Spray‐Dried Sodium Zirconate: A Rapid Absorption Powder for CO2 Capture with Enhanced Cyclic Stability

Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray‐dried microgranules with a wall thickness o...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 10; no. 9; pp. 2059 - 2067
Main Authors Bamiduro, Faith, Ji, Guozhao, Brown, Andy P., Dupont, Valerie A., Zhao, Ming, Milne, Steven J.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 09.05.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray‐dried microgranules with a wall thickness of 100–300 nm corresponding to the dimensions of the primary acetate‐derived particles gave about 75 wt % theoretical CO2 conversion after a process‐relevant 5 min exposure to 15 vol % CO2. A conventional powder prepared by solid‐state reaction carbonated more slowly, achieving only 50 % conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray‐dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na‐rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re‐form Na2ZrO3 could be achieved by heating each powder to 900 °C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami–Erofeyev 2 D nucleation and nuclei growth model, consistent with microstructural evidence of a surface‐driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder. Spray drying does the trick: We examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. The hollow and perforated granular structure of spray‐dried Na2ZrO3 powders enables faster CO2 absorption than densely agglomerated conventional sorbents.
AbstractList Improved powders for capturing CO 2 at high temperatures are required for H 2 production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na 2 ZrO 3 powders. Hollow spray‐dried microgranules with a wall thickness of 100–300 nm corresponding to the dimensions of the primary acetate‐derived particles gave about 75 wt % theoretical CO 2 conversion after a process‐relevant 5 min exposure to 15 vol % CO 2 . A conventional powder prepared by solid‐state reaction carbonated more slowly, achieving only 50 % conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray‐dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na‐rich phase (Na 2 CO 3 ) within a crystalline ZrO 2 particle matrix. Despite this phase separation, the reverse reaction to re‐form Na 2 ZrO 3 could be achieved by heating each powder to 900 °C in N 2 (no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami–Erofeyev 2 D nucleation and nuclei growth model, consistent with microstructural evidence of a surface‐driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na 2 ZrO 3 powder.
Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray‐dried microgranules with a wall thickness of 100–300 nm corresponding to the dimensions of the primary acetate‐derived particles gave about 75 wt % theoretical CO2 conversion after a process‐relevant 5 min exposure to 15 vol % CO2. A conventional powder prepared by solid‐state reaction carbonated more slowly, achieving only 50 % conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray‐dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na‐rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re‐form Na2ZrO3 could be achieved by heating each powder to 900 °C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami–Erofeyev 2 D nucleation and nuclei growth model, consistent with microstructural evidence of a surface‐driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder. Spray drying does the trick: We examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. The hollow and perforated granular structure of spray‐dried Na2ZrO3 powders enables faster CO2 absorption than densely agglomerated conventional sorbents.
Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption-enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray-dried microgranules with a wall thickness of 100-300nm corresponding to the dimensions of the primary acetate-derived particles gave about 75wt% theoretical CO2 conversion after a process-relevant 5min exposure to 15vol% CO2. A conventional powder prepared by solid-state reaction carbonated more slowly, achieving only 50% conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray-dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na-rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re-form Na2ZrO3 could be achieved by heating each powder to 900°C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami-Erofeyev 2D nucleation and nuclei growth model, consistent with microstructural evidence of a surface-driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder.
Author Ji, Guozhao
Dupont, Valerie A.
Brown, Andy P.
Zhao, Ming
Milne, Steven J.
Bamiduro, Faith
AuthorAffiliation 2 School of Environment Tsinghua University Beijing 100084 P. R. China
1 School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT United Kingdom
AuthorAffiliation_xml – name: 1 School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT United Kingdom
– name: 2 School of Environment Tsinghua University Beijing 100084 P. R. China
Author_xml – sequence: 1
  givenname: Faith
  surname: Bamiduro
  fullname: Bamiduro, Faith
  organization: University of Leeds
– sequence: 2
  givenname: Guozhao
  surname: Ji
  fullname: Ji, Guozhao
  organization: Tsinghua University
– sequence: 3
  givenname: Andy P.
  surname: Brown
  fullname: Brown, Andy P.
  organization: University of Leeds
– sequence: 4
  givenname: Valerie A.
  surname: Dupont
  fullname: Dupont, Valerie A.
  organization: University of Leeds
– sequence: 5
  givenname: Ming
  orcidid: 0000-0002-5801-5593
  surname: Zhao
  fullname: Zhao, Ming
  email: ming.zhao@tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 6
  givenname: Steven J.
  surname: Milne
  fullname: Milne, Steven J.
  email: s.j.milne@leeds.ac.uk
  organization: University of Leeds
BookMark eNpdkc9q3DAQh0VJaP60154FvfSyqcayZKmHwuKmaSCQUrdQehGyJGcVvJIr2V18yyP0GfMkdUhYaE4zw3x8zPA7QQchBofQGyBnQEjx3uRszgoCFSGk5C_QMQherhgvfx7sewpH6CTnW0I4kZy_REeFoBWwAo7RphmSnu_v_n5K3lncROunLf7lk4lBj-4DXuNvevAWr9sc0zD6GPDXuLMu4S4mXF8XuNbDOCWHd37c4POw0cEspno2vTe4GXXrez_Or9Bhp_vsXj_VU_Tj8_n3-svq6vrisl5frW6oFHzFKFSyrbQQlpSEa8mp0GBayisjrS0qMB3tSmJkCwQMNS3nxlJoLaNcso6eoo-P3mFqt84aF8akezUkv9VpVlF79f8m-I26iX8UY8ChEovg3ZMgxd-Ty6Pa-mxc3-vg4pQVCFECl1SWC_r2GXobpxSW9xZKVpxJyshCyUdq53s37y8Boh4SVA8Jqn2Cqm6aej_Rfyd3kzg
ContentType Journal Article
Copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
WIN
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
DOI 10.1002/cssc.201700046
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 2067
ExternalDocumentID CSSC201700046
Genre article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council (GB)
  funderid: EP/J014702/1
– fundername: Engineering and Physical Sciences Research Council (GB)
  grantid: EP/J014702/1
GroupedDBID ---
05W
0R~
1OC
24P
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WIN
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
7SR
8BQ
8FD
AAMNL
JG9
K9.
7X8
5PM
ID FETCH-LOGICAL-g3986-53179b7a88d0406a9638a1cb367c9dd271cf3f40c9b101c3cb66cd31bd53695f3
IEDL.DBID 24P
ISSN 1864-5631
IngestDate Tue Sep 17 21:24:47 EDT 2024
Wed Dec 04 01:20:26 EST 2024
Thu Nov 21 13:03:48 EST 2024
Sat Aug 24 00:59:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3986-53179b7a88d0406a9638a1cb367c9dd271cf3f40c9b101c3cb66cd31bd53695f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5801-5593
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201700046
PMID 28371521
PQID 1897659350
PQPubID 986333
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5516178
proquest_miscellaneous_1884169394
proquest_journals_1897659350
wiley_primary_10_1002_cssc_201700046_CSSC201700046
PublicationCentury 2000
PublicationDate May 9, 2017
PublicationDateYYYYMMDD 2017-05-09
PublicationDate_xml – month: 05
  year: 2017
  text: May 9, 2017
  day: 09
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle ChemSusChem
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2004; 87
2012; 61
2009; 88
2011; 115
2007; 19
2002; 37
2013; 22
2013; 204
2006; 110
Energy Fuels
2013; 220
2014; 28
2007; 33
2011; 5
2017; 313
2016; 55
2017; 51
2016; 6
2010; 49
2009; 54
2010; 24
1993; 76
2013; 239
2008; 47
2009; 100
2011; 89
2012; 26
2008; 20
2008; 42
2010; 3
2008; 112
2007; 21
2012; 24
2010; 91
2005; 39
2012; 116
2014; 7
1998; 145
1972; 55
2003; 86
References_xml – volume: 55
  start-page: 9880
  year: 2016
  end-page: 9886
  publication-title: Ind. Eng. Chem. Res.
– volume: 42
  start-page: 4170
  year: 2008
  end-page: 4174
  publication-title: Environ. Sci. Technol.
– volume: 22
  start-page: 387
  year: 2013
  end-page: 393
  publication-title: J. Energy Chem.
– volume: Energy Fuels
  start-page: 19
  end-page: 1452
  publication-title: y.
– volume: 91
  start-page: 1812
  year: 2010
  end-page: 1818
  publication-title: Fuel Process. Technol.
– volume: 87
  start-page: 68
  year: 2004
  end-page: 74
  publication-title: J. Am. Ceram. Soc.
– volume: 100
  start-page: 2613
  year: 2009
  end-page: 2620
  publication-title: Bioresour. Technol.
– volume: 239
  start-page: 492
  year: 2013
  end-page: 498
  publication-title: Powder Technol.
– volume: 6
  start-page: 66579
  year: 2016
  end-page: 66588
  publication-title: RSC Adv.
– volume: 54
  start-page: 511
  year: 2009
  end-page: 541
  publication-title: Prog. Mater. Sci.
– volume: 88
  start-page: 1893
  year: 2009
  end-page: 1900
  publication-title: Fuel
– volume: 26
  start-page: 3103
  year: 2012
  end-page: 3109
  publication-title: Energy Fuels
– volume: 20
  start-page: 14
  year: 2008
  end-page: 27
  publication-title: J. Environ. Sci.
– volume: 24
  start-page: 3059
  year: 2012
  end-page: 3064
  publication-title: Adv. Mater.
– volume: 86
  start-page: 1474
  year: 2003
  end-page: 1480
  publication-title: J. Am. Ceram. Soc.
– volume: 21
  start-page: 920
  year: 2007
  end-page: 926
  publication-title: Energy Fuels
– volume: 49
  start-page: 2701
  year: 2010
  end-page: 2706
  publication-title: Ind. Eng. Chem. Res.
– volume: 39
  start-page: 2861
  year: 2005
  end-page: 2866
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 9537
  year: 2008
  end-page: 9543
  publication-title: Ind. Eng. Chem. Res.
– volume: 37
  start-page: 3381
  year: 2002
  end-page: 3387
  publication-title: J. Mater. Sci.
– volume: 5
  start-page: 1624
  year: 2011
  end-page: 1629
  publication-title: Int. J. Greenhouse Gas Control
– volume: 24
  start-page: 5790
  year: 2010
  end-page: 5796
  publication-title: Energy Fuels
– volume: 115
  start-page: 24804
  year: 2011
  end-page: 24812
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 3291
  year: 2014
  end-page: 3295
  publication-title: Energy Environ. Sci.
– volume: 313
  start-page: 646
  year: 2017
  end-page: 654
  publication-title: Chem. Eng. J.
– volume: 89
  start-page: 836
  year: 2011
  end-page: 855
  publication-title: Chem. Eng. Res. Des.
– volume: 61
  start-page: 316
  year: 2012
  end-page: 320
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 76
  start-page: 2707
  year: 1993
  end-page: 2726
  publication-title: J. Am. Ceram. Soc.
– volume: 28
  start-page: 1275
  year: 2014
  end-page: 1283
  publication-title: Energy Fuels
– volume: 110
  start-page: 17315
  year: 2006
  end-page: 17328
  publication-title: J. Phys. Chem. B
– volume: 204
  start-page: 298
  year: 2013
  end-page: 304
  publication-title: J. Solid State Chem.
– volume: 220
  start-page: 383
  year: 2013
  end-page: 394
  publication-title: Chem. Eng. J.
– volume: 19
  start-page: 3294
  year: 2007
  end-page: 3301
  publication-title: Chem. Mater.
– volume: 112
  start-page: 6520
  year: 2008
  end-page: 6525
  publication-title: J. Phys. Chem. C
– volume: 55
  start-page: 74
  year: 1972
  end-page: 77
  publication-title: J. Am. Ceram. Soc.
– volume: 33
  start-page: 171
  year: 2007
  end-page: 210
  publication-title: Prog. Energy Combust. Sci.
– volume: 145
  start-page: 1344
  year: 1998
  end-page: 1346
  publication-title: J. Electrochem. Soc.
– volume: 116
  start-page: 9675
  year: 2012
  end-page: 9680
  publication-title: J. Phys. Chem. C
– volume: 51
  start-page: 12
  year: 2017
  end-page: 27
  publication-title: Environ. Sci. Technol.
– volume: 3
  start-page: 1645
  year: 2010
  end-page: 1669
  publication-title: Energy Environ. Sci.
SSID ssj0060966
Score 2.400017
Snippet Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the...
Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption-enhanced steam reforming. Here, we examine the...
Improved powders for capturing CO 2 at high temperatures are required for H 2 production using sorption‐enhanced steam reforming. Here, we examine the...
SourceID pubmedcentral
proquest
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 2059
SubjectTerms absorption
Bulk density
Carbon dioxide
Carbon sequestration
Carbonation
co2 capture
Diffusion rate
Dwell time
Growth models
High temperature
Hydrogen production
kinetic analysis
Nucleation
Phase separation
Reforming
Sodium
sodium zirconate
Spray drying
Thermogravimetric analysis
Thickness
Two dimensional analysis
Zirconium dioxide
Title Spray‐Dried Sodium Zirconate: A Rapid Absorption Powder for CO2 Capture with Enhanced Cyclic Stability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201700046
https://www.proquest.com/docview/1897659350
https://search.proquest.com/docview/1884169394
https://pubmed.ncbi.nlm.nih.gov/PMC5516178
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUoHOiloi1Vt4XKlbhGxB9x7N5WAYQqFRALEuol8le6kWiySlhVe-Mn8Bv7S-rx7qZsj71EiZzJwZM3fvaMnxE6cjkXXhqaEFmphBtrE-W9TGC40jatjIsl_98uxPkt_3qX3T3bxb_UhxgW3AAZMV4DwLXpj_-Khtq-BwlC0JcLc7wXaCdwGwFnGFB-tY7FIhD0uL9ICp5kgpG1bGNKjzftNwjmv-WRz2lrHHfO9tCrFWHE46WHX6Mt37xBu8X6nLa3aDqZdXrx-_HpJMx6HZ60rp7_xN_rzsLCuP-Cx_haz2qHx6Zvuxgh8FX7y_kOB8KKi0uKCz2DRAKGRVl82kxjVQAuFva-tjjQ0VhAu9hHt2enN8V5sjo_IfnBlBRJgFeuTK6ldAGqQgPWNLGGidwq52hObMUqnlplAjAts0YI6xgxLmNCZRV7h7abtvHvEXbU2OBVRo1SgcIwQ7SiFa84Sa2XKR-hg3X3lSsQ9CWRgetkimXpCH0emkPvQE5CN76dwzuQ91RMhU_kG91ezpZyGyUIYG-2NPU0CmFDko_kcoRodNBgsZRipiW4uBxcXBaTSTE8ffgfo4_oJdzHgkd1gLYfurk_DKTkwXyK_124nlzTP38R3Zg
link.rule.ids 230,314,780,784,885,1375,11562,27924,27925,46052,46294,46476,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgLMqGN2KggJHYpo3txLHZjdJWA7QFdVoJsYn8ChMBySgzIzSs-AS-kS_B15kEpktYJo6jONfXPr73-BihlzZLuBOaRkSUMkq0MZF0TkQwXSkTl9oGyv_pGZ9cJm8-pD2bEPbCdPoQQ8ANPCOM1-DgEJA--KMaahYL0CAEgTm_yLuObnifJ8DqOjwfFKS4R-hhg5HgSZRyRnrdxpgebNffQphX-ZF_49Yw8RzfRrr_5I5v8nl_tdT75vsVNcf_atMddGsDS_G460d30TVX30O7eX8a3H00m85btf714-ehX1tbPG1stfqKP1atgfC7e4XH-FzNK4vHetG0YRzC75tv1rXYw2Kcv6M4V3NIV2AI_eKjeha4Bzhfmy-VwR70Bpru-gG6PD66yCfR5pSG6BOTgkfeiTOpMyWE9QMCV-DRihjNeGaktTQjpmRlEhupvfsbZjTnxjKibcq4TEv2EO3UTe0eIWypNr7vMKql9ECJaaIkLZMyIbFxIk5GaK-3UbFxtUVBhEdUqWRpPEIvhmL_dyDzoWrXrOAZyK5KJv0rsi3bFvNO1KMAme3tkrqaBbltSCWSTIwQDaYbanSCz7QAmxWDzYp8Os2Hq8f_Uuk52p1cnJ4UJ6_P3j5BN-F-oFjKPbSzbFfuqYdBS_0sdPTfvz8CGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNBLeasLBYzENW38iGNzW2W7Kq9SdalUcYn8Chu1JFF2V9Vy4ifwG_kl2M5u6PYIx8SZKM54xp9nxp8BeGNSyixXOEK8EBFVWkfCWh756UrquFAmlPx_OmZHZ_T9eXJ-bRd_xw_RB9y8ZQR_7Q28McXBX9JQPZt5CkLPL-fWeLfBHcqw8Oz5o9OeQIo5gB72F3FGo4QRtKZtjPHBpvwGwLxZHnkdtoZ5Z3wfyPUXd-UmF_uLudrXP26QOf5Plx6AnRUohcNuFD0Et2z1CNzL1mfBPQbTSdPK5e-fv0ZuZW3gpDbl4jv8WrbaB9_tWziEp7IpDRyqWd0GLwRP6itjW-hAMcw-Y5jJxicroA_8wsNqGioPYLbUl6WGDvKGIt3lE3A2PvySHUWrMxqib0RwFjkTToVKJefGuQMmvT1LpBVhqRbG4BTpghQ01kI549dEK8a0IUiZhDCRFOQp2Krqyu4CaLDSbuQQrIRwMIkoJAUuaEFRrC2P6QDsrVWUrwxtliPu8FQiSBIPwOu-2f0dn_eQla0X_hmfWxVEuFekG6rNm47SI_ck25stVTkNZNs-kYhSPgA4aK6X6Oiece51lvc6y7PJJOuvnv2L0Ctw92Q0zj--O_7wHGz726G-UuyBrXm7sC8cBpqrl2GY_wG8igDK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spray%E2%80%90Dried+Sodium+Zirconate%3A+A+Rapid+Absorption+Powder+for+CO2+Capture+with+Enhanced+Cyclic+Stability&rft.jtitle=ChemSusChem&rft.au=Bamiduro%2C+Faith&rft.au=Ji%2C+Guozhao&rft.au=Brown%2C+Andy+P.&rft.au=Dupont%2C+Valerie+A.&rft.date=2017-05-09&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=10&rft.issue=9&rft.spage=2059&rft.epage=2067&rft_id=info:doi/10.1002%2Fcssc.201700046&rft_id=info%3Apmid%2F28371521&rft.externalDBID=PMC5516178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon