Common breaks in time trends for large panel data with a factor structure
In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cr...
Saved in:
Published in | The econometrics journal Vol. 17; no. 3; pp. 301 - 337 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.10.2014
Royal Economic Society and John Wiley & Sons Ltd Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 1368-4221 1368-423X |
DOI | 10.1111/ectj.12033 |
Cover
Loading…
Abstract | In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cross-sectionally correlated through a factor structure. The break date is estimated jointly with the common factors. In particular, two break date estimators are analysed: the first is obtained as an iterative solution while the second is obtained as a global solution. The asymptotic properties of these estimators are analysed under both global and local asymptotic frameworks. These two estimators are shown to be asymptotically equivalent and to achieve a faster rate of convergence than the simple break date estimator that does not take common factors into account. The limiting distributions of the proposed break date estimators are provided so that asymptotically valid confidence intervals can be formed. Monte Carlo simulation results are provided to support the theoretical results. |
---|---|
AbstractList | In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cross-sectionally correlated through a factor structure. The break date is estimated jointly with the common factors. In particular, two break date estimators are analysed: the first is obtained as an iterative solution while the second is obtained as a global solution. The asymptotic properties of these estimators are analysed under both global and local asymptotic frameworks. These two estimators are shown to be asymptotically equivalent and to achieve a faster rate of convergence than the simple break date estimator that does not take common factors into account. The limiting distributions of the proposed break date estimators are provided so that asymptotically valid confidence intervals can be formed. Monte Carlo simulation results are provided to support the theoretical results. Reprinted by permission of Blackwell Publishing Summary In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cross-sectionally correlated through a factor structure. The break date is estimated jointly with the common factors. In particular, two break date estimators are analysed: the first is obtained as an iterative solution while the second is obtained as a global solution. The asymptotic properties of these estimators are analysed under both global and local asymptotic frameworks. These two estimators are shown to be asymptotically equivalent and to achieve a faster rate of convergence than the simple break date estimator that does not take common factors into account. The limiting distributions of the proposed break date estimators are provided so that asymptotically valid confidence intervals can be formed. Monte Carlo simulation results are provided to support the theoretical results. In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cross-sectionally correlated through a factor structure. The break date is estimated jointly with the common factors. In particular, two break date estimators are analysed: the first is obtained as an iterative solution while the second is obtained as a global solution. The asymptotic properties of these estimators are analysed under both global and local asymptotic frameworks. These two estimators are shown to be asymptotically equivalent and to achieve a faster rate of convergence than the simple break date estimator that does not take common factors into account. The limiting distributions of the proposed break date estimators are provided so that asymptotically valid confidence intervals can be formed. Monte Carlo simulation results are provided to support the theoretical results. Summary In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cross‐sectionally correlated through a factor structure. The break date is estimated jointly with the common factors. In particular, two break date estimators are analysed: the first is obtained as an iterative solution while the second is obtained as a global solution. The asymptotic properties of these estimators are analysed under both global and local asymptotic frameworks. These two estimators are shown to be asymptotically equivalent and to achieve a faster rate of convergence than the simple break date estimator that does not take common factors into account. The limiting distributions of the proposed break date estimators are provided so that asymptotically valid confidence intervals can be formed. Monte Carlo simulation results are provided to support the theoretical results. |
Author | Kim, Dukpa |
Author_xml | – sequence: 1 givenname: Dukpa surname: Kim fullname: Kim, Dukpa email: dukpakim@korea.ac.kr organization: Department of Economics, Korea University, Anam-dong Seongbuk-Gu, Seoul 136-701, South Korea |
BookMark | eNpdkM1LAzEQxYMoaKsX70LAi5fVTLLNx1FKrVVREEVvIc1m69b9qEkW9b83ttKDc5mB93vD4w3Qbtu1DqFjIOeQ5sLZuDwHShjbQQfAuMxyyl53tzeFfTQIYUkIgRzyAzQbd03TtXjunXkPuGpxrBqHo3dtEXDZeVwbv3B4ZVpX48JEgz-r-IYNLo2NSQ7R9zb23h2ivdLUwR397SF6vpo8ja-zu4fpbHx5ly1ykCyTigknJJOcQCnBGigcs7ZgRSGllcrOJeEKlMwVMFpKkReKcWOKeeJLVbIhOtv8Xfnuo3ch6qYK1tV1Stj1QQOngivJqUro6T902fW-TekSBZSOqByRRMGG-qxq961XvmqM_9ZA9G-l-rdSva5UT8ZPN-sreU42nmVIJWw9OeNKcDFKerbRqxDd11Y3_l1zwcRIv9xPNc3F7fSKKv3IfgC0LoSX |
ContentType | Journal Article |
Copyright | Copyright © 2014 Royal Economic Society 2014 Royal Economic Society. |
Copyright_xml | – notice: Copyright © 2014 Royal Economic Society – notice: 2014 Royal Economic Society. |
DBID | BSCLL 8BJ FQK JBE |
DOI | 10.1111/ectj.12033 |
DatabaseName | Istex International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences |
DatabaseTitle | International Bibliography of the Social Sciences (IBSS) |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 1368-423X |
EndPage | 337 |
ExternalDocumentID | 3462072231 ECTJ12033 43697675 ark_67375_WNG_247KGF29_R |
Genre | article Feature |
GrantInformation_xml | – fundername: Korea Research Foundation funderid: NRF‐2013S1A5A8023644 |
GroupedDBID | -DZ -ET -~X .3N .GA .Y3 05W 0R~ 10A 1OC 1OL 29G 31~ 33P 3R3 4.4 48X 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5GY 5HH 5LA 5VS 61N 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 8VB 930 A04 AABCJ AAESR AAHHS AAMZS AAONW AAPQZ AAPXW AARHZ AAUAY AAUOS AAUQX AAVAP AAVDF AAYOK AAZKR ABBHK ABCQN ABEJV ABEML ABJNI ABKEB ABKVW ABLJU ABPPZ ABPTD ABPVW ABQBX ABSGB ABWST ABXSQ ABXVV ABYYQ ACBWZ ACCFJ ACDEK ACDXO ACGFO ACGFS ACHQT ACIPB ACNCT ACSCC ACUFI ACVJI ACXQS ACYUN ADAAO ADACV ADBKU ADEMA ADEOM ADEZT ADGDI ADGZP ADIPN ADIYS ADIZJ ADLMC ADLOL ADMHC ADQBN ADQIT ADULT AEEZP AEGXH AEIMD AELEQ AEMOZ AENEX AEQDE AEULS AEUPB AEUQT AFBPY AFEBI AFFNX AFFZL AFKFF AFPWT AFZJQ AGINJ AGQXC AHAJD AHIZY AIAGR AIDGQ AIFKG AIWBW AJAOE AJBCO AJBDE AKVCP AKYTF ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR APTMU ASPBG ASTYK AS~ ATGXG AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BEYMZ BIPZW BMXJE BNVMJ BQESF BROTX BRXPI BSCLL BXSLM BY8 CAG CBXGM CMDUG COF CS3 D-C D-D DCZOG DPXWK DR2 DU5 EBA EBE EBO EBR EBS EBU EJD EMK EOH ERKGQ ETYVG F00 F01 F5P FEDTE FLUFQ FOEOM FQBLK G-S G.N G50 GAOTZ GODZA H13 HF~ HVGLF HZI HZ~ H~9 IHE IPSME IX1 J0M J9A JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JPL JPPEU JSODD JST JXSIZ K1G K48 KBUDW KOP KSI KSN LC2 LC4 LH4 LITHE LOXES LP6 LP7 LUTES LW6 MILAA MJWOD MK4 MRFUL MRSSH MSFUL MSSSH MVM N04 N06 N9A NB9 NEJ NF~ NOMLY O66 O9- OAIJC OIG OJZSN OKKKP OXVGQ OXVUA P2P P2W P2Y P4C PQQKQ Q.N Q11 QB0 QWB R.K ROL ROX RX1 SA0 SUPJJ TH9 TN5 UB1 UPT VQA W8V W99 WBKPD WEBCB WHG WIH WII WOHZO WQZ WRC WSUWO XG1 XOL XSW YXANX YZZ ZCA ZL0 ZZTAW ~IA ~KM ~WP AAMMB AANAE AANHP AATGJ ABDFA ABGNP ABPQP ACOZV ACRPL ACXJH ACYXJ ADMLS ADNBA ADNMO AEFGJ AEOZU AEPRQ AFIQY AGORE AGQPQ AGXDD AHQJS AIDQK AIDYY AIJGY AJNCP ASMEE NU- ~A~ AHGBF AJBYB 8BJ FQK JBE |
ID | FETCH-LOGICAL-g4183-8937e7838601f81ca1de3ccd3dd88c89cb806919849132f874d936aadb01ff9f3 |
IEDL.DBID | DR2 |
ISSN | 1368-4221 |
IngestDate | Fri Jul 11 03:40:43 EDT 2025 Mon Jul 14 09:54:55 EDT 2025 Wed Aug 20 07:28:03 EDT 2025 Thu Jul 03 22:44:04 EDT 2025 Wed Oct 30 09:55:59 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g4183-8937e7838601f81ca1de3ccd3dd88c89cb806919849132f874d936aadb01ff9f3 |
Notes | Korea Research Foundation - No. NRF-2013S1A5A8023644 ark:/67375/WNG-247KGF29-R ArticleID:ECTJ12033 istex:2572A905E37C5CE79235C681C867FB77D89DEB52 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/ectj/article-pdf/17/3/301/25739848/ectj0301.pdf |
PQID | 1612252850 |
PQPubID | 27000 |
PageCount | 37 |
ParticipantIDs | proquest_miscellaneous_1627698629 proquest_journals_1612252850 wiley_primary_10_1111_ectj_12033_ECTJ12033 jstor_primary_43697675 istex_primary_ark_67375_WNG_247KGF29_R |
PublicationCentury | 2000 |
PublicationDate | October 2014 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: October 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The econometrics journal |
PublicationTitleAlternate | The Econometrics Journal |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Royal Economic Society and John Wiley & Sons Ltd Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Royal Economic Society and John Wiley & Sons Ltd – name: Oxford University Press |
References | Phillips, P. C. B., and H. R. Moon (1999). Linear regression limit theory for nonstationary panel data. Econometrica 67, 1057-111. Kim, D. (2011). Estimating a common deterministic time trend break in large panels with cross-sectional dependence. Journal of Econometrics 164, 310-30. Qu, Z. and P. Perron (2007). Estimating and testing structural changes in multivariate regressions. Econometrica 75, 459-502. Bai, J. (1994). Least squares estimation of a shift in linear process. Journal of Time Series Analysis 15, 453-72. Perron, P. and X. Zhu (2005). Structural breaks with deterministic and stochastic trends. Journal of Econometrics 129, 65-119. Bai, J., R. L. Lumsdaine and J. H. Stock (1998). Testing for and dating common breaks in multivariate time series. Review of Economic Studies 65, 395-432. Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. Econometrica 70, 191-221. Bai, J. and P. Perron (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18, 1-22. Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59, 817-58. Bai, J. (2010). Common breaks in means and variances for panel data. Journal of Econometrics 157, 78-92. 2005; 129 1999; 67 2002; 70 1994; 15 2003; 18 1991; 59 2007; 75 1998; 65 2010; 157 2011; 164 |
References_xml | – reference: Phillips, P. C. B., and H. R. Moon (1999). Linear regression limit theory for nonstationary panel data. Econometrica 67, 1057-111. – reference: Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59, 817-58. – reference: Kim, D. (2011). Estimating a common deterministic time trend break in large panels with cross-sectional dependence. Journal of Econometrics 164, 310-30. – reference: Bai, J. (1994). Least squares estimation of a shift in linear process. Journal of Time Series Analysis 15, 453-72. – reference: Perron, P. and X. Zhu (2005). Structural breaks with deterministic and stochastic trends. Journal of Econometrics 129, 65-119. – reference: Bai, J. (2010). Common breaks in means and variances for panel data. Journal of Econometrics 157, 78-92. – reference: Qu, Z. and P. Perron (2007). Estimating and testing structural changes in multivariate regressions. Econometrica 75, 459-502. – reference: Bai, J. and P. Perron (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18, 1-22. – reference: Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. Econometrica 70, 191-221. – reference: Bai, J., R. L. Lumsdaine and J. H. Stock (1998). Testing for and dating common breaks in multivariate time series. Review of Economic Studies 65, 395-432. – volume: 164 start-page: 310 year: 2011 end-page: 30 article-title: Estimating a common deterministic time trend break in large panels with cross‐sectional dependence publication-title: Journal of Econometrics – volume: 67 start-page: 1057 year: 1999 end-page: 111 article-title: Linear regression limit theory for nonstationary panel data publication-title: Econometrica – volume: 65 start-page: 395 year: 1998 end-page: 432 article-title: Testing for and dating common breaks in multivariate time series publication-title: Review of Economic Studies – volume: 129 start-page: 65 year: 2005 end-page: 119 article-title: Structural breaks with deterministic and stochastic trends publication-title: Journal of Econometrics – volume: 157 start-page: 78 year: 2010 end-page: 92 article-title: Common breaks in means and variances for panel data publication-title: Journal of Econometrics – volume: 70 start-page: 191 year: 2002 end-page: 221 article-title: Determining the number of factors in approximate factor models publication-title: Econometrica – volume: 59 start-page: 817 year: 1991 end-page: 58 article-title: Heteroskedasticity and autocorrelation consistent covariance matrix estimation publication-title: Econometrica – volume: 15 start-page: 453 year: 1994 end-page: 72 article-title: Least squares estimation of a shift in linear process publication-title: Journal of Time Series Analysis – volume: 18 start-page: 1 year: 2003 end-page: 22 article-title: Computation and analysis of multiple structural change models publication-title: Journal of Applied Econometrics – volume: 75 start-page: 459 year: 2007 end-page: 502 article-title: Estimating and testing structural changes in multivariate regressions publication-title: Econometrica |
SSID | ssj0001414 |
Score | 2.133231 |
Snippet | In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear... Summary In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of... Summary In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of... |
SourceID | proquest wiley jstor istex |
SourceType | Aggregation Database Publisher |
StartPage | 301 |
SubjectTerms | Analysis Analytical estimating Common factor Confidence intervals Convergence Correlation Deterministic time trend Econometrics Economic analysis Economic models Economic trends Eigenvalues Eigenvectors Error Estimating techniques Estimation Estimation methods Estimators Large panel data Matrices Monte Carlo simulation Objective functions Panel data Structural break Studies Time series Trends |
Title | Common breaks in time trends for large panel data with a factor structure |
URI | https://api.istex.fr/ark:/67375/WNG-247KGF29-R/fulltext.pdf https://www.jstor.org/stable/43697675 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fectj.12033 https://www.proquest.com/docview/1612252850 https://www.proquest.com/docview/1627698629 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_El_rSL5XG2rIF6UMhkv1Idhd8KcedVsEHUfSlLJvsppSTnHh3IP71zmwup-1b-xBYyCQkMzuT32x-OwNwUApf-8LG3MZW5yqWOq9DZfOi4bUug8YjEWTPq5MrdXpT3mzA0bAXpq8PsV5wI89I8Zoc3NfzF06O8QD9XBSSSn0SWYsQ0cVz7SiueN_RtjK5EoKvapMSjef5UoSkpM2HgY34B858iVbT52byBn4OD9qzTKaHy0V92Dz-VcPxf9_kLbxe4VD2vZ8472Ajdu_h1bBNeb4NP2jryKxjmDL76Zz97hi1oWeLxKFlCHXZLZHIGUaTeMuIaMpoTZd51rfwYX1l2uV93IGryfhydJKv-i7kvxR6eE4QJmojDSZrreGN5yHKpgkyBGMaY5vaFJXl1iiLuWxrtApWVt6HGuVb28pd2OxmXfwAzBdt4wkTcOlVKzSOeZQqyBav48Fn8DXp3931tTWcv58S1UyX7vr82Amlz44nwrqLDHaTgdaCSlaWCtFksD9YzK3cb-4QxmKcEqYsMviyPo2OQ39DUC2zJckIXVlM6GwG35J51vceEiMyjEuGcePR5Wka7f2L8EfYQoClevLfPmyi4uMnBDGL-nOarE_uDusb |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOZQL74qUAkZCHJBSxY_E9hGVbrcP9lBtRW-WEzsV2iqLurtSxa9nxsluCzc4RLKUcaR4PM43zudvAD6Wwte-sDG3sdW5iqXO61DZvGh4rcug8UoE2Uk1vlAnl-XlwM2hszC9PsRmw40iI63XFOC0IX0vynFBwEAXhZQP4RGV9KYCBl_P79SjuOJ9TdvK5EoIPqiTEpHnri-CUhrP2zUf8Q-keR-vpg_O6GlfVXWRdAqJZzLbXy3r_ebXXyqO__0uz-DJAEXZl37uPIcHsXsB2-uTyouXcEynR-Ydw6zZzxbsR8eoEj1bJhotQ7TLrolHznBBideMuKaMtnWZZ30VH9aL065u4iu4GB1OD8b5UHohv1IY5DmhmKiNNJivtYY3nocomybIEIxpjG1qU1SWW6MsprOt0SpYWXkfarRvbSt3YKubd_E1MF-0jSdYwKVXrdDY5lGqIFvsx4PP4FNygPvZy2s4fzMjtpku3ffJkRNKnx6NhHXnGewkD20MlawsadFksLd2mRsicOEQyeJSJUxZZPBhcxtjh36I4LDMV2QjdGUxp7MZfE7-2Tx7nRuRY1xyjDs8mJ6k1u6_GL-H7fH025k7O56cvoHHiLdUzwXcgy10QnyLmGZZv0sz9zej5-81 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SFNJe2vQR6jZJFSg5FByshy0JcglpNq-yhJDQXIqQLamUDd6Q3YXSX9-RvN6kuSUHg8BjY2v0jb-RP40AvpTM1rbQPtc-yFz4Uua1q3ReNLSWpZN4JIHssDq6FCdX5dUS7PZrYbr6EIsJt4iMFK8jwG9cuAdyjAeIc1Zw_gyeiwrREinR-V3xKCpot6VtpXLBGJ0XJ406nrtrkZPG7vzTyxH_I5r36Wr63gxew8_-STuZyWhnNq13mr8Pijg-9VVW4dWciJK9buS8gSXfvoUX_TrlyTs4jmtHxi3BnNmOJuR3S-I-9GSaRLQEuS65jipyguHEX5OoNCVxUpdY0u3hQ7rStLNb_x4uBwcX-0f5fOOF_JdAiOeRw3ipuMJsLSjaWOo8bxrHnVOqUbqpVVFpqpXQmMwGJYXTvLLW1WgfdOBrsNyOW_8BiC1CYyMpoNyKwCS2qefC8YDXUWcz2E79b2664hrG3o6i1kyW5sfw0DAhTw8HTJvzDNaSgxaGglc6VqLJYL33mJnjb2KQx2KgYqosMthanEbkxN8h2C3jWbRhstKY0ekMvib3LO7dZ0bRMSY5xhzsX5yk1sfHGH-GlbNvA_P9eHj6CV4i2RKdEHAdltEHfgMJzbTeTOP2H_zO7e0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+breaks+in+time+trends+for+large+panel+data+with+a+factor+structure&rft.jtitle=The+econometrics+journal&rft.au=Kim%2C+Dukpa&rft.date=2014-10-01&rft.issn=1368-4221&rft.volume=17&rft.issue=3&rft.spage=301&rft.epage=337&rft_id=info:doi/10.1111%2Fectj.12033&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1368-4221&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1368-4221&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1368-4221&client=summon |