Spray‐Dried Sodium Zirconate: A Rapid Absorption Powder for CO2 Capture with Enhanced Cyclic Stability
Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray‐dried microgranules with a wall thickness o...
Saved in:
Published in | ChemSusChem Vol. 10; no. 9; pp. 2059 - 2067 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
09.05.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray‐dried microgranules with a wall thickness of 100–300 nm corresponding to the dimensions of the primary acetate‐derived particles gave about 75 wt % theoretical CO2 conversion after a process‐relevant 5 min exposure to 15 vol % CO2. A conventional powder prepared by solid‐state reaction carbonated more slowly, achieving only 50 % conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray‐dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na‐rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re‐form Na2ZrO3 could be achieved by heating each powder to 900 °C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami–Erofeyev 2 D nucleation and nuclei growth model, consistent with microstructural evidence of a surface‐driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder.
Spray drying does the trick: We examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. The hollow and perforated granular structure of spray‐dried Na2ZrO3 powders enables faster CO2 absorption than densely agglomerated conventional sorbents. |
---|---|
AbstractList | Improved powders for capturing CO
2
at high temperatures are required for H
2
production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na
2
ZrO
3
powders. Hollow spray‐dried microgranules with a wall thickness of 100–300 nm corresponding to the dimensions of the primary acetate‐derived particles gave about 75 wt % theoretical CO
2
conversion after a process‐relevant 5 min exposure to 15 vol % CO
2
. A conventional powder prepared by solid‐state reaction carbonated more slowly, achieving only 50 % conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray‐dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na‐rich phase (Na
2
CO
3
) within a crystalline ZrO
2
particle matrix. Despite this phase separation, the reverse reaction to re‐form Na
2
ZrO
3
could be achieved by heating each powder to 900 °C in N
2
(no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami–Erofeyev 2 D nucleation and nuclei growth model, consistent with microstructural evidence of a surface‐driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na
2
ZrO
3
powder. Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray‐dried microgranules with a wall thickness of 100–300 nm corresponding to the dimensions of the primary acetate‐derived particles gave about 75 wt % theoretical CO2 conversion after a process‐relevant 5 min exposure to 15 vol % CO2. A conventional powder prepared by solid‐state reaction carbonated more slowly, achieving only 50 % conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray‐dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na‐rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re‐form Na2ZrO3 could be achieved by heating each powder to 900 °C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami–Erofeyev 2 D nucleation and nuclei growth model, consistent with microstructural evidence of a surface‐driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder. Spray drying does the trick: We examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. The hollow and perforated granular structure of spray‐dried Na2ZrO3 powders enables faster CO2 absorption than densely agglomerated conventional sorbents. Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption-enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray-dried microgranules with a wall thickness of 100-300nm corresponding to the dimensions of the primary acetate-derived particles gave about 75wt% theoretical CO2 conversion after a process-relevant 5min exposure to 15vol% CO2. A conventional powder prepared by solid-state reaction carbonated more slowly, achieving only 50% conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray-dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na-rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re-form Na2ZrO3 could be achieved by heating each powder to 900°C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami-Erofeyev 2D nucleation and nuclei growth model, consistent with microstructural evidence of a surface-driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder. |
Author | Ji, Guozhao Dupont, Valerie A. Brown, Andy P. Zhao, Ming Milne, Steven J. Bamiduro, Faith |
AuthorAffiliation | 2 School of Environment Tsinghua University Beijing 100084 P. R. China 1 School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT United Kingdom |
AuthorAffiliation_xml | – name: 1 School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT United Kingdom – name: 2 School of Environment Tsinghua University Beijing 100084 P. R. China |
Author_xml | – sequence: 1 givenname: Faith surname: Bamiduro fullname: Bamiduro, Faith organization: University of Leeds – sequence: 2 givenname: Guozhao surname: Ji fullname: Ji, Guozhao organization: Tsinghua University – sequence: 3 givenname: Andy P. surname: Brown fullname: Brown, Andy P. organization: University of Leeds – sequence: 4 givenname: Valerie A. surname: Dupont fullname: Dupont, Valerie A. organization: University of Leeds – sequence: 5 givenname: Ming orcidid: 0000-0002-5801-5593 surname: Zhao fullname: Zhao, Ming email: ming.zhao@tsinghua.edu.cn organization: Tsinghua University – sequence: 6 givenname: Steven J. surname: Milne fullname: Milne, Steven J. email: s.j.milne@leeds.ac.uk organization: University of Leeds |
BookMark | eNpdkc9q3DAQh0VJaP60154FvfSyqcayZKmHwuKmaSCQUrdQehGyJGcVvJIr2V18yyP0GfMkdUhYaE4zw3x8zPA7QQchBofQGyBnQEjx3uRszgoCFSGk5C_QMQherhgvfx7sewpH6CTnW0I4kZy_REeFoBWwAo7RphmSnu_v_n5K3lncROunLf7lk4lBj-4DXuNvevAWr9sc0zD6GPDXuLMu4S4mXF8XuNbDOCWHd37c4POw0cEspno2vTe4GXXrez_Or9Bhp_vsXj_VU_Tj8_n3-svq6vrisl5frW6oFHzFKFSyrbQQlpSEa8mp0GBayisjrS0qMB3tSmJkCwQMNS3nxlJoLaNcso6eoo-P3mFqt84aF8akezUkv9VpVlF79f8m-I26iX8UY8ChEovg3ZMgxd-Ty6Pa-mxc3-vg4pQVCFECl1SWC_r2GXobpxSW9xZKVpxJyshCyUdq53s37y8Boh4SVA8Jqn2Cqm6aej_Rfyd3kzg |
ContentType | Journal Article |
Copyright | 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P WIN 7SR 8BQ 8FD JG9 K9. 7X8 5PM |
DOI | 10.1002/cssc.201700046 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Free Content Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 2067 |
ExternalDocumentID | CSSC201700046 |
Genre | article |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council (GB) funderid: EP/J014702/1 – fundername: Engineering and Physical Sciences Research Council (GB) grantid: EP/J014702/1 |
GroupedDBID | --- 05W 0R~ 1OC 24P 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WIN WOHZO WXSBR WYJ XV2 ZZTAW ~S- 7SR 8BQ 8FD AAMNL JG9 K9. 7X8 5PM |
ID | FETCH-LOGICAL-g3986-53179b7a88d0406a9638a1cb367c9dd271cf3f40c9b101c3cb66cd31bd53695f3 |
IEDL.DBID | 24P |
ISSN | 1864-5631 |
IngestDate | Tue Sep 17 21:24:47 EDT 2024 Wed Dec 04 01:20:26 EST 2024 Thu Nov 21 13:03:48 EST 2024 Sat Aug 24 00:59:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3986-53179b7a88d0406a9638a1cb367c9dd271cf3f40c9b101c3cb66cd31bd53695f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5801-5593 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201700046 |
PMID | 28371521 |
PQID | 1897659350 |
PQPubID | 986333 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5516178 proquest_miscellaneous_1884169394 proquest_journals_1897659350 wiley_primary_10_1002_cssc_201700046_CSSC201700046 |
PublicationCentury | 2000 |
PublicationDate | May 9, 2017 |
PublicationDateYYYYMMDD | 2017-05-09 |
PublicationDate_xml | – month: 05 year: 2017 text: May 9, 2017 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Hoboken |
PublicationTitle | ChemSusChem |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2004; 87 2012; 61 2009; 88 2011; 115 2007; 19 2002; 37 2013; 22 2013; 204 2006; 110 Energy Fuels 2013; 220 2014; 28 2007; 33 2011; 5 2017; 313 2016; 55 2017; 51 2016; 6 2010; 49 2009; 54 2010; 24 1993; 76 2013; 239 2008; 47 2009; 100 2011; 89 2012; 26 2008; 20 2008; 42 2010; 3 2008; 112 2007; 21 2012; 24 2010; 91 2005; 39 2012; 116 2014; 7 1998; 145 1972; 55 2003; 86 |
References_xml | – volume: 55 start-page: 9880 year: 2016 end-page: 9886 publication-title: Ind. Eng. Chem. Res. – volume: 42 start-page: 4170 year: 2008 end-page: 4174 publication-title: Environ. Sci. Technol. – volume: 22 start-page: 387 year: 2013 end-page: 393 publication-title: J. Energy Chem. – volume: Energy Fuels start-page: 19 end-page: 1452 publication-title: y. – volume: 91 start-page: 1812 year: 2010 end-page: 1818 publication-title: Fuel Process. Technol. – volume: 87 start-page: 68 year: 2004 end-page: 74 publication-title: J. Am. Ceram. Soc. – volume: 100 start-page: 2613 year: 2009 end-page: 2620 publication-title: Bioresour. Technol. – volume: 239 start-page: 492 year: 2013 end-page: 498 publication-title: Powder Technol. – volume: 6 start-page: 66579 year: 2016 end-page: 66588 publication-title: RSC Adv. – volume: 54 start-page: 511 year: 2009 end-page: 541 publication-title: Prog. Mater. Sci. – volume: 88 start-page: 1893 year: 2009 end-page: 1900 publication-title: Fuel – volume: 26 start-page: 3103 year: 2012 end-page: 3109 publication-title: Energy Fuels – volume: 20 start-page: 14 year: 2008 end-page: 27 publication-title: J. Environ. Sci. – volume: 24 start-page: 3059 year: 2012 end-page: 3064 publication-title: Adv. Mater. – volume: 86 start-page: 1474 year: 2003 end-page: 1480 publication-title: J. Am. Ceram. Soc. – volume: 21 start-page: 920 year: 2007 end-page: 926 publication-title: Energy Fuels – volume: 49 start-page: 2701 year: 2010 end-page: 2706 publication-title: Ind. Eng. Chem. Res. – volume: 39 start-page: 2861 year: 2005 end-page: 2866 publication-title: Environ. Sci. Technol. – volume: 47 start-page: 9537 year: 2008 end-page: 9543 publication-title: Ind. Eng. Chem. Res. – volume: 37 start-page: 3381 year: 2002 end-page: 3387 publication-title: J. Mater. Sci. – volume: 5 start-page: 1624 year: 2011 end-page: 1629 publication-title: Int. J. Greenhouse Gas Control – volume: 24 start-page: 5790 year: 2010 end-page: 5796 publication-title: Energy Fuels – volume: 115 start-page: 24804 year: 2011 end-page: 24812 publication-title: J. Phys. Chem. C – volume: 7 start-page: 3291 year: 2014 end-page: 3295 publication-title: Energy Environ. Sci. – volume: 313 start-page: 646 year: 2017 end-page: 654 publication-title: Chem. Eng. J. – volume: 89 start-page: 836 year: 2011 end-page: 855 publication-title: Chem. Eng. Res. Des. – volume: 61 start-page: 316 year: 2012 end-page: 320 publication-title: J. Sol-Gel Sci. Technol. – volume: 76 start-page: 2707 year: 1993 end-page: 2726 publication-title: J. Am. Ceram. Soc. – volume: 28 start-page: 1275 year: 2014 end-page: 1283 publication-title: Energy Fuels – volume: 110 start-page: 17315 year: 2006 end-page: 17328 publication-title: J. Phys. Chem. B – volume: 204 start-page: 298 year: 2013 end-page: 304 publication-title: J. Solid State Chem. – volume: 220 start-page: 383 year: 2013 end-page: 394 publication-title: Chem. Eng. J. – volume: 19 start-page: 3294 year: 2007 end-page: 3301 publication-title: Chem. Mater. – volume: 112 start-page: 6520 year: 2008 end-page: 6525 publication-title: J. Phys. Chem. C – volume: 55 start-page: 74 year: 1972 end-page: 77 publication-title: J. Am. Ceram. Soc. – volume: 33 start-page: 171 year: 2007 end-page: 210 publication-title: Prog. Energy Combust. Sci. – volume: 145 start-page: 1344 year: 1998 end-page: 1346 publication-title: J. Electrochem. Soc. – volume: 116 start-page: 9675 year: 2012 end-page: 9680 publication-title: J. Phys. Chem. C – volume: 51 start-page: 12 year: 2017 end-page: 27 publication-title: Environ. Sci. Technol. – volume: 3 start-page: 1645 year: 2010 end-page: 1669 publication-title: Energy Environ. Sci. |
SSID | ssj0060966 |
Score | 2.400017 |
Snippet | Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the... Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption-enhanced steam reforming. Here, we examine the... Improved powders for capturing CO 2 at high temperatures are required for H 2 production using sorption‐enhanced steam reforming. Here, we examine the... |
SourceID | pubmedcentral proquest wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 2059 |
SubjectTerms | absorption Bulk density Carbon dioxide Carbon sequestration Carbonation co2 capture Diffusion rate Dwell time Growth models High temperature Hydrogen production kinetic analysis Nucleation Phase separation Reforming Sodium sodium zirconate Spray drying Thermogravimetric analysis Thickness Two dimensional analysis Zirconium dioxide |
Title | Spray‐Dried Sodium Zirconate: A Rapid Absorption Powder for CO2 Capture with Enhanced Cyclic Stability |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201700046 https://www.proquest.com/docview/1897659350 https://search.proquest.com/docview/1884169394 https://pubmed.ncbi.nlm.nih.gov/PMC5516178 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUoHOiloi1Vt4XKlbhGxB9x7N5WAYQqFRALEuol8le6kWiySlhVe-Mn8Bv7S-rx7qZsj71EiZzJwZM3fvaMnxE6cjkXXhqaEFmphBtrE-W9TGC40jatjIsl_98uxPkt_3qX3T3bxb_UhxgW3AAZMV4DwLXpj_-Khtq-BwlC0JcLc7wXaCdwGwFnGFB-tY7FIhD0uL9ICp5kgpG1bGNKjzftNwjmv-WRz2lrHHfO9tCrFWHE46WHX6Mt37xBu8X6nLa3aDqZdXrx-_HpJMx6HZ60rp7_xN_rzsLCuP-Cx_haz2qHx6Zvuxgh8FX7y_kOB8KKi0uKCz2DRAKGRVl82kxjVQAuFva-tjjQ0VhAu9hHt2enN8V5sjo_IfnBlBRJgFeuTK6ldAGqQgPWNLGGidwq52hObMUqnlplAjAts0YI6xgxLmNCZRV7h7abtvHvEXbU2OBVRo1SgcIwQ7SiFa84Sa2XKR-hg3X3lSsQ9CWRgetkimXpCH0emkPvQE5CN76dwzuQ91RMhU_kG91ezpZyGyUIYG-2NPU0CmFDko_kcoRodNBgsZRipiW4uBxcXBaTSTE8ffgfo4_oJdzHgkd1gLYfurk_DKTkwXyK_124nlzTP38R3Zg |
link.rule.ids | 230,314,780,784,885,1375,11562,27924,27925,46052,46294,46476,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgLMqGN2KggJHYpo3txLHZjdJWA7QFdVoJsYn8ChMBySgzIzSs-AS-kS_B15kEpktYJo6jONfXPr73-BihlzZLuBOaRkSUMkq0MZF0TkQwXSkTl9oGyv_pGZ9cJm8-pD2bEPbCdPoQQ8ANPCOM1-DgEJA--KMaahYL0CAEgTm_yLuObnifJ8DqOjwfFKS4R-hhg5HgSZRyRnrdxpgebNffQphX-ZF_49Yw8RzfRrr_5I5v8nl_tdT75vsVNcf_atMddGsDS_G460d30TVX30O7eX8a3H00m85btf714-ehX1tbPG1stfqKP1atgfC7e4XH-FzNK4vHetG0YRzC75tv1rXYw2Kcv6M4V3NIV2AI_eKjeha4Bzhfmy-VwR70Bpru-gG6PD66yCfR5pSG6BOTgkfeiTOpMyWE9QMCV-DRihjNeGaktTQjpmRlEhupvfsbZjTnxjKibcq4TEv2EO3UTe0eIWypNr7vMKql9ECJaaIkLZMyIbFxIk5GaK-3UbFxtUVBhEdUqWRpPEIvhmL_dyDzoWrXrOAZyK5KJv0rsi3bFvNO1KMAme3tkrqaBbltSCWSTIwQDaYbanSCz7QAmxWDzYp8Os2Hq8f_Uuk52p1cnJ4UJ6_P3j5BN-F-oFjKPbSzbFfuqYdBS_0sdPTfvz8CGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNBLeasLBYzENW38iGNzW2W7Kq9SdalUcYn8Chu1JFF2V9Vy4ifwG_kl2M5u6PYIx8SZKM54xp9nxp8BeGNSyixXOEK8EBFVWkfCWh756UrquFAmlPx_OmZHZ_T9eXJ-bRd_xw_RB9y8ZQR_7Q28McXBX9JQPZt5CkLPL-fWeLfBHcqw8Oz5o9OeQIo5gB72F3FGo4QRtKZtjPHBpvwGwLxZHnkdtoZ5Z3wfyPUXd-UmF_uLudrXP26QOf5Plx6AnRUohcNuFD0Et2z1CNzL1mfBPQbTSdPK5e-fv0ZuZW3gpDbl4jv8WrbaB9_tWziEp7IpDRyqWd0GLwRP6itjW-hAMcw-Y5jJxicroA_8wsNqGioPYLbUl6WGDvKGIt3lE3A2PvySHUWrMxqib0RwFjkTToVKJefGuQMmvT1LpBVhqRbG4BTpghQ01kI549dEK8a0IUiZhDCRFOQp2Krqyu4CaLDSbuQQrIRwMIkoJAUuaEFRrC2P6QDsrVWUrwxtliPu8FQiSBIPwOu-2f0dn_eQla0X_hmfWxVEuFekG6rNm47SI_ck25stVTkNZNs-kYhSPgA4aK6X6Oiece51lvc6y7PJJOuvnv2L0Ctw92Q0zj--O_7wHGz726G-UuyBrXm7sC8cBpqrl2GY_wG8igDK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spray%E2%80%90Dried+Sodium+Zirconate%3A+A+Rapid+Absorption+Powder+for+CO2+Capture+with+Enhanced+Cyclic+Stability&rft.jtitle=ChemSusChem&rft.au=Bamiduro%2C+Faith&rft.au=Ji%2C+Guozhao&rft.au=Brown%2C+Andy+P.&rft.au=Dupont%2C+Valerie+A.&rft.date=2017-05-09&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=10&rft.issue=9&rft.spage=2059&rft.epage=2067&rft_id=info:doi/10.1002%2Fcssc.201700046&rft_id=info%3Apmid%2F28371521&rft.externalDBID=PMC5516178 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |