SrCl2 Derived Perovskite Facilitating a High Efficiency of 16% in Hole‐Conductor‐Free Fully Printable Mesoscopic Perovskite Solar Cells

Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic–inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical appro...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 15
Main Authors Zhang, Hua, Wang, Huan, Williams, Spencer T., Xiong, Dehua, Zhang, Wenjun, Chueh, Chu‐Chen, Chen, Wei, Jen, Alex K.‐Y.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 18.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic–inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical approach using environmentally friendly strontium chloride (SrCl2) as a precursor for perovskite preparation is demonstrated to result in enhanced device performance and stability of the derived hole‐conductor‐free printable mesoscopic PVSCs. The CH3NH3PbI3 perovskite is chemically modified by introducing SrCl2 in the precursor solution. The results from structural, elemental, and morphological analyses show that the incorporation of SrCl2 affords the formation of CH3NH3PbI3(SrCl2)x perovskites endowed with lower defect concentration and better pore filling in the derived mesoscopic PVSCs. The optimized compositional CH3NH3PbI3(SrCl2)0.1 perovskite can substantially enhance the photovoltaic performance of the derived hole‐conductor‐free device to 15.9%, outperforming the value (13.0%) of the pristine CH3NH3PbI3 device. More importantly, the stability of the device in ambient air under illumination is also improved. A new compositional perovskite, CH3NH3PbI3(SrCl2)0.1 with more compact morphology and lower defect concentration is presented. Consequently, a power conversion efficiency of 15.9% with enhanced stability is achieved by employing the structure of hole‐conductor‐free fully printable mesoscopic perovskite solar cell.
AbstractList Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic-inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical approach using environmentally friendly strontium chloride (SrCl2 ) as a precursor for perovskite preparation is demonstrated to result in enhanced device performance and stability of the derived hole-conductor-free printable mesoscopic PVSCs. The CH3 NH3 PbI3 perovskite is chemically modified by introducing SrCl2 in the precursor solution. The results from structural, elemental, and morphological analyses show that the incorporation of SrCl2 affords the formation of CH3 NH3 PbI3 (SrCl2 )x perovskites endowed with lower defect concentration and better pore filling in the derived mesoscopic PVSCs. The optimized compositional CH3 NH3 PbI3 (SrCl2 )0.1 perovskite can substantially enhance the photovoltaic performance of the derived hole-conductor-free device to 15.9%, outperforming the value (13.0%) of the pristine CH3 NH3 PbI3 device. More importantly, the stability of the device in ambient air under illumination is also improved.
Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic–inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical approach using environmentally friendly strontium chloride (SrCl2) as a precursor for perovskite preparation is demonstrated to result in enhanced device performance and stability of the derived hole‐conductor‐free printable mesoscopic PVSCs. The CH3NH3PbI3 perovskite is chemically modified by introducing SrCl2 in the precursor solution. The results from structural, elemental, and morphological analyses show that the incorporation of SrCl2 affords the formation of CH3NH3PbI3(SrCl2)x perovskites endowed with lower defect concentration and better pore filling in the derived mesoscopic PVSCs. The optimized compositional CH3NH3PbI3(SrCl2)0.1 perovskite can substantially enhance the photovoltaic performance of the derived hole‐conductor‐free device to 15.9%, outperforming the value (13.0%) of the pristine CH3NH3PbI3 device. More importantly, the stability of the device in ambient air under illumination is also improved.
Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic–inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical approach using environmentally friendly strontium chloride (SrCl2) as a precursor for perovskite preparation is demonstrated to result in enhanced device performance and stability of the derived hole‐conductor‐free printable mesoscopic PVSCs. The CH3NH3PbI3 perovskite is chemically modified by introducing SrCl2 in the precursor solution. The results from structural, elemental, and morphological analyses show that the incorporation of SrCl2 affords the formation of CH3NH3PbI3(SrCl2)x perovskites endowed with lower defect concentration and better pore filling in the derived mesoscopic PVSCs. The optimized compositional CH3NH3PbI3(SrCl2)0.1 perovskite can substantially enhance the photovoltaic performance of the derived hole‐conductor‐free device to 15.9%, outperforming the value (13.0%) of the pristine CH3NH3PbI3 device. More importantly, the stability of the device in ambient air under illumination is also improved. A new compositional perovskite, CH3NH3PbI3(SrCl2)0.1 with more compact morphology and lower defect concentration is presented. Consequently, a power conversion efficiency of 15.9% with enhanced stability is achieved by employing the structure of hole‐conductor‐free fully printable mesoscopic perovskite solar cell.
Author Wang, Huan
Chen, Wei
Chueh, Chu‐Chen
Zhang, Hua
Xiong, Dehua
Williams, Spencer T.
Zhang, Wenjun
Jen, Alex K.‐Y.
Author_xml – sequence: 1
  givenname: Hua
  surname: Zhang
  fullname: Zhang, Hua
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Huan
  surname: Wang
  fullname: Wang, Huan
  organization: University of Washington
– sequence: 3
  givenname: Spencer T.
  surname: Williams
  fullname: Williams, Spencer T.
  organization: University of Washington
– sequence: 4
  givenname: Dehua
  surname: Xiong
  fullname: Xiong, Dehua
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Wenjun
  surname: Zhang
  fullname: Zhang, Wenjun
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Chu‐Chen
  surname: Chueh
  fullname: Chueh, Chu‐Chen
  organization: University of Washington
– sequence: 7
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: wnlochenwei@mail.hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 8
  givenname: Alex K.‐Y.
  surname: Jen
  fullname: Jen, Alex K.‐Y.
  email: ajen@uw.edu
  organization: City University of Hong Kong
BookMark eNpdkcFLHDEUxoNYcLW99hwohV5GXzKZbOa4jK4rKBVszyGTSbax2WSbzCh78-7Fv9G_pBFFSuHBe4_343sffIdoP8RgEPpM4JgA0BM1bNQxBcKBcxB7aEYaSioGbbOPZtDWTdVyJg7QYc63ANAWboYeb1LnKT41yd2ZAV-bFO_ybzcavFTaeTeq0YU1Vnjl1r_wmbVOOxP0DkeLCf-KXcCr6M3zw1MXwzDpMaYyL5MpApP3O3ydXBhV7w2-MjlmHbdO__vmJnqVcGe8zx_RB6t8Np_e-hH6uTz70a2qy-_nF93islrXbSMq1fecM-iJYDCfM0U0ZZaA0Ja3NSWqH6wtF6CGW8340FM-172wlM01UWDqI_TtVXeb4p_J5FFuXNbFgQomTlkSwRtBoVRBv_yH3sYpheJOkpYCo4IAK1T7St07b3Zym9xGpZ0kIF-CkS_ByPdg5OL0avG-1X8Bi9mHuA
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201606608
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201606608
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation
  funderid: 51672094
– fundername: Self‐determined and Innovative Research Funds of HUST
  funderid: 2016JCTD111
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-g3958-abb6640b1840774a1c24f108cf69321abdff40702e6fc46db267cb8f247c1a0e3
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Jul 11 06:23:56 EDT 2025
Fri Jul 25 05:53:05 EDT 2025
Wed Jan 22 16:57:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3958-abb6640b1840774a1c24f108cf69321abdff40702e6fc46db267cb8f247c1a0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1920428104
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_1865820820
proquest_journals_1920428104
wiley_primary_10_1002_adma_201606608_ADMA201606608
PublicationCentury 2000
PublicationDate April 18, 2017
PublicationDateYYYYMMDD 2017-04-18
PublicationDate_xml – month: 04
  year: 2017
  text: April 18, 2017
  day: 18
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2017; 5
2002; 37
2015; 6
1995; 71
2013; 25
2013; 1
2013; 501
2011; 40
2013; 342
2014; 26
2011; 99
2014; 24
2015; 348
2013; 7
2016; 15
2015; 7
2014; 136
2016; 12
2010; 82
2016; 4
2015; 350
2016; 6
2016; 7
2012; 2
1994; 369
2014; 5
2015; 27
2013; 52
2013; 499
2016
2015; 119
2014; 8
2016; 28
2014; 7
2012; 338
2014; 345
2016; 351
2016; 24
2016; 9
References_xml – volume: 12
  start-page: 5146
  year: 2016
  publication-title: Small
– volume: 40
  start-page: 5563
  year: 2011
  publication-title: Dalton Trans.
– volume: 27
  start-page: 6806
  year: 2015
  publication-title: Adv. Mater.
– volume: 136
  start-page: 8094
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 3585
  year: 2002
  publication-title: J. Mater. Sci.
– volume: 24
  start-page: 905
  year: 2016
  publication-title: Prog. Photovoltaics
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– volume: 7
  start-page: 486
  year: 2013
  publication-title: Nat. Photonics
– volume: 4
  start-page: 17939
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2892
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 28
  start-page: 9839
  year: 2016
  publication-title: Adv. Mater.
– volume: 71
  start-page: 1713
  year: 1995
  publication-title: Synth. Met.
– volume: 5
  start-page: 1434
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 99
  start-page: 153506
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 369
  start-page: 467
  year: 1994
  publication-title: Nature
– volume: 26
  start-page: 6454
  year: 2014
  publication-title: Adv. Mater.
– volume: 1
  start-page: 5628
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1400532
  year: 2015
  publication-title: Adv. Mater. Interfaces
– year: 2016
  publication-title: Science
– volume: 119
  start-page: 25673
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 82
  start-page: 245207
  year: 2010
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 811
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 295
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 10640
  year: 2014
  publication-title: ACS Nano
– volume: 15
  start-page: 247
  year: 2016
  publication-title: Nat. Mater.
– volume: 7
  start-page: 6216
  year: 2015
  publication-title: Nanoscale
– volume: 351
  start-page: 151
  year: 2016
  publication-title: Science
– volume: 5
  start-page: 648
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 25
  start-page: 4613
  year: 2013
  publication-title: Chem. Mater.
– volume: 26
  start-page: 2041
  year: 2014
  publication-title: Adv. Mater.
– volume: 7
  start-page: 703
  year: 2015
  publication-title: Nat. Chem.
– volume: 24
  start-page: 7102
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 10030
  year: 2015
  publication-title: Nat. Commun.
– volume: 24
  start-page: 3250
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1377
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 3770
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 489
  year: 2014
  publication-title: Nat. Photonics
– volume: 28
  start-page: 6695
  year: 2016
  publication-title: Adv. Mater.
– volume: 342
  start-page: 317
  year: 2013
  publication-title: Science
– volume: 7
  start-page: 3061
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 350
  start-page: 944
  year: 2015
  publication-title: Science
– volume: 5
  start-page: 1004
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 8990
  year: 2016
  publication-title: Adv. Mater.
– volume: 26
  start-page: 4466
  year: 2014
  publication-title: Chem. Mater.
– volume: 52
  start-page: 9019
  year: 2013
  publication-title: Inorg. Chem.
– volume: 2
  start-page: 591
  year: 2012
  publication-title: Sci. Rep.
– volume: 6
  start-page: 1601353
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 345
  start-page: 295
  year: 2014
  publication-title: Science
– volume: 501
  start-page: 395
  year: 2013
  publication-title: Nature
SSID ssj0009606
Score 2.5866427
Snippet Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic–inorganic hybrid perovskite solar cells (PVSCs), critical concerns...
Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic-inorganic hybrid perovskite solar cells (PVSCs), critical concerns...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms ambient stability
Commercialization
Conductors
Energy conversion efficiency
hole‐conductor free
Illumination
Materials science
mesoscopic perovskite solar cells
Perovskites
Photovoltaic cells
power conversion efficiency
Solar cells
Stability
Strontium
strontium chloride
Toxicity
Title SrCl2 Derived Perovskite Facilitating a High Efficiency of 16% in Hole‐Conductor‐Free Fully Printable Mesoscopic Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606608
https://www.proquest.com/docview/1920428104
https://www.proquest.com/docview/1865820820
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDeNKDv8XplAheq23Spu1xbI4hTIY_wFtJ0kTE0Uq7DfTk3Yt_o3-J77Xb3DzqrSFN0_Ly2u9L8z4h5MwLuZU2NE7ILHd8boQTx8w4seIBhzGSshTnO_rXonfvXz0EDwtZ_DUfYj7hhp5Rva_RwaUqL36goTKtuEEeKvAq2xcXbKEquvnhR6E8r2B7PHBi4UczaqPLLpabL-nLRZVafWa6m0TObrBeXfJ8Ph6pc_32i934nyfYIhtTDUpb9aDZJism2yHrC2TCXfJxW7SHjHagODEpHZgin5Q40Uu7Uk_B3tkjlRTXidDLikOBSZw0txTidPqU0V4-NF_vn-08Q6RsXsBxtzBwAQh6X-kA-hlh2hbtmzLH3JgnvdjNLYbctG2Gw3KP3Hcv79o9Z7pvg_PI4yBypFJC-K7C4BHUpfQ0863nRtoKUIueVKm1UOMyI6z2cUMrEWoVWeaH2pOu4ftkNcszc0ColVoLm3ogRKwvLEQ_ynpGcwb9qJAHDdKc2S2ZOl-ZgGjFSBACzQY5nVeD2-C_EJmZfAznRCC9GOqfBmGVkZKXGu-R1CBnlqB5krl5klan35qXDv_S6IisMRQFSIqMmmR1VIzNMUiakTqphu03hZ3w5A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEMdHpRygB74rFgoYiR7TJnbiJAcOq92utrRbVbSVegu2Y1cVq6RKdovKiTsXXoVX4RF4Emay2e2WI1IP3GIlsSNn7Pxn4vkZ4F0QC6dcbL2YO-GFwkovTbn1Ui0igTaS85ziHaMDOTwJP5xGpyvwc54LM-NDLAJuNDKa-ZoGOAWkt6-poSpvwEEBSXA_addV7tmrL-i11e93-_iKNzkf7Bz3hl67sYB3JtIo8ZTWUoa-Ju8G5Y8KDA9d4CfGSZQzgdK5c3jG51Y6E9KOSzI2OnE8jE2gfCuw3jtwl7YRJ1x__-M1sYocggbvJyIvlWEy50T6fPvm895QtMu6uPmwDR7Cr3mXzNazfN6aTvSW-foXLfK_6rNH8KCV2aw7GxePYcUWT2BtCb74FL4fVb0xZ30sXtqcHdqqvKwpls0GyrTs8uKMKUZLYdhOg9qgPFVWOhbITXZesGE5tr-__eiVBVFzywqPB5XFCrA7rtghtjOhzDQ2snVJ6T_nZrmZI4oqsJ4dj-tncHIrvbEOq0VZ2OfAnDJGujxAreVC6dDB0y6wRnBsR8ci6sDG3FCydn6pM9Tl5OyiL92Bt4vTODPQ7x5V2HKK1ySoLjlJvA7wxiqyixnBJJuxqnlG5pAtzCHr9kfdRenFv9z0Bu4Nj0f72f7uwd5LuM9JAxEYM9mA1Uk1ta9QwU3062bMMPh02wb3B7yrTpk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAcyr_YUsBI9Jg2sRMnOfSw2jTaUrZaUSr1FmzHripWSZXsFpUT9154FF6FV-iTdCbJbrcckXrgFsuJbTkzzvdNPJ8J-eCF3EobGidkljs-N8KJY2acWPGAg43kLMd4x-hADI_8j8fB8Qr5Pc-FafUhFgE39IxmvUYHP8vt9o1oqMwb3SAPEbgbddsq983FdyBt9c5eAm94k7F098tg6HTnCjgnPA4iRyolhO8qJDeAfqSnmW89N9JWAJrxpMqthRqXGWG1jwcuiVCryDI_1J50DYd275H7vnBjPCwi-XwjWIV8oFH344ETCz-ay0S6bPv2eG8B2mVY3HzX0sfkz3xG2u0s37ZmU7Wlf_wlFvk_TdkTstaBbNpvveIpWTHFM_JoSXrxObk8rAYTRhMonpucjk1VntcYyaap1J1yeXFCJcWNMHS3EdrALFVaWuqJTXpa0GE5MVc_fw3KAjVzywqu08pAA8DqL-gY-pliXhodmbrE5J9TvdzNIcYU6MBMJvULcnQns_GSrBZlYV4RaqXWwuYeIC3rCwv0TlnPaM6gHxXyoEc25naSdatLnQEqR6oLTLpH3i-qYV3Anz2yMOUM7okAWzIEeD3CGqPIzlr9kqxVqmYZmkO2MIesn4z6i9L6vzz0jjwYJ2n2ae9g_zV5yBAAoSpmtEFWp9XMvAH4NlVvG4-h5Otd29s1ZkpNSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SrCl2+Derived+Perovskite+Facilitating+a+High+Efficiency+of+16%25+in+Hole-Conductor-Free+Fully+Printable+Mesoscopic+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Hua&rft.au=Wang%2C+Huan&rft.au=Williams%2C+Spencer+T&rft.au=Xiong%2C+Dehua&rft.date=2017-04-18&rft.eissn=1521-4095&rft.volume=29&rft.issue=15&rft_id=info:doi/10.1002%2Fadma.201606608&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon