Porous Carbon Membrane‐Supported Atomically Dispersed Pyrrole‐Type FeN4 as Active Sites for Electrochemical Hydrazine Oxidation Reaction

The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe‐Nx sites supported by hierarchically porous carbon membranes are designed to electrocatalyze the hydrazine oxidation reaction (HzOR), one of the key techniques in e...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 31; pp. e2002203 - n/a
Main Authors Wang, Yu‐Cheng, Wan, Li‐Yang, Cui, Pei‐Xin, Tong, Lei, Ke, Yu‐Qi, Sheng, Tian, Zhang, Miao, Sun, Shu‐Hui, Liang, Hai‐Wei, Wang, Yue‐Sheng, Zaghib, Karim, Wang, Hong, Zhou, Zhi‐You, Yuan, Jiayin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe‐Nx sites supported by hierarchically porous carbon membranes are designed to electrocatalyze the hydrazine oxidation reaction (HzOR), one of the key techniques in electrochemical nitrogen transformation. The high intrinsic catalytic activity of the Fe‐Nx single‐atom catalyst together with the uniquely mixed micro‐/macroporous membrane support positions such an electrode among the best‐known heteroatom‐based carbon anodes for hydrazine fuel cells. Combined with advanced characterization techniques, electrochemical probe experiments, and density functional theory calculation, the pyrrole‐type FeN4 structure is identified as the real catalytic site in HzOR. Hierarchically porous carbon membrane‐supported atomically dispersed pyrrole‐type FeN4 sites are proposed and verified as real active sites for the hydrazine oxidation reaction.
AbstractList The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe-Nx sites supported by hierarchically porous carbon membranes are designed to electrocatalyze the hydrazine oxidation reaction (HzOR), one of the key techniques in electrochemical nitrogen transformation. The high intrinsic catalytic activity of the Fe-Nx single-atom catalyst together with the uniquely mixed micro-/macroporous membrane support positions such an electrode among the best-known heteroatom-based carbon anodes for hydrazine fuel cells. Combined with advanced characterization techniques, electrochemical probe experiments, and density functional theory calculation, the pyrrole-type FeN4 structure is identified as the real catalytic site in HzOR.The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe-Nx sites supported by hierarchically porous carbon membranes are designed to electrocatalyze the hydrazine oxidation reaction (HzOR), one of the key techniques in electrochemical nitrogen transformation. The high intrinsic catalytic activity of the Fe-Nx single-atom catalyst together with the uniquely mixed micro-/macroporous membrane support positions such an electrode among the best-known heteroatom-based carbon anodes for hydrazine fuel cells. Combined with advanced characterization techniques, electrochemical probe experiments, and density functional theory calculation, the pyrrole-type FeN4 structure is identified as the real catalytic site in HzOR.
The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe‐Nx sites supported by hierarchically porous carbon membranes are designed to electrocatalyze the hydrazine oxidation reaction (HzOR), one of the key techniques in electrochemical nitrogen transformation. The high intrinsic catalytic activity of the Fe‐Nx single‐atom catalyst together with the uniquely mixed micro‐/macroporous membrane support positions such an electrode among the best‐known heteroatom‐based carbon anodes for hydrazine fuel cells. Combined with advanced characterization techniques, electrochemical probe experiments, and density functional theory calculation, the pyrrole‐type FeN4 structure is identified as the real catalytic site in HzOR.
The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe‐Nx sites supported by hierarchically porous carbon membranes are designed to electrocatalyze the hydrazine oxidation reaction (HzOR), one of the key techniques in electrochemical nitrogen transformation. The high intrinsic catalytic activity of the Fe‐Nx single‐atom catalyst together with the uniquely mixed micro‐/macroporous membrane support positions such an electrode among the best‐known heteroatom‐based carbon anodes for hydrazine fuel cells. Combined with advanced characterization techniques, electrochemical probe experiments, and density functional theory calculation, the pyrrole‐type FeN4 structure is identified as the real catalytic site in HzOR. Hierarchically porous carbon membrane‐supported atomically dispersed pyrrole‐type FeN4 sites are proposed and verified as real active sites for the hydrazine oxidation reaction.
Author Zhang, Miao
Wang, Yue‐Sheng
Sheng, Tian
Zhou, Zhi‐You
Cui, Pei‐Xin
Yuan, Jiayin
Liang, Hai‐Wei
Tong, Lei
Zaghib, Karim
Wang, Yu‐Cheng
Wang, Hong
Ke, Yu‐Qi
Sun, Shu‐Hui
Wan, Li‐Yang
Author_xml – sequence: 1
  givenname: Yu‐Cheng
  orcidid: 0000-0002-3356-3403
  surname: Wang
  fullname: Wang, Yu‐Cheng
  organization: Stockholm University
– sequence: 2
  givenname: Li‐Yang
  surname: Wan
  fullname: Wan, Li‐Yang
  organization: Xiamen University
– sequence: 3
  givenname: Pei‐Xin
  surname: Cui
  fullname: Cui, Pei‐Xin
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Lei
  surname: Tong
  fullname: Tong, Lei
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Yu‐Qi
  surname: Ke
  fullname: Ke, Yu‐Qi
  organization: Stockholm University
– sequence: 6
  givenname: Tian
  surname: Sheng
  fullname: Sheng, Tian
  email: tsheng@ahnu.edu.cn
  organization: Anhui Normal University
– sequence: 7
  givenname: Miao
  surname: Zhang
  fullname: Zhang, Miao
  organization: Stockholm University
– sequence: 8
  givenname: Shu‐Hui
  surname: Sun
  fullname: Sun, Shu‐Hui
  email: shuhui@emt.inrs.ca
  organization: Institut National de la Recherche Scientifique‐Énergie Matériaux et Télécommunications
– sequence: 9
  givenname: Hai‐Wei
  surname: Liang
  fullname: Liang, Hai‐Wei
  organization: University of Science and Technology of China
– sequence: 10
  givenname: Yue‐Sheng
  orcidid: 0000-0001-7269-9015
  surname: Wang
  fullname: Wang, Yue‐Sheng
  organization: Hydro Québec
– sequence: 11
  givenname: Karim
  surname: Zaghib
  fullname: Zaghib, Karim
  organization: Hydro Québec
– sequence: 12
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  organization: Nankai University
– sequence: 13
  givenname: Zhi‐You
  surname: Zhou
  fullname: Zhou, Zhi‐You
  organization: Xiamen University
– sequence: 14
  givenname: Jiayin
  orcidid: 0000-0003-1016-5135
  surname: Yuan
  fullname: Yuan, Jiayin
  email: jiayin.yuan@mmk.su.se
  organization: Stockholm University
BookMark eNpdkTtOAzEQhi0EEs-W2hINTcCvfZVRIIAUSESgXnm9EzDyrhd7AywVN4A7cBDuwgW4Ag6gFFTzz-jTvP5NtFrbGhDapeSAEsIOfWXMASMsaEb4CtqgMeW9OGXZ6lJTso42vb8jhFMmkg30OrHOzj0eSFfYGp9DVThZw-fL23TeNNa1UOJ-ayutpDEdPtK-AedDcdI5Z80CvOoawEP4ev-4EFh63FetfgA81S14PLMOHxtQrbPqFn7a4NOudPJZ14DHT7qUrQ6DL0GqhdhGazNpPOz8xS10PTy-Gpz2RuOTs0F_1LsRJOO9qOC0oCWUIiHpLE0FpZASyBJKVJGogsVZLAjJQEZpwrKUKighSqKsLGdxIjjfQvu_fRtn7-fg27zSXoEx4fjwj5wJysIbY8YCuvcPvbNzV4ftAsVJlKQijgOV_VKP2kCXN05X0nU5JfnCnHxhTr40J5-ej0bLjH8Dp0CLnQ
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 24P
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202002203
DatabaseName Wiley Online Library Open Access
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202002203
Genre article
GrantInformation_xml – fundername: European Research Council
– fundername: Swedish Research Council
  funderid: 2018–05351
– fundername: ERC
  funderid: NAPOLI‐639720
– fundername: Wallenberg Academy Fellow
  funderid: KAW 2017.0166
– fundername: National Natural Science Foundation of China
  funderid: 21903001
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-g4093-5b31b1ded4708f88411e80e9710cb7cb26964009ea5872981cede5759ddf67433
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 13:03:41 EDT 2025
Fri Jul 25 12:09:51 EDT 2025
Wed Jan 22 16:32:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g4093-5b31b1ded4708f88411e80e9710cb7cb26964009ea5872981cede5759ddf67433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1016-5135
0000-0002-3356-3403
0000-0001-7269-9015
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202002203
PQID 2430578466
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2412220622
proquest_journals_2430578466
wiley_primary_10_1002_smll_202002203_SMLL202002203
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 98
2015; 14
2017; 1
2017; 2
2019; 31
2019; 2
2020; 264
2019; 11
2019; 10
2016; 102
2020; 563
2017; 29
2011; 4
2019; 141
2017; 357
2011; 332
2019; 364
2014; 136
2011; 133
2011; 177
2017; 139
2018; 2
2014; 4
2019; 61
2015; 112
2019; 48
2015; 44
2017; 56
2009; 109
2007; 46
2019; 131
2014; 53
2018; 57
2019; 330
References_xml – volume: 364
  start-page: 1091
  year: 2019
  publication-title: Science
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 1204
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 357
  start-page: 479
  year: 2017
  publication-title: Science
– volume: 112
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 102
  start-page: 97
  year: 2016
  publication-title: Carbon
– volume: 2
  start-page: 846
  year: 2018
  publication-title: Joule
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 8236
  year: 2019
  publication-title: Chem. Sci.
– volume: 98
  start-page: 1
  year: 2010
  publication-title: Appl. Catal., B
– volume: 2
  start-page: 645
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 332
  start-page: 443
  year: 2011
  publication-title: Science
– volume: 2
  start-page: 539
  year: 2019
  publication-title: Electrochem. Energy Rev.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 61
  start-page: 420
  year: 2019
  publication-title: Nano Energy
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 610
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 177
  start-page: 25
  year: 2011
  publication-title: Catal. Today
– volume: 2
  start-page: 6269
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 330
  start-page: 252
  year: 2019
  publication-title: Catal. Today
– volume: 4
  start-page: 4254
  year: 2014
  publication-title: ACS Catal.
– volume: 131
  year: 2019
  publication-title: Angew. Chem.
– volume: 133
  start-page: 5425
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 2035
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 563
  start-page: 27
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 4
  start-page: 1255
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 56
  start-page: 842
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 48
  start-page: 5658
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 8024
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 65
  year: 2018
  publication-title: Nat. Rev. Chem.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 57
  start-page: 9038
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 109
  start-page: 2209
  year: 2009
  publication-title: Chem. Rev.
– volume: 10
  start-page: 4514
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 937
  year: 2015
  publication-title: Nat. Mater.
– volume: 264
  year: 2020
  publication-title: Appl. Catal., B
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
SSID ssj0031247
Score 2.517629
Snippet The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe‐Nx sites supported by...
The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe-Nx sites supported by...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2002203
SubjectTerms Carbon
Catalytic activity
Density functional theory
Dispersion
Electrochemical analysis
FeN4 active sites
Fuel cells
hydrazine oxidation
Hydrazines
Membranes
Nanotechnology
Oxidation
porous carbon membranes
Porous materials
single atom catalysts
Title Porous Carbon Membrane‐Supported Atomically Dispersed Pyrrole‐Type FeN4 as Active Sites for Electrochemical Hydrazine Oxidation Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202002203
https://www.proquest.com/docview/2430578466
https://www.proquest.com/docview/2412220622
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTsMwELWgK1jwR5SfjMQ2kDhp6iwraFUhClULErsodhyEgAQlrURZcQO4AwfhLlyAKzBjt6GwhF0-tpJ4PDPP8cwbQvYDNxE-F5HFPYdbnhcIPHItQK_gDhKWBBwThTtnfvvSO7mqXU1l8Rt-iPKHG2qGtteo4JEoDr9JQ4v7O9w6wCADpuk-MWALUVGv5I9ywXnp6irgsywk3pqwNtrs8Gf3H_hyGqVqN9NaJNHkBU10ye3BcCAO5NMv7sb_fMESWRhjUNowk2aZzKh0hcxPMROukpdulmfDgh5FuchS2lH38KBUfTy_YhlQDNCNaWOQaa6BuxE9vkHC8QIudkc5BixCQ1zh0pb6fHs_82hU0Ia2rLQPGLegAJVp01TgkWPKAtoexbkmu6bnjzem1BPtKZN4sUYuW82Lo7Y1rt1gXcOK0bVqwnWEE6vYq9s84SB_R3FbBQBopKhLwfzAB_MRqKjGAd9zR6pYYbHQOE4wL8JdJ5U0S9UGodLXpgKWqlx6sYQeAWOR8F0EQ7aQVbI9kV04VsAiZEhlVgdw5VfJXnkbVAf3Q2C8YAihjQPoyPYZqxKmBRU-GIqP0JA5sxBFFJYiCvud09PybPMvnbbIHB6bEMJtUhnkQ7UDsGYgdsks87q7egJ_AbeP9P0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTsMwELUQLIAFf0T5GoltIHHS1FlWQFWgLYiPxC6KHQchIEFJK1FW3ADuwEG4CxfgCszYbfgsYZc4tpJ4PONne-YNIVuBmwifi8jinsMtzwsEXrkWoFeYDhKWBBwDhdsdv3nhHV5Wh96EGAtj-CHKDTfUDG2vUcFxQ3rnizW0uLvFswP0MmDI9zmGab2RPn_vtGSQcmH60vlVYNaykHpryNtos52f7X8gzO84VU80jWkihp9o_EtutntdsS0ff7E3_usfZsjUAIbSuhk3s2REpXNk8hs54Tx5PsnyrFfQ3SgXWUrb6g7elKr3pxfMBIo-ujGtdzNNN3Dbp3vXyDleQOFJP0efRaiIi1zaUB-vbx2PRgWta-NKzwDmFhTQMt03SXjkgLWANvtxrvmu6fHDtcn2RE-Vib1YIBeN_fPdpjVI32BdwaLRtarCdYQTq9ir2TzhMAQcxW0VAKaRoiYF8wMfLEigoioHiM8dqWKF-ULjOMHQCHeRjKZZqpYIlb62FrBa5dKLJbQIGIuE7yIesoWskNWh8MKBDhYhQzazGuArv0I2y8egPXgkAv0FXQh1HABIts9YhTAtqfDesHyEhs-ZhSiisBRReNZutcq75b802iDjzfN2K2wddI5WyASWG4_CVTLazXtqDVBOV6zrcfwJOGL4Qg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTsJAEN4YTYwejL8RRV0Trw3ttpTtkfATVEAiknBrut2tIYFCWkzk5hvoO_ggvosv4Cs4swWEq7d2u3vozs7ON7sz3xBy49mRcLkIDO5Y3HAcT-CTbQB6BXMQscjjmCjcaruNnnPXL_ZXsvgzfojlgRtqht6vUcEnMir8kYamoyFeHWCQAUO6zy288cOgLuZ0FnuxDdZLl1cBo2Ug89aCttFkhfXxawBzFaZqO1PfJ3tzgEjLmUQPyIaKD8nuCm3gEXnvjBNw2GklSMQ4pi01gv-I1ffbB9boxOhZScvTsSYCGM5odYBs4Ck0dmYJRhNCR3Q_aV39fH61HRqktKy3PdoFAJpSwLG0lpXHCed8ArQxk4lmoqYPr4OsDhN9VFlWxDHp1WtPlYYxL6xgPIM7ZxtFYVvCkko6JZNHHIRjKW4qD9BGKEqhYK7ngm57KihyAN_cCpVUWMlTygiTFuwTshmPY3VKaOhqPQY_koeODGGEx1ggXBuRiinCHMkv5tWfa0fqM-QZKwHycXPkevkZ1jVeVsB8wRRCHwugi-kyliNMy8OfZPwbfsa0zHyUoL-UoN9tNZvLt7P_DLoi251q3W_etu_PyQ42Z6F-ebI5TV7UBcCPqbjUK-wXjqXViA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Carbon+Membrane%E2%80%90Supported+Atomically+Dispersed+Pyrrole%E2%80%90Type+Fe%EF%A3%BFN4+as+Active+Sites+for+Electrochemical+Hydrazine+Oxidation+Reaction&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yu%E2%80%90Cheng+Wang&rft.au=Li%E2%80%90Yang+Wan&rft.au=Pei%E2%80%90Xin+Cui&rft.au=Tong%2C+Lei&rft.date=2020-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=31&rft_id=info:doi/10.1002%2Fsmll.202002203&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon