐ and high‐pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed. Covalent organic frameworks (COFs) are excellent candidates for various important applications. Recent research progress on: i) experimental CO2 capture of different COFs according to the covalent bonds formed during the synthetic procedure, and ii) theoretical calculations of CO2 capture by COFs is highlighted. Analyses and discussions based on experimental and theoretical results are also provided.
As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.
Author Zeng, Yongfei
Zou, Ruqiang
Zhao, Yanli
Author_xml – sequence: 1
  givenname: Yongfei
  surname: Zeng
  fullname: Zeng, Yongfei
  organization: Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
– sequence: 2
  givenname: Ruqiang
  surname: Zou
  fullname: Zou, Ruqiang
  email: rzou@pku.edu.cn
  organization: Singapore Peking University Research Centre for a Sustainable Low-Carbon Future, 1 Create Way, 138602, Singapore
– sequence: 3
  givenname: Yanli
  surname: Zhao
  fullname: Zhao, Yanli
  email: rzou@pku.edu.cn
  organization: Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26924720$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtLw0AUhQep2IduXUqWgqTeeWUyyxJtFWqLUHE5TCeTEptHnSTW_ntTWrO6HM53DtwzRL2iLCxCtxjGGIA86jjXYwKYAwdgF2iAOcE-A8l7aACScl8GLOyjYVV9AYAMILhCfRJIwgSBAXqIyh-d2aL2lm6ji9R4U6dzuy_dtvKS0nnRkniR3tWNs9foMtFZZW_Od4Q-ps-r6MWfL2ev0WTub9pO5msRgEyMSCzRCcUJTWJmJMEMhzwJBeUyPHrWABeUabKWICQxhpnYyHAd0BG6P_XuXPnd2KpWeVoZm2W6sGVTKSxCzKlgbdcI3Z3RZp3bWO1cmmt3UP8PtoA8Afs0s4fOx6CO86njfKqbT02e3iadarP-KZtWtf3tstptVSCo4OpzMVOL1Xz1PmNcBfQP6M5x4A
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
NPM
7X8
DOI 10.1002/adma.201505004
DatabaseName Istex
PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 2873
ExternalDocumentID 26924720
ADMA201505004
ark_67375_WNG_NTLTQG45_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
ADMLS
AGHNM
NPM
7X8
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ID FETCH-LOGICAL-g4724-a7609fc7fe2af31f3fd4c9214185f8735987fe2ec05734a2b90792cc4cdc98b63
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Jul 11 07:05:38 EDT 2025
Thu Apr 03 06:57:42 EDT 2025
Wed Jan 22 16:56:49 EST 2025
Wed Oct 30 09:51:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords gas adsorption
carbon dioxide capture
gas selectivity
covalent organic frameworks
porous materials
Language English
License 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g4724-a7609fc7fe2af31f3fd4c9214185f8735987fe2ec05734a2b90792cc4cdc98b63
Notes istex:7057F7E2694FB0D4F0B3D452CC57B969DDA81BD2
ark:/67375/WNG-NTLTQG45-6
ArticleID:ADMA201505004
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26924720
PQID 1781537487
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_1781537487
pubmed_primary_26924720
wiley_primary_10_1002_adma_201505004_ADMA201505004
istex_primary_ark_67375_WNG_NTLTQG45_6
PublicationCentury 2000
PublicationDate April 20, 2016
PublicationDateYYYYMMDD 2016-04-20
PublicationDate_xml – month: 04
  year: 2016
  text: April 20, 2016
  day: 20
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References B. J. Smith, W. R. Dichtel, J. Am. Chem. Soc. 2014, 136, 8783.
J. Jiang, J. Yu, A. Corma, Angew. Chem. Int. Ed. 2010, 49, 3120.
S. Keskin, T. M. van Heest, D. S. Sholl, ChemSusChem 2010, 3, 879.
J. M. Simmons, H. Wu, W. Zhou, T. Yildirim, Energy Environ. Sci. 2011, 4, 2177.
A. Nagai, X. Chen, X. Feng, X. Ding, Z. Guo, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 3770.
R. S. Haszeldine, Science 2009, 325, 1644.
Y. B. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gandara, A. Duong, X. Zou, O. M. Yaghi, J. Am. Chem. Soc. 2013, 135, 16336.
H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875.
R. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci. 2012, 37, 530.
Y. Zeng, R. Zou, Z. Luo, H. Zhang, X. Yao, X. Ma, R. Zou, Y. Zhao, J. Am. Chem. Soc. 2015, 137, 1020.
S. Chandra, T. Kundu, S. Kandambeth, R. Babarao, Y. Marathe, S. M. Kunjir, R. Banerjee, J. Am. Chem. Soc. 2014, 136, 6570.
L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci. 2014, 5, 2789.
G. Barany, R. B. Merrifield, J. Am. Chem. Soc. 1977, 99, 7363.
D. N. Bunck, W. R. Dichtel, Chem. Commun. 2013, 49, 2457.
B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 5328.
S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208.
G. H. Bertrand, V. K. Michaelis, T. C. Ong, R. G. Griffin, M. Dinca, Proc. Natl. Acad. Sci. USA 2013, 110, 4923.
T. He, L. Liu, G. T. Wu, P. Chen, J. Mater. Chem. A 2015, 3, 16235.
P. Chowdhury, S. Mekala, F. Dreisbach, S. Gumma, Microporous Mesoporous Mater. 2012, 152, 246.
R. Dawson, L. A. Stevens, T. C. Drage, C. E. Snape, M. W. Smith, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc. 2012, 134, 10741.
J.-T. Yu, Z. Chen, J. Sun, Z.-T. Huang, Q.-Y. Zheng, J. Mater. Chem. 2012, 22, 5369.
S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094.
E. L. Spitler, B. T. Koo, J. L. Novotney, J. W. Colson, F. J. Uribe-Romo, G. D. Gutierrez, P. Clancy, W. R. Dichtel, J. Am. Chem. Soc. 2011, 133, 19416.
Z. Zhang, Z.-Z. Yao, S. Xiang, B. Chen, Energy Environ. Sci. 2014, 7, 2868.
S. Choi, J. H. Drese, C. W. Jones, ChemSusChem 2009, 2, 796.
S. Jin, X. Ding, X. Feng, M. Supur, K. Furukawa, S. Takahashi, M. Addicoat, M. E. El-Khouly, T. Nakamura, S. Irle, S. Fukuzumi, A. Nagai, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 2017.
Y. J. Choi, J. H. Choi, K. M. Choi, J. K. Kang, J. Mater. Chem. 2011, 21, 1073.
S. B. Kalidindi, C. Wiktor, A. Ramakrishnan, J. Wessing, A. Schneemann, G. Van Tendeloo, R. A. Fischer, Chem. Commun. 2013, 49, 463.
S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard, J. Am. Chem. Soc. 2008, 130, 11580.
R. Banerjee, G. Das, B. Biswal, S. G K, V. Venkatesh, M. Addicoat, T. Heine, G. Kaur, S. Verma, Chem. Sci. 2015, 6, 3931.
Y. Du, D. Calabro, B. Wooler, Q. Li, S. Cundy, P. Kamakoti, D. Colmyer, K. Mao, P. Ravikovitch, J. Phys. Chem. C 2014, 118, 399.
D. Kaleeswaran, P. Vishnoi, R. Murugavel, J. Mater. Chem. C 2015, 3, 7159.
A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998.
G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh, M. Marshall, Adsorption 2008, 14, 415.
C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem. 2010, 2, 235.
Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu, Y. Mu, Chem. Commun. 2014, 50, 13825.
C. R. DeBlase, K. E. Silberstein, T. T. Truong, H. D. Abruna, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 16821.
Z. Kahveci, T. Islamoglu, G. A. Shar, R. Ding, H. M. El-Kaderi, CrystEngComm 2013, 15, 1524.
J. A. O'Brien, A. L. Myers, Ind. Eng. Chem. Res. 1988, 27, 2085.
Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W. Laursen, C.-G. Yan, B.-H. Han, J. Am. Chem. Soc. 2012, 134, 6084.
P. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053.
Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H. Guo, S. Qiu, Y. Yan, J. Am. Chem. Soc. 2015, 137, 8352.
E. L. Spitler, M. R. Giovino, S. L. White, W. R. Dichtel, Chem. Sci. 2011, 2, 1588.
Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu, Y. Yan, Angew. Chem. Int. Ed. 2014, 53, 2878.
F. Xu, H. Xu, X. Chen, D. Wu, Y. Wu, H. Liu, C. Gu, R. Fu, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 6814.
R. H. Weiland, J. C. Dingman, D. B. Cronin, J. Chem. Eng. Data 1997, 42, 1004.
Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science 2014, 346, 1356.
E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 2623.
H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science 2007, 316, 268.
X. H. Liu, C. Z. Guan, D. Wang, L. J. Wan, Adv. Mater. 2014, 26, 6912.
Y. Du, D. Calabro, B. Wooler, P. Kortunov, Q. C. Li, S. Cundy, K. M. Mao, Chem. Mater. 2015, 27, 1445.
K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724.
D. Beaudoin, T. Maris, J. D. Wuest, Nat. Chem. 2013, 5, 830.
H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, O. M. Yaghi, Nature 2004, 427, 523.
S. Yang, J. Sun, A. J. Ramirez-Cuesta, S. K. Callear, W. I. David, D. P. Anderson, R. Newby, A. J. Blake, J. E. Parker, C. C. Tang, M. Schroder, Nat. Chem. 2012, 4, 887.
M. Dogru, T. Bein, Chem. Commun. 2014, 50, 5531.
M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel, T. Bein, Angew. Chem. Int. Ed. 2013, 52, 2920.
S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai, D. Jiang, J. Am. Chem. Soc. 2013, 135, 17310.
R. K. Pachauri, A. Reisinger, IPCC Fifth Assessment Report, Intergovernmental Panel on Climate Change, 2014.
J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228.
M. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Löbermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc. 2014, 136, 17802.
J. Lan, D. Cao, W. Wang, B. Smit, ACS Nano 2010, 4, 4225.
J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, J. R. Long, Energy Environ. Sci. 2011, 4, 3030.
S. D. Brucks, D. N. Bunck, W. R. Dichtel, Polymer 2014, 55, 330.
S. Kandambeth, V. Venkatesh, D. B. Shinde, S. Kumari, A. Halder, S. Verma, R. Banerjee, Nat. Commun. 2015, 6, 6786.
S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 2014, 43, 6116.
M. Tong, Q. Yang, Y. Xiao, C. Zhong, Phys. Chem. Chem. Phys. 2014, 16, 15189.
N. Konduru, P. Lindner, N. M. Assaf-Anid, AIChE J. 2007, 53, 3137.
Z. Li, Y. Zhi, X. Feng, X. Ding, Y. Zou, X. Liu, Y. Mu, Chem. Eur. J. 2015, 21, 12079.
E. L. Spitler, W. R. Dichtel, Nat. Chem. 2010, 2, 672.
H. Xu, J. Gao, D. L. Jiang, Nat. Chem. 2015, 7, 905.
S. Chandra, S. Kandambeth, B. P. Biswal, B. Lukose, S. M. Kunjir, M. Chaudhary, R. Babarao, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 17853.
H. Wei, S. Chai, N. Hu, Z. Yang, L. Wei, L. Wang, Chem. Commun. 2015, 51, 12178.
D. D. Medina, J. M. Rotter, Y. Hu, M. Dogru, V. Werner, F. Auras, J. T. Markiewicz, P. Knochel, T. Bein, J. Am. Chem. Soc. 2015, 137, 1016.
C. R. DeBlase, K. Hernández-Burgos, K. E. Silberstein, G. G. Rodríguez-Calero, R. P. Bisbey, H. D. Abruña, W. R. Dichtel, ACS Nano 2015, 9, 3178.
R. Babarao, J. Jiang, Energy Environ. Sci. 2008, 1, 139.
X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010.
G. T. Rochelle, Science 2009, 325, 1652.
S. Cavenati, C. A. Grande, A. E. Rodrigues, Chem. Eng. Sci. 2006, 61, 3893.
M. Tong, Q. Yang, C. Zhong, Microporous Mesoporous Mater. 2015, 210, 142.
X. Chen, M. Addicoat, E. Jin, L. Zhai, H. Xu, N. Huang, Z. Guo, L. Liu, S. Irle, D. Jiang, J. Am. Chem. Soc. 2015, 137, 324.
S. Kandambeth, D. B. Shinde, M. K. Panda, B. Lukose, T. Heine, R. Banerjee, Angew. Chem. Int. Ed. 2013, 52, 13052.
S. J. Datta, C. Khumnoon, Z. H. Lee, W. K. Moon, S. Docao, T. H. Nguyen, I. C. Hwang, D. Moon, P. Oleynikov, O. Terasaki, K. B. Yoon, Science 2015, 350, 302.
K. Wang, S. Qiao, X. Hu, Sep. Purif. Technol. 2000, 20, 243.
A. de la Pena Ruigomez, D. Rodriguez-San-Miguel, K. C. Stylianou, M. Cavallini, D. Gentili, F. Liscio, S. Milita, O. M. Roscioni, M. L. Ruiz-Gonzalez, C. Carbonell, D. Maspoch, R. Mas-Balleste, J. L. Segura, F. Zamora, Chem. Eur. J. 2015, 21, 10666.
C. Shen, H. Yu, Z. Wang, Chem. Commun. 2014, 50, 11238.
B. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Chem. Soc. Rev. 2015, 44, 2421.
G. Li, P. Xiao, P. A. Webley, J. Zhang, R. Singh, Energy Proc. 2009, 1, 1123.
S. Chaemchuen, N. A. Kabir, K. Zhou, F. Verpoort, Chem. Soc. Rev. 2013, 42, 9304.
Y. Belmabkhout, G. Pirngruber, E. Jolimaitre, A. Methivier, Adsorption 2007, 13, 341.
B. Wang, A. P. Cote, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Nature 2008, 453, 207.
N. Huang, R. Krishna, D. Jiang, J. Am. Chem. Soc. 2015, 137, 7079.
C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk, G. Férey, Science 2007, 315, 1828.
D. M. D'Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058
T. Faury, S. Clair, M. Abel, F. Dumur, D. Gigmes, L. Porte, J. Phys. Chem. C 2012, 116, 4819.
M. G. Rabbani, H. M. El-Kaderi, Chem. Mater. 2012, 24, 1511.
D. D. Medina, V. Werner, F. Auras, R. Tautz, M. Dogru, J. Schuster, S. Linke, M. Döblinger, J. Feldmann, P. Knochel, T. Bein, ACS Nano 2014, 8, 4042.
J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature 2013, 495, 80.
X. H. Liu, C. Z. Guan, S. Y. Ding, W. Wang, H. J. Yan, D. Wang, L. J. Wan, J. Am. Chem. Soc. 2013, 135, 10470.
H. Ma, H. Ren, S. Meng, Z. Yan, H. Zhao, F. Sun, G. Zhu, Chem. Commun. 2013, 49, 9773.
Q. Yang, C. Zhong, Langmuir 2009, 25, 2302.
L. Xu, X. Zhou, W. Q. Tian, T. Gao, Y. F. Zhang, S. Lei, Z. F. Liu, Angew. Chem. Int. Ed. 2014, 53, 9564.
J. Yao, H. Wang, Chem. Soc. Rev. 2014, 43, 4470.
M. G. Rabbani, A. K. Sekizk
1997; 42
2014; 26
2013; 5
2012; 12
2013; 6
2014; 136
2012; 134
2015; 137
2013; 52
2014; 16
2013; 110
2010; 3
2012; 24
2010; 2
2012; 22
2010; 4
2004; 43
2011; 2
2010; 329
2015; 51
2004; 49
2013; 104
2015; 54
2013; 341
2012; 37
2011; 4
2004; 427
2007; 13
2011; 133
2014; 43
2015; 350
2010; 49
2007; 316
2012; 112
2007; 315
2005; 127
1988; 27
2008; 47
2015; 519
1977; 99
2008; 41
2012; 48
2012; 116
2008; 130
2012; 41
2013; 25
2015; 33
2015; 349
2008; 1
2009; 48
2012; 51
2013; 19
2015; 48
2015; 292
2014; 5
2013; 15
2006; 61
2015; 210
2015; 44
2011; 21
2011; 23
2014; 8
2011; 27
2014; 7
2014; 50
2014; 55
2009; 325
2014; 53
2014; 118
2009; 25
2007; 129
2015; 6
2015; 3
2013; 49
2010
2005; 310
2013; 42
2011; 40
2000; 20
2008; 14
2006; 18
2009; 131
2007; 53
2015; 9
2015; 7
2011; 332
2012; 152
2015; 27
2015; 21
2013; 135
2014
2013; 495
2008; 453
2009; 2
2009; 1
2012; 4
2009; 38
2014; 346
References_xml – reference: S. Jin, M. Supur, M. Addicoat, K. Furukawa, L. Chen, T. Nakamura, S. Fukuzumi, S. Irle, D. Jiang, J. Am. Chem. Soc. 2015, 137, 7817.
– reference: P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature 2013, 495, 80.
– reference: N. Huang, R. Krishna, D. Jiang, J. Am. Chem. Soc. 2015, 137, 7079.
– reference: J. A. O'Brien, A. L. Myers, Ind. Eng. Chem. Res. 1988, 27, 2085.
– reference: P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 2008, 47, 3450.
– reference: B. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Chem. Soc. Rev. 2015, 44, 2421.
– reference: Z. Kahveci, T. Islamoglu, G. A. Shar, R. Ding, H. M. El-Kaderi, CrystEngComm 2013, 15, 1524.
– reference: M. Tong, Q. Yang, Y. Xiao, C. Zhong, Phys. Chem. Chem. Phys. 2014, 16, 15189.
– reference: P. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053.
– reference: M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel, T. Bein, Angew. Chem. Int. Ed. 2013, 52, 2920.
– reference: L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci. 2014, 5, 2789.
– reference: S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816.
– reference: H. Wei, S. Chai, N. Hu, Z. Yang, L. Wei, L. Wang, Chem. Commun. 2015, 51, 12178.
– reference: A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166.
– reference: R. Dawson, L. A. Stevens, T. C. Drage, C. E. Snape, M. W. Smith, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc. 2012, 134, 10741.
– reference: H. Xu, J. Gao, D. L. Jiang, Nat. Chem. 2015, 7, 905.
– reference: R. Babarao, R. Custelcean, B. P. Hay, D.-E. Jiang, Cryst. Growth Des. 2012, 12, 5349.
– reference: S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548.
– reference: E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 2623.
– reference: X. Chen, M. Addicoat, E. Jin, L. Zhai, H. Xu, N. Huang, Z. Guo, L. Liu, S. Irle, D. Jiang, J. Am. Chem. Soc. 2015, 137, 324.
– reference: S. Chandra, S. Kandambeth, B. P. Biswal, B. Lukose, S. M. Kunjir, M. Chaudhary, R. Babarao, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 17853.
– reference: R. Gomes, P. Bhanja, A. Bhaumik, Chem. Commun. 2015, 51, 10050.
– reference: A. Bhunia, S. Dey, M. Bous, C. Zhang, W. von Rybinski, C. Janiak, Chem. Commun. 2015, 51, 484.
– reference: J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, J. R. Long, Energy Environ. Sci. 2011, 4, 3030.
– reference: R. Babarao, J. Jiang, Energy Environ. Sci. 2008, 1, 139.
– reference: L. Xu, X. Zhou, W. Q. Tian, T. Gao, Y. F. Zhang, S. Lei, Z. F. Liu, Angew. Chem. Int. Ed. 2014, 53, 9564.
– reference: S. Choi, J. H. Drese, C. W. Jones, ChemSusChem 2009, 2, 796.
– reference: J.-T. Yu, Z. Chen, J. Sun, Z.-T. Huang, Q.-Y. Zheng, J. Mater. Chem. 2012, 22, 5369.
– reference: N. Konduru, P. Lindner, N. M. Assaf-Anid, AIChE J. 2007, 53, 3137.
– reference: Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu, Y. Mu, Chem. Commun. 2014, 50, 13825.
– reference: S. Cavenati, C. A. Grande, A. E. Rodrigues, J. Chem. Eng. Data 2004, 49, 1095.
– reference: H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424.
– reference: K. T. Jackson, T. E. Reich, H. M. El-Kaderi, Chem. Commun. 2012, 48, 8823.
– reference: J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, J. Liu, Chem. Soc. Rev. 2012, 41, 2308.
– reference: Y. B. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gandara, A. Duong, X. Zou, O. M. Yaghi, J. Am. Chem. Soc. 2013, 135, 16336.
– reference: E. L. Spitler, M. R. Giovino, S. L. White, W. R. Dichtel, Chem. Sci. 2011, 2, 1588.
– reference: B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 5328.
– reference: N. Hedin, L. Andersson, L. Bergström, J. Yan, Appl. Energy 2013, 104, 418.
– reference: Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu, Y. Yan, Angew. Chem. Int. Ed. 2014, 53, 2878.
– reference: J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228.
– reference: D. M. D'Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058
– reference: H. Zhang, R. Zou, Y. Zhao, Coord. Chem. Rev. 2015, 292, 74.
– reference: Y. Du, D. Calabro, B. Wooler, P. Kortunov, Q. C. Li, S. Cundy, K. M. Mao, Chem. Mater. 2015, 27, 1445.
– reference: Z. Zhang, Z.-Z. Yao, S. Xiang, B. Chen, Energy Environ. Sci. 2014, 7, 2868.
– reference: P. Chowdhury, S. Mekala, F. Dreisbach, S. Gumma, Microporous Mesoporous Mater. 2012, 152, 246.
– reference: J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
– reference: S. Wan, J. Guo, J. Kim, H. Ihee, D. Jiang, Angew. Chem. Int. Ed. 2008, 47, 8826.
– reference: T. Faury, S. Clair, M. Abel, F. Dumur, D. Gigmes, L. Porte, J. Phys. Chem. C 2012, 116, 4819.
– reference: Q. Yang, C. Zhong, Langmuir 2009, 25, 2302.
– reference: S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094.
– reference: T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu, G. Zhu, Angew. Chem. Int. Ed. 2009, 48, 9457.
– reference: N. Huang, X. Ding, J. Kim, H. Ihee, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 8704.
– reference: C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk, G. Férey, Science 2007, 315, 1828.
– reference: M. Tong, Q. Yang, C. Zhong, Microporous Mesoporous Mater. 2015, 210, 142.
– reference: Y. Belmabkhout, G. Pirngruber, E. Jolimaitre, A. Methivier, Adsorption 2007, 13, 341.
– reference: E. L. Spitler, B. T. Koo, J. L. Novotney, J. W. Colson, F. J. Uribe-Romo, G. D. Gutierrez, P. Clancy, W. R. Dichtel, J. Am. Chem. Soc. 2011, 133, 19416.
– reference: X. H. Liu, C. Z. Guan, S. Y. Ding, W. Wang, H. J. Yan, D. Wang, L. J. Wan, J. Am. Chem. Soc. 2013, 135, 10470.
– reference: D. D. Medina, V. Werner, F. Auras, R. Tautz, M. Dogru, J. Schuster, S. Linke, M. Döblinger, J. Feldmann, P. Knochel, T. Bein, ACS Nano 2014, 8, 4042.
– reference: B. Wang, A. P. Cote, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Nature 2008, 453, 207.
– reference: R. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci. 2012, 37, 530.
– reference: X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010.
– reference: D. N. Bunck, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 14952.
– reference: S. Kitagawa, R. Kitaura, S.-i. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
– reference: S. B. Kalidindi, C. Wiktor, A. Ramakrishnan, J. Wessing, A. Schneemann, G. Van Tendeloo, R. A. Fischer, Chem. Commun. 2013, 49, 463.
– reference: C. R. DeBlase, K. E. Silberstein, T. T. Truong, H. D. Abruna, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 16821.
– reference: L. Chen, K. Furukawa, J. Gao, A. Nagai, T. Nakamura, Y. Dong, D. Jiang, J. Am. Chem. Soc. 2014, 136, 9806.
– reference: S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai, D. Jiang, J. Am. Chem. Soc. 2013, 135, 17310.
– reference: S. D. Brucks, D. N. Bunck, W. R. Dichtel, Polymer 2014, 55, 330.
– reference: P. Arab, M. G. Rabbani, A. K. Sekizkardes, T. Íslamoˇglu, H. M. El-Kaderi, Chem. Mater. 2014, 26, 1385.
– reference: Y. Zhu, H. Long, W. Zhang, Chem. Mater. 2013, 25, 1630.
– reference: R. W. Tilford, W. R. Gemmill, H.-C. zur Loye, J. J. Lavigne, Chem. Mater. 2006, 18, 5296.
– reference: Z. Li, Y. Zhi, X. Feng, X. Ding, Y. Zou, X. Liu, Y. Mu, Chem. Eur. J. 2015, 21, 12079.
– reference: G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh, M. Marshall, Adsorption 2008, 14, 415.
– reference: C. R. DeBlase, K. Hernández-Burgos, K. E. Silberstein, G. G. Rodríguez-Calero, R. P. Bisbey, H. D. Abruña, W. R. Dichtel, ACS Nano 2015, 9, 3178.
– reference: M. Dogru, T. Bein, Chem. Commun. 2014, 50, 5531.
– reference: G. H. Bertrand, V. K. Michaelis, T. C. Ong, R. G. Griffin, M. Dinca, Proc. Natl. Acad. Sci. USA 2013, 110, 4923.
– reference: Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science 2014, 346, 1356.
– reference: H. Ma, H. Ren, S. Meng, Z. Yan, H. Zhao, F. Sun, G. Zhu, Chem. Commun. 2013, 49, 9773.
– reference: D. N. Bunck, W. R. Dichtel, Chem. Commun. 2013, 49, 2457.
– reference: E. L. Spitler, W. R. Dichtel, Nat. Chem. 2010, 2, 672.
– reference: S. Keskin, T. M. van Heest, D. S. Sholl, ChemSusChem 2010, 3, 879.
– reference: J. W. Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453.
– reference: M. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Löbermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc. 2014, 136, 17802.
– reference: Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W. Laursen, C.-G. Yan, B.-H. Han, J. Am. Chem. Soc. 2012, 134, 6084.
– reference: S. Chaemchuen, N. A. Kabir, K. Zhou, F. Verpoort, Chem. Soc. Rev. 2013, 42, 9304.
– reference: C. X. Yang, C. Liu, Y. M. Cao, X. P. Yan, Chem. Commun. 2015, 51, 12254.
– reference: K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724.
– reference: J. Cejka, A. Corma, S. Zones, Zeolites and Catalysis: Synthesis, Reactions and Applications, Wiley-VCH, Weinheim, Germany, 2010.
– reference: M. O'Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, Acc. Chem. Res. 2008, 41, 1782.
– reference: L. M. Lanni, R. W. Tilford, M. Bharathy, J. J. Lavigne, J. Am. Chem. Soc. 2011, 133, 13975.
– reference: F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klock, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 4570.
– reference: N. Huang, X. Chen, R. Krishna, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 2986.
– reference: Y. Zeng, R. Zou, Z. Luo, H. Zhang, X. Yao, X. Ma, R. Zou, Y. Zhao, J. Am. Chem. Soc. 2015, 137, 1020.
– reference: S.-L. Cai, Y.-B. Zhang, A. B. Pun, B. He, J. Yang, F. M. Toma, I. D. Sharp, O. M. Yaghi, J. Fan, S.-R. Zheng, W.-G. Zhang, Y. Liu, Chem. Sci. 2014, 5, 4693.
– reference: H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875.
– reference: D. Beaudoin, T. Maris, J. D. Wuest, Nat. Chem. 2013, 5, 830.
– reference: S. Chandra, T. Kundu, S. Kandambeth, R. Babarao, Y. Marathe, S. M. Kunjir, R. Banerjee, J. Am. Chem. Soc. 2014, 136, 6570.
– reference: X. Yan, T. R. Cook, J. B. Pollock, P. Wei, Y. Zhang, Y. Yu, F. Huang, P. J. Stang, J. Am. Chem. Soc. 2014, 136, 4460.
– reference: S. Kandambeth, D. B. Shinde, M. K. Panda, B. Lukose, T. Heine, R. Banerjee, Angew. Chem. Int. Ed. 2013, 52, 13052.
– reference: R. K. Pachauri, A. Reisinger, IPCC Fifth Assessment Report, Intergovernmental Panel on Climate Change, 2014.
– reference: H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 974.
– reference: A. de la Pena Ruigomez, D. Rodriguez-San-Miguel, K. C. Stylianou, M. Cavallini, D. Gentili, F. Liscio, S. Milita, O. M. Roscioni, M. L. Ruiz-Gonzalez, C. Carbonell, D. Maspoch, R. Mas-Balleste, J. L. Segura, F. Zamora, Chem. Eur. J. 2015, 21, 10666.
– reference: Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H. Guo, S. Qiu, Y. Yan, J. Am. Chem. Soc. 2015, 137, 8352.
– reference: J. Lan, D. Cao, W. Wang, B. Smit, ACS Nano 2010, 4, 4225.
– reference: H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, O. M. Yaghi, Nature 2004, 427, 523.
– reference: X. Feng, L. Chen, Y. Honsho, O. Saengsawang, L. Liu, L. Wang, A. Saeki, S. Irle, S. Seki, Y. Dong, D. Jiang, Adv. Mater. 2012, 24, 3026.
– reference: X. H. Liu, C. Z. Guan, D. Wang, L. J. Wan, Adv. Mater. 2014, 26, 6912.
– reference: H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science 2007, 316, 268.
– reference: G. Ferey, C. Serre, T. Devic, G. Maurin, H. Jobic, P. L. Llewellyn, G. De Weireld, A. Vimont, M. Daturi, J.-S. Chang, Chem. Soc. Rev. 2011, 40, 550.
– reference: D. N. Bunck, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 1885.
– reference: C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem. 2010, 2, 235.
– reference: G. T. Rochelle, Science 2009, 325, 1652.
– reference: S. Yang, J. Sun, A. J. Ramirez-Cuesta, S. K. Callear, W. I. David, D. P. Anderson, R. Newby, A. J. Blake, J. E. Parker, C. C. Tang, M. Schroder, Nat. Chem. 2012, 4, 887.
– reference: K. Wang, S. Qiao, X. Hu, Sep. Purif. Technol. 2000, 20, 243.
– reference: S. Kandambeth, V. Venkatesh, D. B. Shinde, S. Kumari, A. Halder, S. Verma, R. Banerjee, Nat. Commun. 2015, 6, 6786.
– reference: M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. Ding, H. M. El-Kaderi, Chem. Eur. J. 2013, 19, 3324.
– reference: S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 2014, 43, 6116.
– reference: J. Yao, H. Wang, Chem. Soc. Rev. 2014, 43, 4470.
– reference: H. Yang, Y. Du, S. Wan, G. D. Trahan, Y. Jin, W. Zhang, Chem. Sci. 2015, 6, 4049.
– reference: A. C. Kizzie, A. G. Wong-Foy, A. J. Matzger, Langmuir 2011, 27, 6368.
– reference: J. R. Hunt, C. J. Doonan, J. D. LeVangie, A. P. Cote, O. M. Yaghi, J. Am. Chem. Soc. 2008, 130, 11872.
– reference: S. Jin, X. Ding, X. Feng, M. Supur, K. Furukawa, S. Takahashi, M. Addicoat, M. E. El-Khouly, T. Nakamura, S. Irle, S. Fukuzumi, A. Nagai, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 2017.
– reference: R. H. Weiland, J. C. Dingman, D. B. Cronin, J. Chem. Eng. Data 1997, 42, 1004.
– reference: D. D. Medina, J. M. Rotter, Y. Hu, M. Dogru, V. Werner, F. Auras, J. T. Markiewicz, P. Knochel, T. Bein, J. Am. Chem. Soc. 2015, 137, 1016.
– reference: A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998.
– reference: Y. Du, D. Calabro, B. Wooler, Q. Li, S. Cundy, P. Kamakoti, D. Colmyer, K. Mao, P. Ravikovitch, J. Phys. Chem. C 2014, 118, 399.
– reference: A. Nagai, X. Chen, X. Feng, X. Ding, Z. Guo, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 3770.
– reference: J. Jiang, J. Yu, A. Corma, Angew. Chem. Int. Ed. 2010, 49, 3120.
– reference: J. M. Simmons, H. Wu, W. Zhou, T. Yildirim, Energy Environ. Sci. 2011, 4, 2177.
– reference: D. Kaleeswaran, P. Vishnoi, R. Murugavel, J. Mater. Chem. C 2015, 3, 7159.
– reference: H. Oh, S. B. Kalidindi, Y. Um, S. Bureekaew, R. Schmid, R. A. Fischer, M. Hirscher, Angew. Chem. Int. Ed. 2013, 52, 13219.
– reference: C. Shen, H. Yu, Z. Wang, Chem. Commun. 2014, 50, 11238.
– reference: S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208.
– reference: R. Banerjee, G. Das, B. Biswal, S. G K, V. Venkatesh, M. Addicoat, T. Heine, G. Kaur, S. Verma, Chem. Sci. 2015, 6, 3931.
– reference: Q. Fang, Z. Zhuang, S. Gu, R. B. Kaspar, J. Zheng, J. Wang, S. Qiu, Y. Yan, Nat. Commun. 2014, 5, 4503.
– reference: B. J. Smith, W. R. Dichtel, J. Am. Chem. Soc. 2014, 136, 8783.
– reference: T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocella, F. Giordanino, S. O. Odoh, W. S. Drisdell, B. Vlaisavljevich, A. L. Dzubak, R. Poloni, S. K. Schnell, N. Planas, K. Lee, T. Pascal, L. F. Wan, D. Prendergast, J. B. Neaton, B. Smit, J. B. Kortright, L. Gagliardi, S. Bordiga, J. A. Reimer, J. R. Long, Nature 2015, 519, 303.
– reference: A. P. Côté, H. M. El-Kaderi, H. Furukawa, J. R. Hunt, O. M. Yaghi, J. Am. Chem. Soc. 2007, 129, 12914.
– reference: F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki, O. M. Yaghi, J. Am. Chem. Soc. 2011, 133, 11478.
– reference: T. He, L. Liu, G. T. Wu, P. Chen, J. Mater. Chem. A 2015, 3, 16235.
– reference: S. J. Datta, C. Khumnoon, Z. H. Lee, W. K. Moon, S. Docao, T. H. Nguyen, I. C. Hwang, D. Moon, P. Oleynikov, O. Terasaki, K. B. Yoon, Science 2015, 350, 302.
– reference: F. Xu, H. Xu, X. Chen, D. Wu, Y. Wu, H. Liu, C. Gu, R. Fu, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 6814.
– reference: S. Cavenati, C. A. Grande, A. E. Rodrigues, Chem. Eng. Sci. 2006, 61, 3893.
– reference: Y. Zhao, K. X. Yao, B. Teng, T. Zhang, Y. Han, Energy Environ. Sci. 2013, 6, 3684.
– reference: C. F. Martin, E. Stockel, R. Clowes, D. J. Adams, A. I. Cooper, J. J. Pis, F. Rubiera, C. Pevida, J. Mater. Chem. 2011, 21, 5475.
– reference: G. Li, P. Xiao, P. A. Webley, J. Zhang, R. Singh, Energy Proc. 2009, 1, 1123.
– reference: G. Barany, R. B. Merrifield, J. Am. Chem. Soc. 1977, 99, 7363.
– reference: S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard, J. Am. Chem. Soc. 2008, 130, 11580.
– reference: S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2012, 134, 19524.
– reference: M. G. Rabbani, H. M. El-Kaderi, Chem. Mater. 2012, 24, 1511.
– reference: Y. J. Choi, J. H. Choi, K. M. Choi, J. K. Kang, J. Mater. Chem. 2011, 21, 1073.
– reference: R. S. Haszeldine, Science 2009, 325, 1644.
– reference: T. Y. Zhou, S. Q. Xu, Q. Wen, Z. F. Pang, X. Zhao, J. Am. Chem. Soc. 2014, 136, 15885.
– reference: Q. Gao, L. Bai, X. Zhang, P. Wang, P. Li, Y. Zeng, R. Zou, Y. Zhao, Chin. J. Chem. 2015, 33, 90.
– volume: 136
  start-page: 6570
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 5531
  year: 2014
  publication-title: Chem. Commun.
– volume: 51
  start-page: 484
  year: 2015
  publication-title: Chem. Commun.
– volume: 54
  start-page: 6814
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 1588
  year: 2011
  publication-title: Chem. Sci.
– volume: 51
  start-page: 12254
  year: 2015
  publication-title: Chem. Commun.
– volume: 53
  start-page: 2878
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  start-page: 19416
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 1630
  year: 2013
  publication-title: Chem. Mater.
– volume: 48
  start-page: 8823
  year: 2012
  publication-title: Chem. Commun.
– volume: 38
  start-page: 1477
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 137
  start-page: 8352
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 325
  start-page: 1644
  year: 2009
  publication-title: Science
– year: 2014
– volume: 427
  start-page: 523
  year: 2004
  publication-title: Nature
– volume: 2
  start-page: 796
  year: 2009
  publication-title: ChemSusChem
– volume: 49
  start-page: 1095
  year: 2004
  publication-title: J. Chem. Eng. Data
– volume: 136
  start-page: 8783
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2789
  year: 2014
  publication-title: Chem. Sci.
– volume: 27
  start-page: 6368
  year: 2011
  publication-title: Langmuir
– volume: 5
  start-page: 453
  year: 2013
  publication-title: Nat. Chem.
– volume: 16
  start-page: 15189
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 332
  start-page: 228
  year: 2011
  publication-title: Science
– volume: 21
  start-page: 10666
  year: 2015
  publication-title: Chem. Eur. J.
– volume: 47
  start-page: 3450
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 41
  start-page: 2308
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 724
  year: 2012
  publication-title: Chem. Rev.
– volume: 42
  start-page: 1004
  year: 1997
  publication-title: J. Chem. Eng. Data
– volume: 43
  start-page: 2334
  year: 2004
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 3178
  year: 2015
  publication-title: ACS Nano
– volume: 135
  start-page: 17853
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 2421
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 37
  start-page: 530
  year: 2012
  publication-title: Prog. Polym. Sci.
– volume: 23
  start-page: 4094
  year: 2011
  publication-title: Chem. Mater.
– volume: 341
  start-page: 974
  year: 2013
  publication-title: Science
– volume: 129
  start-page: 12914
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3684
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 310
  start-page: 1166
  year: 2005
  publication-title: Science
– volume: 110
  start-page: 4923
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 292
  start-page: 74
  year: 2015
  publication-title: Coord. Chem. Rev.
– volume: 4
  start-page: 2177
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 47
  start-page: 8826
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 99
  start-page: 7363
  year: 1977
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 16235
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 13219
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 3137
  year: 2007
  publication-title: AIChE J.
– volume: 4
  start-page: 3030
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 1445
  year: 2015
  publication-title: Chem. Mater.
– volume: 325
  start-page: 1652
  year: 2009
  publication-title: Science
– volume: 48
  start-page: 3053
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 49
  start-page: 2457
  year: 2013
  publication-title: Chem. Commun.
– volume: 26
  start-page: 1385
  year: 2014
  publication-title: Chem. Mater.
– year: 2010
– volume: 135
  start-page: 5328
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 13825
  year: 2014
  publication-title: Chem. Commun.
– volume: 42
  start-page: 9304
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 131
  start-page: 8875
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 887
  year: 2012
  publication-title: Nat. Chem.
– volume: 5
  start-page: 4693
  year: 2014
  publication-title: Chem. Sci.
– volume: 27
  start-page: 2085
  year: 1988
  publication-title: Ind. Eng. Chem. Res.
– volume: 136
  start-page: 9806
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 550
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 341
  year: 2007
  publication-title: Adsorption
– volume: 41
  start-page: 1782
  year: 2008
  publication-title: Acc. Chem. Res.
– volume: 350
  start-page: 302
  year: 2015
  publication-title: Science
– volume: 136
  start-page: 17802
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 453
  start-page: 207
  year: 2008
  publication-title: Nature
– volume: 41
  start-page: 6010
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 127
  start-page: 17998
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 495
  start-page: 80
  year: 2013
  publication-title: Nature
– volume: 24
  start-page: 1511
  year: 2012
  publication-title: Chem. Mater.
– volume: 210
  start-page: 142
  year: 2015
  publication-title: Microporous Mesoporous Mater.
– volume: 2
  start-page: 672
  year: 2010
  publication-title: Nat. Chem.
– volume: 137
  start-page: 7817
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 16336
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 3324
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 349
  start-page: 1208
  year: 2015
  publication-title: Science
– volume: 51
  start-page: 10050
  year: 2015
  publication-title: Chem. Commun.
– volume: 33
  start-page: 90
  year: 2015
  publication-title: Chin. J. Chem.
– volume: 136
  start-page: 4460
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 6786
  year: 2015
  publication-title: Nat. Commun.
– volume: 130
  start-page: 11580
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 4819
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 22
  start-page: 5369
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 137
  start-page: 1016
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1123
  year: 2009
  publication-title: Energy Proc.
– volume: 26
  start-page: 6912
  year: 2014
  publication-title: Adv. Mater.
– volume: 133
  start-page: 11478
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2623
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 1524
  year: 2013
  publication-title: CrystEngComm
– volume: 21
  start-page: 5475
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 4503
  year: 2014
  publication-title: Nat. Commun.
– volume: 25
  start-page: 2302
  year: 2009
  publication-title: Langmuir
– volume: 133
  start-page: 19816
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 11872
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 13052
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 137
  start-page: 324
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 152
  start-page: 246
  year: 2012
  publication-title: Microporous Mesoporous Mater.
– volume: 131
  start-page: 4570
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 12079
  year: 2015
  publication-title: Chem. Eur. J.
– volume: 42
  start-page: 548
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 3931
  year: 2015
  publication-title: Chem. Sci.
– volume: 135
  start-page: 16821
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 905
  year: 2015
  publication-title: Nat. Chem.
– volume: 52
  start-page: 3770
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 346
  start-page: 1356
  year: 2014
  publication-title: Science
– volume: 49
  start-page: 463
  year: 2013
  publication-title: Chem. Commun.
– volume: 50
  start-page: 11238
  year: 2014
  publication-title: Chem. Commun.
– volume: 3
  start-page: 879
  year: 2010
  publication-title: ChemSusChem
– volume: 133
  start-page: 13975
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 14952
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 399
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 134
  start-page: 19524
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 830
  year: 2013
  publication-title: Nat. Chem.
– volume: 135
  start-page: 17310
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 12178
  year: 2015
  publication-title: Chem. Commun.
– volume: 53
  start-page: 9564
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 5349
  year: 2012
  publication-title: Cryst. Growth Des.
– volume: 49
  start-page: 6058
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 134
  start-page: 6084
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 3120
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 315
  start-page: 1828
  year: 2007
  publication-title: Science
– volume: 2
  start-page: 235
  year: 2010
  publication-title: Nat. Chem.
– volume: 137
  start-page: 1020
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 8704
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 135
  start-page: 10470
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 7159
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 14
  start-page: 415
  year: 2008
  publication-title: Adsorption
– volume: 18
  start-page: 5296
  year: 2006
  publication-title: Chem. Mater.
– volume: 43
  start-page: 6116
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 139
  year: 2008
  publication-title: Energy Environ. Sci.
– volume: 61
  start-page: 3893
  year: 2006
  publication-title: Chem. Eng. Sci.
– volume: 104
  start-page: 418
  year: 2013
  publication-title: Appl. Energy
– volume: 52
  start-page: 2017
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 20
  start-page: 243
  year: 2000
  publication-title: Sep. Purif. Technol.
– volume: 21
  start-page: 1073
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 43
  start-page: 4470
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 316
  start-page: 268
  year: 2007
  publication-title: Science
– volume: 136
  start-page: 15885
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 4049
  year: 2015
  publication-title: Chem. Sci.
– volume: 54
  start-page: 2986
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 9773
  year: 2013
  publication-title: Chem. Commun.
– volume: 51
  start-page: 1885
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 55
  start-page: 330
  year: 2014
  publication-title: Polymer
– volume: 48
  start-page: 9457
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 24
  start-page: 3026
  year: 2012
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2868
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 519
  start-page: 303
  year: 2015
  publication-title: Nature
– volume: 329
  start-page: 424
  year: 2010
  publication-title: Science
– volume: 52
  start-page: 2920
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 134
  start-page: 10741
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 7079
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 4042
  year: 2014
  publication-title: ACS Nano
– volume: 4
  start-page: 4225
  year: 2010
  publication-title: ACS Nano
SSID ssj0009606
Score 2.6696239
SecondaryResourceType review_article
Snippet As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 2855
SubjectTerms carbon dioxide capture
covalent organic frameworks
gas adsorption
gas selectivity
porous materials
Title Covalent Organic Frameworks for CO2 Capture
URI https://api.istex.fr/ark:/67375/WNG-NTLTQG45-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201505004
https://www.ncbi.nlm.nih.gov/pubmed/26924720
https://www.proquest.com/docview/1781537487
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbw0kP_v6BvzIT423Aum5djwRFYgSjgcitabvWA8kg_EiMf72vHRtgPOltS9dle23f-761_QyhWwUSARsd-JIqSFCExj4LifSJDRdEaRU6On-3F3cG5GkYDdd28ed8iPKDmx0Zzl_bAS7krL6ChorUcYNA0EQ5ENQu2LKq6G3Fj7Ly3MH2wshnMUkKamMD1zergzS1Vv38TWduylYXd9p7SBRPnC83GdUWc1lTXz9gjv95pX20uxSlXjPvRQdoS2eHaGcNVXiEwHFAn4QI5eW7N5XXLpZ1zTwQvl7rBXstMbETEsdo0H7otzr-8kcL_gehmPiCxg1mFDUaCxMGJjQpUQwHFmxjEmohf7ZMK0tPJAJLyKgZVoqoVLFExuEJqmTjTJ8hL0nBYygtBcQAQiVjUcoCkQbGkCgFNVBFd87QfJLDNLiYjuzaMhrx994j7_Wf-6-PJOJw4U3REhx6vJ3GEJkeL2Y8oAm4aQqZVhWd5k1U3g3HkE9S3Kgi7AxdFuR0ZsytiXlpYt687zbLs_O_VLpA23Ac2wkm3LhElfl0oa9Ap8zlteuL33w33Fw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH4Cdhgcxn7wowO2TBq7BRrHieMDh6pdKaPtxFQEN-M4NodKLaKtNviv-Ff4i3gvacKYdprEYcfEiWX58_P7nv38GeCzQYrAnA38VBgMULRlvgx56nNyF9xYE-bq_L1-3Dnl386j8wW4K8_CFPoQ1YIbWUY-X5OB04L0_qNqqM5y4SBkNBEiPc-rPLY3PzFqmxwctRDiXcbaXwfNjj-_WMC_5IJxX4u4Lp0RzjLtwsCFLuNGsoCEXFwiSNSOyqwhtUCuWYoRpGTGcJMZmaRxiPUuwgu6Rpzk-ls_HhWrKCDI5f3CyJcxT0qdyDrbf9peJMOE46-_MdunRDn3dO1VuC_7qEhwGe7Npumeuf1DPvK_6sTX8GrOu71GYShvYMGO3sLKb2qM7wDnRjQ7dMJecUDVeO0yc23iIbf3mt-Z19RXtOeyBqfP0tp1WBqNR3YTvCTDSdHYVKOb4yKVMspkoLPAOR5lSHhq8CVHVl0VeiFKXw8pfU5E6qx_qPqD7uDkkEcKP_xUQq_QqGmnRo_seDZRgUjQEwkMJmuwUYyJqjYWY8gsWL0GLEe2KigEqJkiSFUFqWq0eo3q6f2__PQRXnYGva7qHvWPt2AZ38e0n8bq27A0vZ7ZHaRl0_RDbggeXDz3oHkA6LM6Cw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtswEB04LlCkh6ZpmtZN0qhA05tiiaJE8dCDYddJ6qULHMQ3hqLIHgzYhhd0-ar8Sv6oQ8mS66KnADnkKFEiCD4O5w05fAR4p5AiEKN9N2EKAxSpicsDmrjUuguqtAoydf5ePzq_pJ-G4bACN8VZmFwfolxws5aRzdfWwKepqa9FQ2Wa6QYhoQkR6FVaZUf_-oFB2_zDRQsRPiGk_XHQPHdX9wq43ykj1JUs8rhRzGgiTeCbwKRUceJbHRcTM6tpZ8u0smKBVJIEA0hOlKIqVTxOogDr3YJHFGuxl0W0vq0Fq2w8kKn7BaHLIxoXMpEeqW-2F7mwhfHn_4jtJk_OHF17B26LLsrzW0any0Vyqn7_ox75kPrwGTxdsW6nkZvJLlT0-Dk8-UuLcQ9wZkSjQxfs5MdTldMu8tbmDjJ7p_mZOE05tTsuL-DyXlq7D9XxZKxfgROnOCUqnUh0cpQlnIcp92XqG0PDFOlODd5nwIpprhYi5Gxkk-dYKK76Z6I_6A6-ntFQ4IdvC-QFmrTdp5FjPVnOhc9i9EMMQ8kavMyHRFkbiTBgZsSrAcmALQty-WkiLKSihFQ0Wr1G-fT6Lj8dw-MvrbboXvQ7B7CNryO7mUa8Q6guZkt9hJxskbzJzMCB6_seM38A00Y4ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Frameworks+for+CO2+Capture&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zeng%2C+Yongfei&rft.au=Zou%2C+Ruqiang&rft.au=Zhao%2C+Yanli&rft.date=2016-04-20&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=28&rft.issue=15&rft.spage=2855&rft.epage=2873&rft_id=info:doi/10.1002%2Fadma.201505004&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NTLTQG45_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon