Covalent Organic Frameworks for CO2 Capture
As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using C...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 28; no. 15; pp. 2855 - 2873 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
20.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low‐ and high‐pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.
Covalent organic frameworks (COFs) are excellent candidates for various important applications. Recent research progress on: i) experimental CO2 capture of different COFs according to the covalent bonds formed during the synthetic procedure, and ii) theoretical calculations of CO2 capture by COFs is highlighted. Analyses and discussions based on experimental and theoretical results are also provided. |
---|---|
AbstractList | As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low‐ and high‐pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.
Covalent organic frameworks (COFs) are excellent candidates for various important applications. Recent research progress on: i) experimental CO2 capture of different COFs according to the covalent bonds formed during the synthetic procedure, and ii) theoretical calculations of CO2 capture by COFs is highlighted. Analyses and discussions based on experimental and theoretical results are also provided. As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed. |
Author | Zeng, Yongfei Zou, Ruqiang Zhao, Yanli |
Author_xml | – sequence: 1 givenname: Yongfei surname: Zeng fullname: Zeng, Yongfei organization: Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore – sequence: 2 givenname: Ruqiang surname: Zou fullname: Zou, Ruqiang email: rzou@pku.edu.cn organization: Singapore Peking University Research Centre for a Sustainable Low-Carbon Future, 1 Create Way, 138602, Singapore – sequence: 3 givenname: Yanli surname: Zhao fullname: Zhao, Yanli email: rzou@pku.edu.cn organization: Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26924720$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kEtLw0AUhQep2IduXUqWgqTeeWUyyxJtFWqLUHE5TCeTEptHnSTW_ntTWrO6HM53DtwzRL2iLCxCtxjGGIA86jjXYwKYAwdgF2iAOcE-A8l7aACScl8GLOyjYVV9AYAMILhCfRJIwgSBAXqIyh-d2aL2lm6ji9R4U6dzuy_dtvKS0nnRkniR3tWNs9foMtFZZW_Od4Q-ps-r6MWfL2ev0WTub9pO5msRgEyMSCzRCcUJTWJmJMEMhzwJBeUyPHrWABeUabKWICQxhpnYyHAd0BG6P_XuXPnd2KpWeVoZm2W6sGVTKSxCzKlgbdcI3Z3RZp3bWO1cmmt3UP8PtoA8Afs0s4fOx6CO86njfKqbT02e3iadarP-KZtWtf3tstptVSCo4OpzMVOL1Xz1PmNcBfQP6M5x4A |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL NPM 7X8 |
DOI | 10.1002/adma.201505004 |
DatabaseName | Istex PubMed MEDLINE - Academic |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 2873 |
ExternalDocumentID | 26924720 ADMA201505004 ark_67375_WNG_NTLTQG45_6 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWM RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ ADMLS AGHNM NPM 7X8 AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY |
ID | FETCH-LOGICAL-g4724-a7609fc7fe2af31f3fd4c9214185f8735987fe2ec05734a2b90792cc4cdc98b63 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Jul 11 07:05:38 EDT 2025 Thu Apr 03 06:57:42 EDT 2025 Wed Jan 22 16:56:49 EST 2025 Wed Oct 30 09:51:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | gas adsorption carbon dioxide capture gas selectivity covalent organic frameworks porous materials |
Language | English |
License | 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g4724-a7609fc7fe2af31f3fd4c9214185f8735987fe2ec05734a2b90792cc4cdc98b63 |
Notes | istex:7057F7E2694FB0D4F0B3D452CC57B969DDA81BD2 ark:/67375/WNG-NTLTQG45-6 ArticleID:ADMA201505004 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26924720 |
PQID | 1781537487 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1781537487 pubmed_primary_26924720 wiley_primary_10_1002_adma_201505004_ADMA201505004 istex_primary_ark_67375_WNG_NTLTQG45_6 |
PublicationCentury | 2000 |
PublicationDate | April 20, 2016 |
PublicationDateYYYYMMDD | 2016-04-20 |
PublicationDate_xml | – month: 04 year: 2016 text: April 20, 2016 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | B. J. Smith, W. R. Dichtel, J. Am. Chem. Soc. 2014, 136, 8783. J. Jiang, J. Yu, A. Corma, Angew. Chem. Int. Ed. 2010, 49, 3120. S. Keskin, T. M. van Heest, D. S. Sholl, ChemSusChem 2010, 3, 879. J. M. Simmons, H. Wu, W. Zhou, T. Yildirim, Energy Environ. Sci. 2011, 4, 2177. A. Nagai, X. Chen, X. Feng, X. Ding, Z. Guo, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 3770. R. S. Haszeldine, Science 2009, 325, 1644. Y. B. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gandara, A. Duong, X. Zou, O. M. Yaghi, J. Am. Chem. Soc. 2013, 135, 16336. H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875. R. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci. 2012, 37, 530. Y. Zeng, R. Zou, Z. Luo, H. Zhang, X. Yao, X. Ma, R. Zou, Y. Zhao, J. Am. Chem. Soc. 2015, 137, 1020. S. Chandra, T. Kundu, S. Kandambeth, R. Babarao, Y. Marathe, S. M. Kunjir, R. Banerjee, J. Am. Chem. Soc. 2014, 136, 6570. L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci. 2014, 5, 2789. G. Barany, R. B. Merrifield, J. Am. Chem. Soc. 1977, 99, 7363. D. N. Bunck, W. R. Dichtel, Chem. Commun. 2013, 49, 2457. B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 5328. S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208. G. H. Bertrand, V. K. Michaelis, T. C. Ong, R. G. Griffin, M. Dinca, Proc. Natl. Acad. Sci. USA 2013, 110, 4923. T. He, L. Liu, G. T. Wu, P. Chen, J. Mater. Chem. A 2015, 3, 16235. P. Chowdhury, S. Mekala, F. Dreisbach, S. Gumma, Microporous Mesoporous Mater. 2012, 152, 246. R. Dawson, L. A. Stevens, T. C. Drage, C. E. Snape, M. W. Smith, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc. 2012, 134, 10741. J.-T. Yu, Z. Chen, J. Sun, Z.-T. Huang, Q.-Y. Zheng, J. Mater. Chem. 2012, 22, 5369. S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094. E. L. Spitler, B. T. Koo, J. L. Novotney, J. W. Colson, F. J. Uribe-Romo, G. D. Gutierrez, P. Clancy, W. R. Dichtel, J. Am. Chem. Soc. 2011, 133, 19416. Z. Zhang, Z.-Z. Yao, S. Xiang, B. Chen, Energy Environ. Sci. 2014, 7, 2868. S. Choi, J. H. Drese, C. W. Jones, ChemSusChem 2009, 2, 796. S. Jin, X. Ding, X. Feng, M. Supur, K. Furukawa, S. Takahashi, M. Addicoat, M. E. El-Khouly, T. Nakamura, S. Irle, S. Fukuzumi, A. Nagai, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 2017. Y. J. Choi, J. H. Choi, K. M. Choi, J. K. Kang, J. Mater. Chem. 2011, 21, 1073. S. B. Kalidindi, C. Wiktor, A. Ramakrishnan, J. Wessing, A. Schneemann, G. Van Tendeloo, R. A. Fischer, Chem. Commun. 2013, 49, 463. S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard, J. Am. Chem. Soc. 2008, 130, 11580. R. Banerjee, G. Das, B. Biswal, S. G K, V. Venkatesh, M. Addicoat, T. Heine, G. Kaur, S. Verma, Chem. Sci. 2015, 6, 3931. Y. Du, D. Calabro, B. Wooler, Q. Li, S. Cundy, P. Kamakoti, D. Colmyer, K. Mao, P. Ravikovitch, J. Phys. Chem. C 2014, 118, 399. D. Kaleeswaran, P. Vishnoi, R. Murugavel, J. Mater. Chem. C 2015, 3, 7159. A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998. G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh, M. Marshall, Adsorption 2008, 14, 415. C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem. 2010, 2, 235. Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu, Y. Mu, Chem. Commun. 2014, 50, 13825. C. R. DeBlase, K. E. Silberstein, T. T. Truong, H. D. Abruna, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 16821. Z. Kahveci, T. Islamoglu, G. A. Shar, R. Ding, H. M. El-Kaderi, CrystEngComm 2013, 15, 1524. J. A. O'Brien, A. L. Myers, Ind. Eng. Chem. Res. 1988, 27, 2085. Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W. Laursen, C.-G. Yan, B.-H. Han, J. Am. Chem. Soc. 2012, 134, 6084. P. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053. Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H. Guo, S. Qiu, Y. Yan, J. Am. Chem. Soc. 2015, 137, 8352. E. L. Spitler, M. R. Giovino, S. L. White, W. R. Dichtel, Chem. Sci. 2011, 2, 1588. Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu, Y. Yan, Angew. Chem. Int. Ed. 2014, 53, 2878. F. Xu, H. Xu, X. Chen, D. Wu, Y. Wu, H. Liu, C. Gu, R. Fu, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 6814. R. H. Weiland, J. C. Dingman, D. B. Cronin, J. Chem. Eng. Data 1997, 42, 1004. Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science 2014, 346, 1356. E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 2623. H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science 2007, 316, 268. X. H. Liu, C. Z. Guan, D. Wang, L. J. Wan, Adv. Mater. 2014, 26, 6912. Y. Du, D. Calabro, B. Wooler, P. Kortunov, Q. C. Li, S. Cundy, K. M. Mao, Chem. Mater. 2015, 27, 1445. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724. D. Beaudoin, T. Maris, J. D. Wuest, Nat. Chem. 2013, 5, 830. H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, O. M. Yaghi, Nature 2004, 427, 523. S. Yang, J. Sun, A. J. Ramirez-Cuesta, S. K. Callear, W. I. David, D. P. Anderson, R. Newby, A. J. Blake, J. E. Parker, C. C. Tang, M. Schroder, Nat. Chem. 2012, 4, 887. M. Dogru, T. Bein, Chem. Commun. 2014, 50, 5531. M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel, T. Bein, Angew. Chem. Int. Ed. 2013, 52, 2920. S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai, D. Jiang, J. Am. Chem. Soc. 2013, 135, 17310. R. K. Pachauri, A. Reisinger, IPCC Fifth Assessment Report, Intergovernmental Panel on Climate Change, 2014. J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228. M. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Löbermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc. 2014, 136, 17802. J. Lan, D. Cao, W. Wang, B. Smit, ACS Nano 2010, 4, 4225. J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, J. R. Long, Energy Environ. Sci. 2011, 4, 3030. S. D. Brucks, D. N. Bunck, W. R. Dichtel, Polymer 2014, 55, 330. S. Kandambeth, V. Venkatesh, D. B. Shinde, S. Kumari, A. Halder, S. Verma, R. Banerjee, Nat. Commun. 2015, 6, 6786. S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 2014, 43, 6116. M. Tong, Q. Yang, Y. Xiao, C. Zhong, Phys. Chem. Chem. Phys. 2014, 16, 15189. N. Konduru, P. Lindner, N. M. Assaf-Anid, AIChE J. 2007, 53, 3137. Z. Li, Y. Zhi, X. Feng, X. Ding, Y. Zou, X. Liu, Y. Mu, Chem. Eur. J. 2015, 21, 12079. E. L. Spitler, W. R. Dichtel, Nat. Chem. 2010, 2, 672. H. Xu, J. Gao, D. L. Jiang, Nat. Chem. 2015, 7, 905. S. Chandra, S. Kandambeth, B. P. Biswal, B. Lukose, S. M. Kunjir, M. Chaudhary, R. Babarao, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 17853. H. Wei, S. Chai, N. Hu, Z. Yang, L. Wei, L. Wang, Chem. Commun. 2015, 51, 12178. D. D. Medina, J. M. Rotter, Y. Hu, M. Dogru, V. Werner, F. Auras, J. T. Markiewicz, P. Knochel, T. Bein, J. Am. Chem. Soc. 2015, 137, 1016. C. R. DeBlase, K. Hernández-Burgos, K. E. Silberstein, G. G. Rodríguez-Calero, R. P. Bisbey, H. D. Abruña, W. R. Dichtel, ACS Nano 2015, 9, 3178. R. Babarao, J. Jiang, Energy Environ. Sci. 2008, 1, 139. X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010. G. T. Rochelle, Science 2009, 325, 1652. S. Cavenati, C. A. Grande, A. E. Rodrigues, Chem. Eng. Sci. 2006, 61, 3893. M. Tong, Q. Yang, C. Zhong, Microporous Mesoporous Mater. 2015, 210, 142. X. Chen, M. Addicoat, E. Jin, L. Zhai, H. Xu, N. Huang, Z. Guo, L. Liu, S. Irle, D. Jiang, J. Am. Chem. Soc. 2015, 137, 324. S. Kandambeth, D. B. Shinde, M. K. Panda, B. Lukose, T. Heine, R. Banerjee, Angew. Chem. Int. Ed. 2013, 52, 13052. S. J. Datta, C. Khumnoon, Z. H. Lee, W. K. Moon, S. Docao, T. H. Nguyen, I. C. Hwang, D. Moon, P. Oleynikov, O. Terasaki, K. B. Yoon, Science 2015, 350, 302. K. Wang, S. Qiao, X. Hu, Sep. Purif. Technol. 2000, 20, 243. A. de la Pena Ruigomez, D. Rodriguez-San-Miguel, K. C. Stylianou, M. Cavallini, D. Gentili, F. Liscio, S. Milita, O. M. Roscioni, M. L. Ruiz-Gonzalez, C. Carbonell, D. Maspoch, R. Mas-Balleste, J. L. Segura, F. Zamora, Chem. Eur. J. 2015, 21, 10666. C. Shen, H. Yu, Z. Wang, Chem. Commun. 2014, 50, 11238. B. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Chem. Soc. Rev. 2015, 44, 2421. G. Li, P. Xiao, P. A. Webley, J. Zhang, R. Singh, Energy Proc. 2009, 1, 1123. S. Chaemchuen, N. A. Kabir, K. Zhou, F. Verpoort, Chem. Soc. Rev. 2013, 42, 9304. Y. Belmabkhout, G. Pirngruber, E. Jolimaitre, A. Methivier, Adsorption 2007, 13, 341. B. Wang, A. P. Cote, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Nature 2008, 453, 207. N. Huang, R. Krishna, D. Jiang, J. Am. Chem. Soc. 2015, 137, 7079. C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk, G. Férey, Science 2007, 315, 1828. D. M. D'Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058 T. Faury, S. Clair, M. Abel, F. Dumur, D. Gigmes, L. Porte, J. Phys. Chem. C 2012, 116, 4819. M. G. Rabbani, H. M. El-Kaderi, Chem. Mater. 2012, 24, 1511. D. D. Medina, V. Werner, F. Auras, R. Tautz, M. Dogru, J. Schuster, S. Linke, M. Döblinger, J. Feldmann, P. Knochel, T. Bein, ACS Nano 2014, 8, 4042. J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477. P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature 2013, 495, 80. X. H. Liu, C. Z. Guan, S. Y. Ding, W. Wang, H. J. Yan, D. Wang, L. J. Wan, J. Am. Chem. Soc. 2013, 135, 10470. H. Ma, H. Ren, S. Meng, Z. Yan, H. Zhao, F. Sun, G. Zhu, Chem. Commun. 2013, 49, 9773. Q. Yang, C. Zhong, Langmuir 2009, 25, 2302. L. Xu, X. Zhou, W. Q. Tian, T. Gao, Y. F. Zhang, S. Lei, Z. F. Liu, Angew. Chem. Int. Ed. 2014, 53, 9564. J. Yao, H. Wang, Chem. Soc. Rev. 2014, 43, 4470. M. G. Rabbani, A. K. Sekizk 1997; 42 2014; 26 2013; 5 2012; 12 2013; 6 2014; 136 2012; 134 2015; 137 2013; 52 2014; 16 2013; 110 2010; 3 2012; 24 2010; 2 2012; 22 2010; 4 2004; 43 2011; 2 2010; 329 2015; 51 2004; 49 2013; 104 2015; 54 2013; 341 2012; 37 2011; 4 2004; 427 2007; 13 2011; 133 2014; 43 2015; 350 2010; 49 2007; 316 2012; 112 2007; 315 2005; 127 1988; 27 2008; 47 2015; 519 1977; 99 2008; 41 2012; 48 2012; 116 2008; 130 2012; 41 2013; 25 2015; 33 2015; 349 2008; 1 2009; 48 2012; 51 2013; 19 2015; 48 2015; 292 2014; 5 2013; 15 2006; 61 2015; 210 2015; 44 2011; 21 2011; 23 2014; 8 2011; 27 2014; 7 2014; 50 2014; 55 2009; 325 2014; 53 2014; 118 2009; 25 2007; 129 2015; 6 2015; 3 2013; 49 2010 2005; 310 2013; 42 2011; 40 2000; 20 2008; 14 2006; 18 2009; 131 2007; 53 2015; 9 2015; 7 2011; 332 2012; 152 2015; 27 2015; 21 2013; 135 2014 2013; 495 2008; 453 2009; 2 2009; 1 2012; 4 2009; 38 2014; 346 |
References_xml | – reference: S. Jin, M. Supur, M. Addicoat, K. Furukawa, L. Chen, T. Nakamura, S. Fukuzumi, S. Irle, D. Jiang, J. Am. Chem. Soc. 2015, 137, 7817. – reference: P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature 2013, 495, 80. – reference: N. Huang, R. Krishna, D. Jiang, J. Am. Chem. Soc. 2015, 137, 7079. – reference: J. A. O'Brien, A. L. Myers, Ind. Eng. Chem. Res. 1988, 27, 2085. – reference: P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 2008, 47, 3450. – reference: B. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Chem. Soc. Rev. 2015, 44, 2421. – reference: Z. Kahveci, T. Islamoglu, G. A. Shar, R. Ding, H. M. El-Kaderi, CrystEngComm 2013, 15, 1524. – reference: M. Tong, Q. Yang, Y. Xiao, C. Zhong, Phys. Chem. Chem. Phys. 2014, 16, 15189. – reference: P. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053. – reference: M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel, T. Bein, Angew. Chem. Int. Ed. 2013, 52, 2920. – reference: L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci. 2014, 5, 2789. – reference: S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816. – reference: H. Wei, S. Chai, N. Hu, Z. Yang, L. Wei, L. Wang, Chem. Commun. 2015, 51, 12178. – reference: A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166. – reference: R. Dawson, L. A. Stevens, T. C. Drage, C. E. Snape, M. W. Smith, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc. 2012, 134, 10741. – reference: H. Xu, J. Gao, D. L. Jiang, Nat. Chem. 2015, 7, 905. – reference: R. Babarao, R. Custelcean, B. P. Hay, D.-E. Jiang, Cryst. Growth Des. 2012, 12, 5349. – reference: S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548. – reference: E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 2623. – reference: X. Chen, M. Addicoat, E. Jin, L. Zhai, H. Xu, N. Huang, Z. Guo, L. Liu, S. Irle, D. Jiang, J. Am. Chem. Soc. 2015, 137, 324. – reference: S. Chandra, S. Kandambeth, B. P. Biswal, B. Lukose, S. M. Kunjir, M. Chaudhary, R. Babarao, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 17853. – reference: R. Gomes, P. Bhanja, A. Bhaumik, Chem. Commun. 2015, 51, 10050. – reference: A. Bhunia, S. Dey, M. Bous, C. Zhang, W. von Rybinski, C. Janiak, Chem. Commun. 2015, 51, 484. – reference: J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, J. R. Long, Energy Environ. Sci. 2011, 4, 3030. – reference: R. Babarao, J. Jiang, Energy Environ. Sci. 2008, 1, 139. – reference: L. Xu, X. Zhou, W. Q. Tian, T. Gao, Y. F. Zhang, S. Lei, Z. F. Liu, Angew. Chem. Int. Ed. 2014, 53, 9564. – reference: S. Choi, J. H. Drese, C. W. Jones, ChemSusChem 2009, 2, 796. – reference: J.-T. Yu, Z. Chen, J. Sun, Z.-T. Huang, Q.-Y. Zheng, J. Mater. Chem. 2012, 22, 5369. – reference: N. Konduru, P. Lindner, N. M. Assaf-Anid, AIChE J. 2007, 53, 3137. – reference: Z. Li, X. Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu, Y. Mu, Chem. Commun. 2014, 50, 13825. – reference: S. Cavenati, C. A. Grande, A. E. Rodrigues, J. Chem. Eng. Data 2004, 49, 1095. – reference: H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424. – reference: K. T. Jackson, T. E. Reich, H. M. El-Kaderi, Chem. Commun. 2012, 48, 8823. – reference: J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, J. Liu, Chem. Soc. Rev. 2012, 41, 2308. – reference: Y. B. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gandara, A. Duong, X. Zou, O. M. Yaghi, J. Am. Chem. Soc. 2013, 135, 16336. – reference: E. L. Spitler, M. R. Giovino, S. L. White, W. R. Dichtel, Chem. Sci. 2011, 2, 1588. – reference: B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 5328. – reference: N. Hedin, L. Andersson, L. Bergström, J. Yan, Appl. Energy 2013, 104, 418. – reference: Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu, Y. Yan, Angew. Chem. Int. Ed. 2014, 53, 2878. – reference: J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228. – reference: D. M. D'Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058 – reference: H. Zhang, R. Zou, Y. Zhao, Coord. Chem. Rev. 2015, 292, 74. – reference: Y. Du, D. Calabro, B. Wooler, P. Kortunov, Q. C. Li, S. Cundy, K. M. Mao, Chem. Mater. 2015, 27, 1445. – reference: Z. Zhang, Z.-Z. Yao, S. Xiang, B. Chen, Energy Environ. Sci. 2014, 7, 2868. – reference: P. Chowdhury, S. Mekala, F. Dreisbach, S. Gumma, Microporous Mesoporous Mater. 2012, 152, 246. – reference: J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477. – reference: S. Wan, J. Guo, J. Kim, H. Ihee, D. Jiang, Angew. Chem. Int. Ed. 2008, 47, 8826. – reference: T. Faury, S. Clair, M. Abel, F. Dumur, D. Gigmes, L. Porte, J. Phys. Chem. C 2012, 116, 4819. – reference: Q. Yang, C. Zhong, Langmuir 2009, 25, 2302. – reference: S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094. – reference: T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu, G. Zhu, Angew. Chem. Int. Ed. 2009, 48, 9457. – reference: N. Huang, X. Ding, J. Kim, H. Ihee, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 8704. – reference: C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk, G. Férey, Science 2007, 315, 1828. – reference: M. Tong, Q. Yang, C. Zhong, Microporous Mesoporous Mater. 2015, 210, 142. – reference: Y. Belmabkhout, G. Pirngruber, E. Jolimaitre, A. Methivier, Adsorption 2007, 13, 341. – reference: E. L. Spitler, B. T. Koo, J. L. Novotney, J. W. Colson, F. J. Uribe-Romo, G. D. Gutierrez, P. Clancy, W. R. Dichtel, J. Am. Chem. Soc. 2011, 133, 19416. – reference: X. H. Liu, C. Z. Guan, S. Y. Ding, W. Wang, H. J. Yan, D. Wang, L. J. Wan, J. Am. Chem. Soc. 2013, 135, 10470. – reference: D. D. Medina, V. Werner, F. Auras, R. Tautz, M. Dogru, J. Schuster, S. Linke, M. Döblinger, J. Feldmann, P. Knochel, T. Bein, ACS Nano 2014, 8, 4042. – reference: B. Wang, A. P. Cote, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Nature 2008, 453, 207. – reference: R. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci. 2012, 37, 530. – reference: X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 2012, 41, 6010. – reference: D. N. Bunck, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 14952. – reference: S. Kitagawa, R. Kitaura, S.-i. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334. – reference: S. B. Kalidindi, C. Wiktor, A. Ramakrishnan, J. Wessing, A. Schneemann, G. Van Tendeloo, R. A. Fischer, Chem. Commun. 2013, 49, 463. – reference: C. R. DeBlase, K. E. Silberstein, T. T. Truong, H. D. Abruna, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 16821. – reference: L. Chen, K. Furukawa, J. Gao, A. Nagai, T. Nakamura, Y. Dong, D. Jiang, J. Am. Chem. Soc. 2014, 136, 9806. – reference: S. Dalapati, S. Jin, J. Gao, Y. Xu, A. Nagai, D. Jiang, J. Am. Chem. Soc. 2013, 135, 17310. – reference: S. D. Brucks, D. N. Bunck, W. R. Dichtel, Polymer 2014, 55, 330. – reference: P. Arab, M. G. Rabbani, A. K. Sekizkardes, T. Íslamoˇglu, H. M. El-Kaderi, Chem. Mater. 2014, 26, 1385. – reference: Y. Zhu, H. Long, W. Zhang, Chem. Mater. 2013, 25, 1630. – reference: R. W. Tilford, W. R. Gemmill, H.-C. zur Loye, J. J. Lavigne, Chem. Mater. 2006, 18, 5296. – reference: Z. Li, Y. Zhi, X. Feng, X. Ding, Y. Zou, X. Liu, Y. Mu, Chem. Eur. J. 2015, 21, 12079. – reference: G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh, M. Marshall, Adsorption 2008, 14, 415. – reference: C. R. DeBlase, K. Hernández-Burgos, K. E. Silberstein, G. G. Rodríguez-Calero, R. P. Bisbey, H. D. Abruña, W. R. Dichtel, ACS Nano 2015, 9, 3178. – reference: M. Dogru, T. Bein, Chem. Commun. 2014, 50, 5531. – reference: G. H. Bertrand, V. K. Michaelis, T. C. Ong, R. G. Griffin, M. Dinca, Proc. Natl. Acad. Sci. USA 2013, 110, 4923. – reference: Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science 2014, 346, 1356. – reference: H. Ma, H. Ren, S. Meng, Z. Yan, H. Zhao, F. Sun, G. Zhu, Chem. Commun. 2013, 49, 9773. – reference: D. N. Bunck, W. R. Dichtel, Chem. Commun. 2013, 49, 2457. – reference: E. L. Spitler, W. R. Dichtel, Nat. Chem. 2010, 2, 672. – reference: S. Keskin, T. M. van Heest, D. S. Sholl, ChemSusChem 2010, 3, 879. – reference: J. W. Colson, W. R. Dichtel, Nat. Chem. 2013, 5, 453. – reference: M. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Löbermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc. 2014, 136, 17802. – reference: Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W. Laursen, C.-G. Yan, B.-H. Han, J. Am. Chem. Soc. 2012, 134, 6084. – reference: S. Chaemchuen, N. A. Kabir, K. Zhou, F. Verpoort, Chem. Soc. Rev. 2013, 42, 9304. – reference: C. X. Yang, C. Liu, Y. M. Cao, X. P. Yan, Chem. Commun. 2015, 51, 12254. – reference: K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724. – reference: J. Cejka, A. Corma, S. Zones, Zeolites and Catalysis: Synthesis, Reactions and Applications, Wiley-VCH, Weinheim, Germany, 2010. – reference: M. O'Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, Acc. Chem. Res. 2008, 41, 1782. – reference: L. M. Lanni, R. W. Tilford, M. Bharathy, J. J. Lavigne, J. Am. Chem. Soc. 2011, 133, 13975. – reference: F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klock, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 4570. – reference: N. Huang, X. Chen, R. Krishna, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 2986. – reference: Y. Zeng, R. Zou, Z. Luo, H. Zhang, X. Yao, X. Ma, R. Zou, Y. Zhao, J. Am. Chem. Soc. 2015, 137, 1020. – reference: S.-L. Cai, Y.-B. Zhang, A. B. Pun, B. He, J. Yang, F. M. Toma, I. D. Sharp, O. M. Yaghi, J. Fan, S.-R. Zheng, W.-G. Zhang, Y. Liu, Chem. Sci. 2014, 5, 4693. – reference: H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875. – reference: D. Beaudoin, T. Maris, J. D. Wuest, Nat. Chem. 2013, 5, 830. – reference: S. Chandra, T. Kundu, S. Kandambeth, R. Babarao, Y. Marathe, S. M. Kunjir, R. Banerjee, J. Am. Chem. Soc. 2014, 136, 6570. – reference: X. Yan, T. R. Cook, J. B. Pollock, P. Wei, Y. Zhang, Y. Yu, F. Huang, P. J. Stang, J. Am. Chem. Soc. 2014, 136, 4460. – reference: S. Kandambeth, D. B. Shinde, M. K. Panda, B. Lukose, T. Heine, R. Banerjee, Angew. Chem. Int. Ed. 2013, 52, 13052. – reference: R. K. Pachauri, A. Reisinger, IPCC Fifth Assessment Report, Intergovernmental Panel on Climate Change, 2014. – reference: H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 974. – reference: A. de la Pena Ruigomez, D. Rodriguez-San-Miguel, K. C. Stylianou, M. Cavallini, D. Gentili, F. Liscio, S. Milita, O. M. Roscioni, M. L. Ruiz-Gonzalez, C. Carbonell, D. Maspoch, R. Mas-Balleste, J. L. Segura, F. Zamora, Chem. Eur. J. 2015, 21, 10666. – reference: Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H. Guo, S. Qiu, Y. Yan, J. Am. Chem. Soc. 2015, 137, 8352. – reference: J. Lan, D. Cao, W. Wang, B. Smit, ACS Nano 2010, 4, 4225. – reference: H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, O. M. Yaghi, Nature 2004, 427, 523. – reference: X. Feng, L. Chen, Y. Honsho, O. Saengsawang, L. Liu, L. Wang, A. Saeki, S. Irle, S. Seki, Y. Dong, D. Jiang, Adv. Mater. 2012, 24, 3026. – reference: X. H. Liu, C. Z. Guan, D. Wang, L. J. Wan, Adv. Mater. 2014, 26, 6912. – reference: H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science 2007, 316, 268. – reference: G. Ferey, C. Serre, T. Devic, G. Maurin, H. Jobic, P. L. Llewellyn, G. De Weireld, A. Vimont, M. Daturi, J.-S. Chang, Chem. Soc. Rev. 2011, 40, 550. – reference: D. N. Bunck, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 1885. – reference: C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem. 2010, 2, 235. – reference: G. T. Rochelle, Science 2009, 325, 1652. – reference: S. Yang, J. Sun, A. J. Ramirez-Cuesta, S. K. Callear, W. I. David, D. P. Anderson, R. Newby, A. J. Blake, J. E. Parker, C. C. Tang, M. Schroder, Nat. Chem. 2012, 4, 887. – reference: K. Wang, S. Qiao, X. Hu, Sep. Purif. Technol. 2000, 20, 243. – reference: S. Kandambeth, V. Venkatesh, D. B. Shinde, S. Kumari, A. Halder, S. Verma, R. Banerjee, Nat. Commun. 2015, 6, 6786. – reference: M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. Ding, H. M. El-Kaderi, Chem. Eur. J. 2013, 19, 3324. – reference: S. Qiu, M. Xue, G. Zhu, Chem. Soc. Rev. 2014, 43, 6116. – reference: J. Yao, H. Wang, Chem. Soc. Rev. 2014, 43, 4470. – reference: H. Yang, Y. Du, S. Wan, G. D. Trahan, Y. Jin, W. Zhang, Chem. Sci. 2015, 6, 4049. – reference: A. C. Kizzie, A. G. Wong-Foy, A. J. Matzger, Langmuir 2011, 27, 6368. – reference: J. R. Hunt, C. J. Doonan, J. D. LeVangie, A. P. Cote, O. M. Yaghi, J. Am. Chem. Soc. 2008, 130, 11872. – reference: S. Jin, X. Ding, X. Feng, M. Supur, K. Furukawa, S. Takahashi, M. Addicoat, M. E. El-Khouly, T. Nakamura, S. Irle, S. Fukuzumi, A. Nagai, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 2017. – reference: R. H. Weiland, J. C. Dingman, D. B. Cronin, J. Chem. Eng. Data 1997, 42, 1004. – reference: D. D. Medina, J. M. Rotter, Y. Hu, M. Dogru, V. Werner, F. Auras, J. T. Markiewicz, P. Knochel, T. Bein, J. Am. Chem. Soc. 2015, 137, 1016. – reference: A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998. – reference: Y. Du, D. Calabro, B. Wooler, Q. Li, S. Cundy, P. Kamakoti, D. Colmyer, K. Mao, P. Ravikovitch, J. Phys. Chem. C 2014, 118, 399. – reference: A. Nagai, X. Chen, X. Feng, X. Ding, Z. Guo, D. Jiang, Angew. Chem. Int. Ed. 2013, 52, 3770. – reference: J. Jiang, J. Yu, A. Corma, Angew. Chem. Int. Ed. 2010, 49, 3120. – reference: J. M. Simmons, H. Wu, W. Zhou, T. Yildirim, Energy Environ. Sci. 2011, 4, 2177. – reference: D. Kaleeswaran, P. Vishnoi, R. Murugavel, J. Mater. Chem. C 2015, 3, 7159. – reference: H. Oh, S. B. Kalidindi, Y. Um, S. Bureekaew, R. Schmid, R. A. Fischer, M. Hirscher, Angew. Chem. Int. Ed. 2013, 52, 13219. – reference: C. Shen, H. Yu, Z. Wang, Chem. Commun. 2014, 50, 11238. – reference: S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208. – reference: R. Banerjee, G. Das, B. Biswal, S. G K, V. Venkatesh, M. Addicoat, T. Heine, G. Kaur, S. Verma, Chem. Sci. 2015, 6, 3931. – reference: Q. Fang, Z. Zhuang, S. Gu, R. B. Kaspar, J. Zheng, J. Wang, S. Qiu, Y. Yan, Nat. Commun. 2014, 5, 4503. – reference: B. J. Smith, W. R. Dichtel, J. Am. Chem. Soc. 2014, 136, 8783. – reference: T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocella, F. Giordanino, S. O. Odoh, W. S. Drisdell, B. Vlaisavljevich, A. L. Dzubak, R. Poloni, S. K. Schnell, N. Planas, K. Lee, T. Pascal, L. F. Wan, D. Prendergast, J. B. Neaton, B. Smit, J. B. Kortright, L. Gagliardi, S. Bordiga, J. A. Reimer, J. R. Long, Nature 2015, 519, 303. – reference: A. P. Côté, H. M. El-Kaderi, H. Furukawa, J. R. Hunt, O. M. Yaghi, J. Am. Chem. Soc. 2007, 129, 12914. – reference: F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki, O. M. Yaghi, J. Am. Chem. Soc. 2011, 133, 11478. – reference: T. He, L. Liu, G. T. Wu, P. Chen, J. Mater. Chem. A 2015, 3, 16235. – reference: S. J. Datta, C. Khumnoon, Z. H. Lee, W. K. Moon, S. Docao, T. H. Nguyen, I. C. Hwang, D. Moon, P. Oleynikov, O. Terasaki, K. B. Yoon, Science 2015, 350, 302. – reference: F. Xu, H. Xu, X. Chen, D. Wu, Y. Wu, H. Liu, C. Gu, R. Fu, D. Jiang, Angew. Chem. Int. Ed. 2015, 54, 6814. – reference: S. Cavenati, C. A. Grande, A. E. Rodrigues, Chem. Eng. Sci. 2006, 61, 3893. – reference: Y. Zhao, K. X. Yao, B. Teng, T. Zhang, Y. Han, Energy Environ. Sci. 2013, 6, 3684. – reference: C. F. Martin, E. Stockel, R. Clowes, D. J. Adams, A. I. Cooper, J. J. Pis, F. Rubiera, C. Pevida, J. Mater. Chem. 2011, 21, 5475. – reference: G. Li, P. Xiao, P. A. Webley, J. Zhang, R. Singh, Energy Proc. 2009, 1, 1123. – reference: G. Barany, R. B. Merrifield, J. Am. Chem. Soc. 1977, 99, 7363. – reference: S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard, J. Am. Chem. Soc. 2008, 130, 11580. – reference: S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2012, 134, 19524. – reference: M. G. Rabbani, H. M. El-Kaderi, Chem. Mater. 2012, 24, 1511. – reference: Y. J. Choi, J. H. Choi, K. M. Choi, J. K. Kang, J. Mater. Chem. 2011, 21, 1073. – reference: R. S. Haszeldine, Science 2009, 325, 1644. – reference: T. Y. Zhou, S. Q. Xu, Q. Wen, Z. F. Pang, X. Zhao, J. Am. Chem. Soc. 2014, 136, 15885. – reference: Q. Gao, L. Bai, X. Zhang, P. Wang, P. Li, Y. Zeng, R. Zou, Y. Zhao, Chin. J. Chem. 2015, 33, 90. – volume: 136 start-page: 6570 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 5531 year: 2014 publication-title: Chem. Commun. – volume: 51 start-page: 484 year: 2015 publication-title: Chem. Commun. – volume: 54 start-page: 6814 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 1588 year: 2011 publication-title: Chem. Sci. – volume: 51 start-page: 12254 year: 2015 publication-title: Chem. Commun. – volume: 53 start-page: 2878 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 19416 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 1630 year: 2013 publication-title: Chem. Mater. – volume: 48 start-page: 8823 year: 2012 publication-title: Chem. Commun. – volume: 38 start-page: 1477 year: 2009 publication-title: Chem. Soc. Rev. – volume: 137 start-page: 8352 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 325 start-page: 1644 year: 2009 publication-title: Science – year: 2014 – volume: 427 start-page: 523 year: 2004 publication-title: Nature – volume: 2 start-page: 796 year: 2009 publication-title: ChemSusChem – volume: 49 start-page: 1095 year: 2004 publication-title: J. Chem. Eng. Data – volume: 136 start-page: 8783 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2789 year: 2014 publication-title: Chem. Sci. – volume: 27 start-page: 6368 year: 2011 publication-title: Langmuir – volume: 5 start-page: 453 year: 2013 publication-title: Nat. Chem. – volume: 16 start-page: 15189 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 332 start-page: 228 year: 2011 publication-title: Science – volume: 21 start-page: 10666 year: 2015 publication-title: Chem. Eur. J. – volume: 47 start-page: 3450 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 41 start-page: 2308 year: 2012 publication-title: Chem. Soc. Rev. – volume: 112 start-page: 724 year: 2012 publication-title: Chem. Rev. – volume: 42 start-page: 1004 year: 1997 publication-title: J. Chem. Eng. Data – volume: 43 start-page: 2334 year: 2004 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 3178 year: 2015 publication-title: ACS Nano – volume: 135 start-page: 17853 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 2421 year: 2015 publication-title: Chem. Soc. Rev. – volume: 37 start-page: 530 year: 2012 publication-title: Prog. Polym. Sci. – volume: 23 start-page: 4094 year: 2011 publication-title: Chem. Mater. – volume: 341 start-page: 974 year: 2013 publication-title: Science – volume: 129 start-page: 12914 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3684 year: 2013 publication-title: Energy Environ. Sci. – volume: 310 start-page: 1166 year: 2005 publication-title: Science – volume: 110 start-page: 4923 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 292 start-page: 74 year: 2015 publication-title: Coord. Chem. Rev. – volume: 4 start-page: 2177 year: 2011 publication-title: Energy Environ. Sci. – volume: 47 start-page: 8826 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 99 start-page: 7363 year: 1977 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 16235 year: 2015 publication-title: J. Mater. Chem. A – volume: 52 start-page: 13219 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 3137 year: 2007 publication-title: AIChE J. – volume: 4 start-page: 3030 year: 2011 publication-title: Energy Environ. Sci. – volume: 27 start-page: 1445 year: 2015 publication-title: Chem. Mater. – volume: 325 start-page: 1652 year: 2009 publication-title: Science – volume: 48 start-page: 3053 year: 2015 publication-title: Acc. Chem. Res. – volume: 49 start-page: 2457 year: 2013 publication-title: Chem. Commun. – volume: 26 start-page: 1385 year: 2014 publication-title: Chem. Mater. – year: 2010 – volume: 135 start-page: 5328 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 13825 year: 2014 publication-title: Chem. Commun. – volume: 42 start-page: 9304 year: 2013 publication-title: Chem. Soc. Rev. – volume: 131 start-page: 8875 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 887 year: 2012 publication-title: Nat. Chem. – volume: 5 start-page: 4693 year: 2014 publication-title: Chem. Sci. – volume: 27 start-page: 2085 year: 1988 publication-title: Ind. Eng. Chem. Res. – volume: 136 start-page: 9806 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 550 year: 2011 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 341 year: 2007 publication-title: Adsorption – volume: 41 start-page: 1782 year: 2008 publication-title: Acc. Chem. Res. – volume: 350 start-page: 302 year: 2015 publication-title: Science – volume: 136 start-page: 17802 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 453 start-page: 207 year: 2008 publication-title: Nature – volume: 41 start-page: 6010 year: 2012 publication-title: Chem. Soc. Rev. – volume: 127 start-page: 17998 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 495 start-page: 80 year: 2013 publication-title: Nature – volume: 24 start-page: 1511 year: 2012 publication-title: Chem. Mater. – volume: 210 start-page: 142 year: 2015 publication-title: Microporous Mesoporous Mater. – volume: 2 start-page: 672 year: 2010 publication-title: Nat. Chem. – volume: 137 start-page: 7817 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 16336 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 3324 year: 2013 publication-title: Chem. Eur. J. – volume: 349 start-page: 1208 year: 2015 publication-title: Science – volume: 51 start-page: 10050 year: 2015 publication-title: Chem. Commun. – volume: 33 start-page: 90 year: 2015 publication-title: Chin. J. Chem. – volume: 136 start-page: 4460 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 6786 year: 2015 publication-title: Nat. Commun. – volume: 130 start-page: 11580 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 4819 year: 2012 publication-title: J. Phys. Chem. C – volume: 22 start-page: 5369 year: 2012 publication-title: J. Mater. Chem. – volume: 137 start-page: 1016 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1123 year: 2009 publication-title: Energy Proc. – volume: 26 start-page: 6912 year: 2014 publication-title: Adv. Mater. – volume: 133 start-page: 11478 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2623 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 1524 year: 2013 publication-title: CrystEngComm – volume: 21 start-page: 5475 year: 2011 publication-title: J. Mater. Chem. – volume: 5 start-page: 4503 year: 2014 publication-title: Nat. Commun. – volume: 25 start-page: 2302 year: 2009 publication-title: Langmuir – volume: 133 start-page: 19816 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 11872 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 13052 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 137 start-page: 324 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 152 start-page: 246 year: 2012 publication-title: Microporous Mesoporous Mater. – volume: 131 start-page: 4570 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 12079 year: 2015 publication-title: Chem. Eur. J. – volume: 42 start-page: 548 year: 2013 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 3931 year: 2015 publication-title: Chem. Sci. – volume: 135 start-page: 16821 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 905 year: 2015 publication-title: Nat. Chem. – volume: 52 start-page: 3770 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 346 start-page: 1356 year: 2014 publication-title: Science – volume: 49 start-page: 463 year: 2013 publication-title: Chem. Commun. – volume: 50 start-page: 11238 year: 2014 publication-title: Chem. Commun. – volume: 3 start-page: 879 year: 2010 publication-title: ChemSusChem – volume: 133 start-page: 13975 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 14952 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 399 year: 2014 publication-title: J. Phys. Chem. C – volume: 134 start-page: 19524 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 830 year: 2013 publication-title: Nat. Chem. – volume: 135 start-page: 17310 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 12178 year: 2015 publication-title: Chem. Commun. – volume: 53 start-page: 9564 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 5349 year: 2012 publication-title: Cryst. Growth Des. – volume: 49 start-page: 6058 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 134 start-page: 6084 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 3120 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 315 start-page: 1828 year: 2007 publication-title: Science – volume: 2 start-page: 235 year: 2010 publication-title: Nat. Chem. – volume: 137 start-page: 1020 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 8704 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 135 start-page: 10470 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 7159 year: 2015 publication-title: J. Mater. Chem. C – volume: 14 start-page: 415 year: 2008 publication-title: Adsorption – volume: 18 start-page: 5296 year: 2006 publication-title: Chem. Mater. – volume: 43 start-page: 6116 year: 2014 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 139 year: 2008 publication-title: Energy Environ. Sci. – volume: 61 start-page: 3893 year: 2006 publication-title: Chem. Eng. Sci. – volume: 104 start-page: 418 year: 2013 publication-title: Appl. Energy – volume: 52 start-page: 2017 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 20 start-page: 243 year: 2000 publication-title: Sep. Purif. Technol. – volume: 21 start-page: 1073 year: 2011 publication-title: J. Mater. Chem. – volume: 43 start-page: 4470 year: 2014 publication-title: Chem. Soc. Rev. – volume: 316 start-page: 268 year: 2007 publication-title: Science – volume: 136 start-page: 15885 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 4049 year: 2015 publication-title: Chem. Sci. – volume: 54 start-page: 2986 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 9773 year: 2013 publication-title: Chem. Commun. – volume: 51 start-page: 1885 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 330 year: 2014 publication-title: Polymer – volume: 48 start-page: 9457 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 24 start-page: 3026 year: 2012 publication-title: Adv. Mater. – volume: 7 start-page: 2868 year: 2014 publication-title: Energy Environ. Sci. – volume: 519 start-page: 303 year: 2015 publication-title: Nature – volume: 329 start-page: 424 year: 2010 publication-title: Science – volume: 52 start-page: 2920 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 134 start-page: 10741 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 7079 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 4042 year: 2014 publication-title: ACS Nano – volume: 4 start-page: 4225 year: 2010 publication-title: ACS Nano |
SSID | ssj0009606 |
Score | 2.6696239 |
SecondaryResourceType | review_article |
Snippet | As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they... |
SourceID | proquest pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2855 |
SubjectTerms | carbon dioxide capture covalent organic frameworks gas adsorption gas selectivity porous materials |
Title | Covalent Organic Frameworks for CO2 Capture |
URI | https://api.istex.fr/ark:/67375/WNG-NTLTQG45-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201505004 https://www.ncbi.nlm.nih.gov/pubmed/26924720 https://www.proquest.com/docview/1781537487 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbw0kP_v6BvzIT423Aum5djwRFYgSjgcitabvWA8kg_EiMf72vHRtgPOltS9dle23f-761_QyhWwUSARsd-JIqSFCExj4LifSJDRdEaRU6On-3F3cG5GkYDdd28ed8iPKDmx0Zzl_bAS7krL6ChorUcYNA0EQ5ENQu2LKq6G3Fj7Ly3MH2wshnMUkKamMD1zergzS1Vv38TWduylYXd9p7SBRPnC83GdUWc1lTXz9gjv95pX20uxSlXjPvRQdoS2eHaGcNVXiEwHFAn4QI5eW7N5XXLpZ1zTwQvl7rBXstMbETEsdo0H7otzr-8kcL_gehmPiCxg1mFDUaCxMGJjQpUQwHFmxjEmohf7ZMK0tPJAJLyKgZVoqoVLFExuEJqmTjTJ8hL0nBYygtBcQAQiVjUcoCkQbGkCgFNVBFd87QfJLDNLiYjuzaMhrx994j7_Wf-6-PJOJw4U3REhx6vJ3GEJkeL2Y8oAm4aQqZVhWd5k1U3g3HkE9S3Kgi7AxdFuR0ZsytiXlpYt687zbLs_O_VLpA23Ac2wkm3LhElfl0oa9Ap8zlteuL33w33Fw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH4Cdhgcxn7wowO2TBq7BRrHieMDh6pdKaPtxFQEN-M4NodKLaKtNviv-Ff4i3gvacKYdprEYcfEiWX58_P7nv38GeCzQYrAnA38VBgMULRlvgx56nNyF9xYE-bq_L1-3Dnl386j8wW4K8_CFPoQ1YIbWUY-X5OB04L0_qNqqM5y4SBkNBEiPc-rPLY3PzFqmxwctRDiXcbaXwfNjj-_WMC_5IJxX4u4Lp0RzjLtwsCFLuNGsoCEXFwiSNSOyqwhtUCuWYoRpGTGcJMZmaRxiPUuwgu6Rpzk-ls_HhWrKCDI5f3CyJcxT0qdyDrbf9peJMOE46-_MdunRDn3dO1VuC_7qEhwGe7Npumeuf1DPvK_6sTX8GrOu71GYShvYMGO3sLKb2qM7wDnRjQ7dMJecUDVeO0yc23iIbf3mt-Z19RXtOeyBqfP0tp1WBqNR3YTvCTDSdHYVKOb4yKVMspkoLPAOR5lSHhq8CVHVl0VeiFKXw8pfU5E6qx_qPqD7uDkkEcKP_xUQq_QqGmnRo_seDZRgUjQEwkMJmuwUYyJqjYWY8gsWL0GLEe2KigEqJkiSFUFqWq0eo3q6f2__PQRXnYGva7qHvWPt2AZ38e0n8bq27A0vZ7ZHaRl0_RDbggeXDz3oHkA6LM6Cw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtswEB04LlCkh6ZpmtZN0qhA05tiiaJE8dCDYddJ6qULHMQ3hqLIHgzYhhd0-ar8Sv6oQ8mS66KnADnkKFEiCD4O5w05fAR4p5AiEKN9N2EKAxSpicsDmrjUuguqtAoydf5ePzq_pJ-G4bACN8VZmFwfolxws5aRzdfWwKepqa9FQ2Wa6QYhoQkR6FVaZUf_-oFB2_zDRQsRPiGk_XHQPHdX9wq43ykj1JUs8rhRzGgiTeCbwKRUceJbHRcTM6tpZ8u0smKBVJIEA0hOlKIqVTxOogDr3YJHFGuxl0W0vq0Fq2w8kKn7BaHLIxoXMpEeqW-2F7mwhfHn_4jtJk_OHF17B26LLsrzW0any0Vyqn7_ox75kPrwGTxdsW6nkZvJLlT0-Dk8-UuLcQ9wZkSjQxfs5MdTldMu8tbmDjJ7p_mZOE05tTsuL-DyXlq7D9XxZKxfgROnOCUqnUh0cpQlnIcp92XqG0PDFOlODd5nwIpprhYi5Gxkk-dYKK76Z6I_6A6-ntFQ4IdvC-QFmrTdp5FjPVnOhc9i9EMMQ8kavMyHRFkbiTBgZsSrAcmALQty-WkiLKSihFQ0Wr1G-fT6Lj8dw-MvrbboXvQ7B7CNryO7mUa8Q6guZkt9hJxskbzJzMCB6_seM38A00Y4ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Frameworks+for+CO2+Capture&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zeng%2C+Yongfei&rft.au=Zou%2C+Ruqiang&rft.au=Zhao%2C+Yanli&rft.date=2016-04-20&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=28&rft.issue=15&rft.spage=2855&rft.epage=2873&rft_id=info:doi/10.1002%2Fadma.201505004&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NTLTQG45_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |