Common breaks in time trends for large panel data with a factor structure

In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cr...

Full description

Saved in:
Bibliographic Details
Published inThe econometrics journal Vol. 17; no. 3; pp. 301 - 337
Main Author Kim, Dukpa
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.10.2014
Royal Economic Society and John Wiley & Sons Ltd
Oxford University Press
Subjects
Online AccessGet full text
ISSN1368-4221
1368-423X
DOI10.1111/ectj.12033

Cover

Loading…
Abstract In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cross-sectionally correlated through a factor structure. The break date is estimated jointly with the common factors. In particular, two break date estimators are analysed: the first is obtained as an iterative solution while the second is obtained as a global solution. The asymptotic properties of these estimators are analysed under both global and local asymptotic frameworks. These two estimators are shown to be asymptotically equivalent and to achieve a faster rate of convergence than the simple break date estimator that does not take common factors into account. The limiting distributions of the proposed break date estimators are provided so that asymptotically valid confidence intervals can be formed. Monte Carlo simulation results are provided to support the theoretical results.
AbstractList In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cross-sectionally correlated through a factor structure. The break date is estimated jointly with the common factors. In particular, two break date estimators are analysed: the first is obtained as an iterative solution while the second is obtained as a global solution. The asymptotic properties of these estimators are analysed under both global and local asymptotic frameworks. These two estimators are shown to be asymptotically equivalent and to achieve a faster rate of convergence than the simple break date estimator that does not take common factors into account. The limiting distributions of the proposed break date estimators are provided so that asymptotically valid confidence intervals can be formed. Monte Carlo simulation results are provided to support the theoretical results. Reprinted by permission of Blackwell Publishing
Summary In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cross-sectionally correlated through a factor structure. The break date is estimated jointly with the common factors. In particular, two break date estimators are analysed: the first is obtained as an iterative solution while the second is obtained as a global solution. The asymptotic properties of these estimators are analysed under both global and local asymptotic frameworks. These two estimators are shown to be asymptotically equivalent and to achieve a faster rate of convergence than the simple break date estimator that does not take common factors into account. The limiting distributions of the proposed break date estimators are provided so that asymptotically valid confidence intervals can be formed. Monte Carlo simulation results are provided to support the theoretical results.
In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cross-sectionally correlated through a factor structure. The break date is estimated jointly with the common factors. In particular, two break date estimators are analysed: the first is obtained as an iterative solution while the second is obtained as a global solution. The asymptotic properties of these estimators are analysed under both global and local asymptotic frameworks. These two estimators are shown to be asymptotically equivalent and to achieve a faster rate of convergence than the simple break date estimator that does not take common factors into account. The limiting distributions of the proposed break date estimators are provided so that asymptotically valid confidence intervals can be formed. Monte Carlo simulation results are provided to support the theoretical results.
Summary In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear time trend and a random error. The linear time trend is subject to a break that occurs at the same date for all series. The error term is cross‐sectionally correlated through a factor structure. The break date is estimated jointly with the common factors. In particular, two break date estimators are analysed: the first is obtained as an iterative solution while the second is obtained as a global solution. The asymptotic properties of these estimators are analysed under both global and local asymptotic frameworks. These two estimators are shown to be asymptotically equivalent and to achieve a faster rate of convergence than the simple break date estimator that does not take common factors into account. The limiting distributions of the proposed break date estimators are provided so that asymptotically valid confidence intervals can be formed. Monte Carlo simulation results are provided to support the theoretical results.
Author Kim, Dukpa
Author_xml – sequence: 1
  givenname: Dukpa
  surname: Kim
  fullname: Kim, Dukpa
  email: dukpakim@korea.ac.kr
  organization: Department of Economics, Korea University, Anam-dong Seongbuk-Gu, Seoul 136-701, South Korea
BookMark eNpdkM1LAzEQxYMoaKsX70LAi5fVTLLNx1FKrVVREEVvIc1m69b9qEkW9b83ttKDc5mB93vD4w3Qbtu1DqFjIOeQ5sLZuDwHShjbQQfAuMxyyl53tzeFfTQIYUkIgRzyAzQbd03TtXjunXkPuGpxrBqHo3dtEXDZeVwbv3B4ZVpX48JEgz-r-IYNLo2NSQ7R9zb23h2ivdLUwR397SF6vpo8ja-zu4fpbHx5ly1ykCyTigknJJOcQCnBGigcs7ZgRSGllcrOJeEKlMwVMFpKkReKcWOKeeJLVbIhOtv8Xfnuo3ch6qYK1tV1Stj1QQOngivJqUro6T902fW-TekSBZSOqByRRMGG-qxq961XvmqM_9ZA9G-l-rdSva5UT8ZPN-sreU42nmVIJWw9OeNKcDFKerbRqxDd11Y3_l1zwcRIv9xPNc3F7fSKKv3IfgC0LoSX
ContentType Journal Article
Copyright Copyright © 2014 Royal Economic Society
2014 Royal Economic Society.
Copyright_xml – notice: Copyright © 2014 Royal Economic Society
– notice: 2014 Royal Economic Society.
DBID BSCLL
8BJ
FQK
JBE
DOI 10.1111/ectj.12033
DatabaseName Istex
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences (IBSS)


DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1368-423X
EndPage 337
ExternalDocumentID 3462072231
ECTJ12033
43697675
ark_67375_WNG_247KGF29_R
Genre article
Feature
GrantInformation_xml – fundername: Korea Research Foundation
  funderid: NRF‐2013S1A5A8023644
GroupedDBID -DZ
-ET
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
1OL
29G
31~
33P
3R3
4.4
48X
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5GY
5HH
5LA
5VS
61N
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
8VB
930
A04
AABCJ
AAESR
AAHHS
AAMZS
AAONW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUOS
AAUQX
AAVAP
AAVDF
AAYOK
AAZKR
ABBHK
ABCQN
ABEJV
ABEML
ABJNI
ABKEB
ABKVW
ABLJU
ABPPZ
ABPTD
ABPVW
ABQBX
ABSGB
ABWST
ABXSQ
ABXVV
ABYYQ
ACBWZ
ACCFJ
ACDEK
ACDXO
ACGFO
ACGFS
ACHQT
ACIPB
ACNCT
ACSCC
ACUFI
ACVJI
ACXQS
ACYUN
ADAAO
ADACV
ADBKU
ADEMA
ADEOM
ADEZT
ADGDI
ADGZP
ADIPN
ADIYS
ADIZJ
ADLMC
ADLOL
ADMHC
ADQBN
ADQIT
ADULT
AEEZP
AEGXH
AEIMD
AELEQ
AEMOZ
AENEX
AEQDE
AEULS
AEUPB
AEUQT
AFBPY
AFEBI
AFFNX
AFFZL
AFKFF
AFPWT
AFZJQ
AGINJ
AGQXC
AHAJD
AHIZY
AIAGR
AIDGQ
AIFKG
AIWBW
AJAOE
AJBCO
AJBDE
AKVCP
AKYTF
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
APTMU
ASPBG
ASTYK
AS~
ATGXG
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BEYMZ
BIPZW
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BSCLL
BXSLM
BY8
CAG
CBXGM
CMDUG
COF
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DU5
EBA
EBE
EBO
EBR
EBS
EBU
EJD
EMK
EOH
ERKGQ
ETYVG
F00
F01
F5P
FEDTE
FLUFQ
FOEOM
FQBLK
G-S
G.N
G50
GAOTZ
GODZA
H13
HF~
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
J9A
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JPPEU
JSODD
JST
JXSIZ
K1G
K48
KBUDW
KOP
KSI
KSN
LC2
LC4
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
MILAA
MJWOD
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MVM
N04
N06
N9A
NB9
NEJ
NF~
NOMLY
O66
O9-
OAIJC
OIG
OJZSN
OKKKP
OXVGQ
OXVUA
P2P
P2W
P2Y
P4C
PQQKQ
Q.N
Q11
QB0
QWB
R.K
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
UB1
UPT
VQA
W8V
W99
WBKPD
WEBCB
WHG
WIH
WII
WOHZO
WQZ
WRC
WSUWO
XG1
XOL
XSW
YXANX
YZZ
ZCA
ZL0
ZZTAW
~IA
~KM
~WP
AAMMB
AANAE
AANHP
AATGJ
ABDFA
ABGNP
ABPQP
ACOZV
ACRPL
ACXJH
ACYXJ
ADMLS
ADNBA
ADNMO
AEFGJ
AEOZU
AEPRQ
AFIQY
AGORE
AGQPQ
AGXDD
AHQJS
AIDQK
AIDYY
AIJGY
AJNCP
ASMEE
NU-
~A~
AHGBF
AJBYB
8BJ
FQK
JBE
ID FETCH-LOGICAL-g4183-8937e7838601f81ca1de3ccd3dd88c89cb806919849132f874d936aadb01ff9f3
IEDL.DBID DR2
ISSN 1368-4221
IngestDate Fri Jul 11 03:40:43 EDT 2025
Mon Jul 14 09:54:55 EDT 2025
Wed Aug 20 07:28:03 EDT 2025
Thu Jul 03 22:44:04 EDT 2025
Wed Oct 30 09:55:59 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g4183-8937e7838601f81ca1de3ccd3dd88c89cb806919849132f874d936aadb01ff9f3
Notes Korea Research Foundation - No. NRF-2013S1A5A8023644
ark:/67375/WNG-247KGF29-R
ArticleID:ECTJ12033
istex:2572A905E37C5CE79235C681C867FB77D89DEB52
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/ectj/article-pdf/17/3/301/25739848/ectj0301.pdf
PQID 1612252850
PQPubID 27000
PageCount 37
ParticipantIDs proquest_miscellaneous_1627698629
proquest_journals_1612252850
wiley_primary_10_1111_ectj_12033_ECTJ12033
jstor_primary_43697675
istex_primary_ark_67375_WNG_247KGF29_R
PublicationCentury 2000
PublicationDate October 2014
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: October 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The econometrics journal
PublicationTitleAlternate The Econometrics Journal
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Royal Economic Society and John Wiley & Sons Ltd
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Royal Economic Society and John Wiley & Sons Ltd
– name: Oxford University Press
References Phillips, P. C. B., and H. R. Moon (1999). Linear regression limit theory for nonstationary panel data. Econometrica 67, 1057-111.
Kim, D. (2011). Estimating a common deterministic time trend break in large panels with cross-sectional dependence. Journal of Econometrics 164, 310-30.
Qu, Z. and P. Perron (2007). Estimating and testing structural changes in multivariate regressions. Econometrica 75, 459-502.
Bai, J. (1994). Least squares estimation of a shift in linear process. Journal of Time Series Analysis 15, 453-72.
Perron, P. and X. Zhu (2005). Structural breaks with deterministic and stochastic trends. Journal of Econometrics 129, 65-119.
Bai, J., R. L. Lumsdaine and J. H. Stock (1998). Testing for and dating common breaks in multivariate time series. Review of Economic Studies 65, 395-432.
Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. Econometrica 70, 191-221.
Bai, J. and P. Perron (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18, 1-22.
Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59, 817-58.
Bai, J. (2010). Common breaks in means and variances for panel data. Journal of Econometrics 157, 78-92.
2005; 129
1999; 67
2002; 70
1994; 15
2003; 18
1991; 59
2007; 75
1998; 65
2010; 157
2011; 164
References_xml – reference: Phillips, P. C. B., and H. R. Moon (1999). Linear regression limit theory for nonstationary panel data. Econometrica 67, 1057-111.
– reference: Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59, 817-58.
– reference: Kim, D. (2011). Estimating a common deterministic time trend break in large panels with cross-sectional dependence. Journal of Econometrics 164, 310-30.
– reference: Bai, J. (1994). Least squares estimation of a shift in linear process. Journal of Time Series Analysis 15, 453-72.
– reference: Perron, P. and X. Zhu (2005). Structural breaks with deterministic and stochastic trends. Journal of Econometrics 129, 65-119.
– reference: Bai, J. (2010). Common breaks in means and variances for panel data. Journal of Econometrics 157, 78-92.
– reference: Qu, Z. and P. Perron (2007). Estimating and testing structural changes in multivariate regressions. Econometrica 75, 459-502.
– reference: Bai, J. and P. Perron (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18, 1-22.
– reference: Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. Econometrica 70, 191-221.
– reference: Bai, J., R. L. Lumsdaine and J. H. Stock (1998). Testing for and dating common breaks in multivariate time series. Review of Economic Studies 65, 395-432.
– volume: 164
  start-page: 310
  year: 2011
  end-page: 30
  article-title: Estimating a common deterministic time trend break in large panels with cross‐sectional dependence
  publication-title: Journal of Econometrics
– volume: 67
  start-page: 1057
  year: 1999
  end-page: 111
  article-title: Linear regression limit theory for nonstationary panel data
  publication-title: Econometrica
– volume: 65
  start-page: 395
  year: 1998
  end-page: 432
  article-title: Testing for and dating common breaks in multivariate time series
  publication-title: Review of Economic Studies
– volume: 129
  start-page: 65
  year: 2005
  end-page: 119
  article-title: Structural breaks with deterministic and stochastic trends
  publication-title: Journal of Econometrics
– volume: 157
  start-page: 78
  year: 2010
  end-page: 92
  article-title: Common breaks in means and variances for panel data
  publication-title: Journal of Econometrics
– volume: 70
  start-page: 191
  year: 2002
  end-page: 221
  article-title: Determining the number of factors in approximate factor models
  publication-title: Econometrica
– volume: 59
  start-page: 817
  year: 1991
  end-page: 58
  article-title: Heteroskedasticity and autocorrelation consistent covariance matrix estimation
  publication-title: Econometrica
– volume: 15
  start-page: 453
  year: 1994
  end-page: 72
  article-title: Least squares estimation of a shift in linear process
  publication-title: Journal of Time Series Analysis
– volume: 18
  start-page: 1
  year: 2003
  end-page: 22
  article-title: Computation and analysis of multiple structural change models
  publication-title: Journal of Applied Econometrics
– volume: 75
  start-page: 459
  year: 2007
  end-page: 502
  article-title: Estimating and testing structural changes in multivariate regressions
  publication-title: Econometrica
SSID ssj0001414
Score 2.133231
Snippet In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of a linear...
Summary In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of...
Summary In this paper, I analyse issues related to the estimation of a common break in a large panel of time series data. Each series in the panel consists of...
SourceID proquest
wiley
jstor
istex
SourceType Aggregation Database
Publisher
StartPage 301
SubjectTerms Analysis
Analytical estimating
Common factor
Confidence intervals
Convergence
Correlation
Deterministic time trend
Econometrics
Economic analysis
Economic models
Economic trends
Eigenvalues
Eigenvectors
Error
Estimating techniques
Estimation
Estimation methods
Estimators
Large panel data
Matrices
Monte Carlo simulation
Objective functions
Panel data
Structural break
Studies
Time series
Trends
Title Common breaks in time trends for large panel data with a factor structure
URI https://api.istex.fr/ark:/67375/WNG-247KGF29-R/fulltext.pdf
https://www.jstor.org/stable/43697675
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fectj.12033
https://www.proquest.com/docview/1612252850
https://www.proquest.com/docview/1627698629
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_El_rSL5XG2rIF6UMhkv1Idhd8KcedVsEHUfSlLJvsppSTnHh3IP71zmwup-1b-xBYyCQkMzuT32x-OwNwUApf-8LG3MZW5yqWOq9DZfOi4bUug8YjEWTPq5MrdXpT3mzA0bAXpq8PsV5wI89I8Zoc3NfzF06O8QD9XBSSSn0SWYsQ0cVz7SiueN_RtjK5EoKvapMSjef5UoSkpM2HgY34B858iVbT52byBn4OD9qzTKaHy0V92Dz-VcPxf9_kLbxe4VD2vZ8472Ajdu_h1bBNeb4NP2jryKxjmDL76Zz97hi1oWeLxKFlCHXZLZHIGUaTeMuIaMpoTZd51rfwYX1l2uV93IGryfhydJKv-i7kvxR6eE4QJmojDSZrreGN5yHKpgkyBGMaY5vaFJXl1iiLuWxrtApWVt6HGuVb28pd2OxmXfwAzBdt4wkTcOlVKzSOeZQqyBav48Fn8DXp3931tTWcv58S1UyX7vr82Amlz44nwrqLDHaTgdaCSlaWCtFksD9YzK3cb-4QxmKcEqYsMviyPo2OQ39DUC2zJckIXVlM6GwG35J51vceEiMyjEuGcePR5Wka7f2L8EfYQoClevLfPmyi4uMnBDGL-nOarE_uDusb
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOZQL74qUAkZCHJBSxY_E9hGVbrcP9lBtRW-WEzsV2iqLurtSxa9nxsluCzc4RLKUcaR4PM43zudvAD6Wwte-sDG3sdW5iqXO61DZvGh4rcug8UoE2Uk1vlAnl-XlwM2hszC9PsRmw40iI63XFOC0IX0vynFBwEAXhZQP4RGV9KYCBl_P79SjuOJ9TdvK5EoIPqiTEpHnri-CUhrP2zUf8Q-keR-vpg_O6GlfVXWRdAqJZzLbXy3r_ebXXyqO__0uz-DJAEXZl37uPIcHsXsB2-uTyouXcEynR-Ydw6zZzxbsR8eoEj1bJhotQ7TLrolHznBBideMuKaMtnWZZ30VH9aL065u4iu4GB1OD8b5UHohv1IY5DmhmKiNNJivtYY3nocomybIEIxpjG1qU1SWW6MsprOt0SpYWXkfarRvbSt3YKubd_E1MF-0jSdYwKVXrdDY5lGqIFvsx4PP4FNygPvZy2s4fzMjtpku3ffJkRNKnx6NhHXnGewkD20MlawsadFksLd2mRsicOEQyeJSJUxZZPBhcxtjh36I4LDMV2QjdGUxp7MZfE7-2Tx7nRuRY1xyjDs8mJ6k1u6_GL-H7fH025k7O56cvoHHiLdUzwXcgy10QnyLmGZZv0sz9zej5-81
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SFNJe2vQR6jZJFSg5FByshy0JcglpNq-yhJDQXIqQLamUDd6Q3YXSX9-RvN6kuSUHg8BjY2v0jb-RP40AvpTM1rbQPtc-yFz4Uua1q3ReNLSWpZN4JIHssDq6FCdX5dUS7PZrYbr6EIsJt4iMFK8jwG9cuAdyjAeIc1Zw_gyeiwrREinR-V3xKCpot6VtpXLBGJ0XJ406nrtrkZPG7vzTyxH_I5r36Wr63gxew8_-STuZyWhnNq13mr8Pijg-9VVW4dWciJK9buS8gSXfvoUX_TrlyTs4jmtHxi3BnNmOJuR3S-I-9GSaRLQEuS65jipyguHEX5OoNCVxUpdY0u3hQ7rStLNb_x4uBwcX-0f5fOOF_JdAiOeRw3ipuMJsLSjaWOo8bxrHnVOqUbqpVVFpqpXQmMwGJYXTvLLW1WgfdOBrsNyOW_8BiC1CYyMpoNyKwCS2qefC8YDXUWcz2E79b2664hrG3o6i1kyW5sfw0DAhTw8HTJvzDNaSgxaGglc6VqLJYL33mJnjb2KQx2KgYqosMthanEbkxN8h2C3jWbRhstKY0ekMvib3LO7dZ0bRMSY5xhzsX5yk1sfHGH-GlbNvA_P9eHj6CV4i2RKdEHAdltEHfgMJzbTeTOP2H_zO7e0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+breaks+in+time+trends+for+large+panel+data+with+a+factor+structure&rft.jtitle=The+econometrics+journal&rft.au=Kim%2C+Dukpa&rft.date=2014-10-01&rft.issn=1368-4221&rft.volume=17&rft.issue=3&rft.spage=301&rft.epage=337&rft_id=info:doi/10.1111%2Fectj.12033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1368-4221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1368-4221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1368-4221&client=summon