SrCl2 Derived Perovskite Facilitating a High Efficiency of 16% in Hole‐Conductor‐Free Fully Printable Mesoscopic Perovskite Solar Cells
Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic–inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical appro...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 15 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
18.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic–inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical approach using environmentally friendly strontium chloride (SrCl2) as a precursor for perovskite preparation is demonstrated to result in enhanced device performance and stability of the derived hole‐conductor‐free printable mesoscopic PVSCs. The CH3NH3PbI3 perovskite is chemically modified by introducing SrCl2 in the precursor solution. The results from structural, elemental, and morphological analyses show that the incorporation of SrCl2 affords the formation of CH3NH3PbI3(SrCl2)x perovskites endowed with lower defect concentration and better pore filling in the derived mesoscopic PVSCs. The optimized compositional CH3NH3PbI3(SrCl2)0.1 perovskite can substantially enhance the photovoltaic performance of the derived hole‐conductor‐free device to 15.9%, outperforming the value (13.0%) of the pristine CH3NH3PbI3 device. More importantly, the stability of the device in ambient air under illumination is also improved.
A new compositional perovskite, CH3NH3PbI3(SrCl2)0.1 with more compact morphology and lower defect concentration is presented. Consequently, a power conversion efficiency of 15.9% with enhanced stability is achieved by employing the structure of hole‐conductor‐free fully printable mesoscopic perovskite solar cell. |
---|---|
AbstractList | Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic-inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical approach using environmentally friendly strontium chloride (SrCl2 ) as a precursor for perovskite preparation is demonstrated to result in enhanced device performance and stability of the derived hole-conductor-free printable mesoscopic PVSCs. The CH3 NH3 PbI3 perovskite is chemically modified by introducing SrCl2 in the precursor solution. The results from structural, elemental, and morphological analyses show that the incorporation of SrCl2 affords the formation of CH3 NH3 PbI3 (SrCl2 )x perovskites endowed with lower defect concentration and better pore filling in the derived mesoscopic PVSCs. The optimized compositional CH3 NH3 PbI3 (SrCl2 )0.1 perovskite can substantially enhance the photovoltaic performance of the derived hole-conductor-free device to 15.9%, outperforming the value (13.0%) of the pristine CH3 NH3 PbI3 device. More importantly, the stability of the device in ambient air under illumination is also improved. Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic–inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical approach using environmentally friendly strontium chloride (SrCl2) as a precursor for perovskite preparation is demonstrated to result in enhanced device performance and stability of the derived hole‐conductor‐free printable mesoscopic PVSCs. The CH3NH3PbI3 perovskite is chemically modified by introducing SrCl2 in the precursor solution. The results from structural, elemental, and morphological analyses show that the incorporation of SrCl2 affords the formation of CH3NH3PbI3(SrCl2)x perovskites endowed with lower defect concentration and better pore filling in the derived mesoscopic PVSCs. The optimized compositional CH3NH3PbI3(SrCl2)0.1 perovskite can substantially enhance the photovoltaic performance of the derived hole‐conductor‐free device to 15.9%, outperforming the value (13.0%) of the pristine CH3NH3PbI3 device. More importantly, the stability of the device in ambient air under illumination is also improved. Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic–inorganic hybrid perovskite solar cells (PVSCs), critical concerns pertaining to the instability and toxicity still remain that may potentially hinder their commercialization. In this study, a new chemical approach using environmentally friendly strontium chloride (SrCl2) as a precursor for perovskite preparation is demonstrated to result in enhanced device performance and stability of the derived hole‐conductor‐free printable mesoscopic PVSCs. The CH3NH3PbI3 perovskite is chemically modified by introducing SrCl2 in the precursor solution. The results from structural, elemental, and morphological analyses show that the incorporation of SrCl2 affords the formation of CH3NH3PbI3(SrCl2)x perovskites endowed with lower defect concentration and better pore filling in the derived mesoscopic PVSCs. The optimized compositional CH3NH3PbI3(SrCl2)0.1 perovskite can substantially enhance the photovoltaic performance of the derived hole‐conductor‐free device to 15.9%, outperforming the value (13.0%) of the pristine CH3NH3PbI3 device. More importantly, the stability of the device in ambient air under illumination is also improved. A new compositional perovskite, CH3NH3PbI3(SrCl2)0.1 with more compact morphology and lower defect concentration is presented. Consequently, a power conversion efficiency of 15.9% with enhanced stability is achieved by employing the structure of hole‐conductor‐free fully printable mesoscopic perovskite solar cell. |
Author | Wang, Huan Chen, Wei Chueh, Chu‐Chen Zhang, Hua Xiong, Dehua Williams, Spencer T. Zhang, Wenjun Jen, Alex K.‐Y. |
Author_xml | – sequence: 1 givenname: Hua surname: Zhang fullname: Zhang, Hua organization: Huazhong University of Science and Technology – sequence: 2 givenname: Huan surname: Wang fullname: Wang, Huan organization: University of Washington – sequence: 3 givenname: Spencer T. surname: Williams fullname: Williams, Spencer T. organization: University of Washington – sequence: 4 givenname: Dehua surname: Xiong fullname: Xiong, Dehua organization: Huazhong University of Science and Technology – sequence: 5 givenname: Wenjun surname: Zhang fullname: Zhang, Wenjun organization: Huazhong University of Science and Technology – sequence: 6 givenname: Chu‐Chen surname: Chueh fullname: Chueh, Chu‐Chen organization: University of Washington – sequence: 7 givenname: Wei surname: Chen fullname: Chen, Wei email: wnlochenwei@mail.hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 8 givenname: Alex K.‐Y. surname: Jen fullname: Jen, Alex K.‐Y. email: ajen@uw.edu organization: City University of Hong Kong |
BookMark | eNpdkcFLHDEUxoNYcLW99hwohV5GXzKZbOa4jK4rKBVszyGTSbax2WSbzCh78-7Fv9G_pBFFSuHBe4_343sffIdoP8RgEPpM4JgA0BM1bNQxBcKBcxB7aEYaSioGbbOPZtDWTdVyJg7QYc63ANAWboYeb1LnKT41yd2ZAV-bFO_ybzcavFTaeTeq0YU1Vnjl1r_wmbVOOxP0DkeLCf-KXcCr6M3zw1MXwzDpMaYyL5MpApP3O3ydXBhV7w2-MjlmHbdO__vmJnqVcGe8zx_RB6t8Np_e-hH6uTz70a2qy-_nF93islrXbSMq1fecM-iJYDCfM0U0ZZaA0Ja3NSWqH6wtF6CGW8340FM-172wlM01UWDqI_TtVXeb4p_J5FFuXNbFgQomTlkSwRtBoVRBv_yH3sYpheJOkpYCo4IAK1T7St07b3Zym9xGpZ0kIF-CkS_ByPdg5OL0avG-1X8Bi9mHuA |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201606608 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201606608 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation funderid: 51672094 – fundername: Self‐determined and Innovative Research Funds of HUST funderid: 2016JCTD111 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-g3958-abb6640b1840774a1c24f108cf69321abdff40702e6fc46db267cb8f247c1a0e3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Jul 11 06:23:56 EDT 2025 Fri Jul 25 05:53:05 EDT 2025 Wed Jan 22 16:57:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3958-abb6640b1840774a1c24f108cf69321abdff40702e6fc46db267cb8f247c1a0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1920428104 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1865820820 proquest_journals_1920428104 wiley_primary_10_1002_adma_201606608_ADMA201606608 |
PublicationCentury | 2000 |
PublicationDate | April 18, 2017 |
PublicationDateYYYYMMDD | 2017-04-18 |
PublicationDate_xml | – month: 04 year: 2017 text: April 18, 2017 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2017; 5 2002; 37 2015; 6 1995; 71 2013; 25 2013; 1 2013; 501 2011; 40 2013; 342 2014; 26 2011; 99 2014; 24 2015; 348 2013; 7 2016; 15 2015; 7 2014; 136 2016; 12 2010; 82 2016; 4 2015; 350 2016; 6 2016; 7 2012; 2 1994; 369 2014; 5 2015; 27 2013; 52 2013; 499 2016 2015; 119 2014; 8 2016; 28 2014; 7 2012; 338 2014; 345 2016; 351 2016; 24 2016; 9 |
References_xml | – volume: 12 start-page: 5146 year: 2016 publication-title: Small – volume: 40 start-page: 5563 year: 2011 publication-title: Dalton Trans. – volume: 27 start-page: 6806 year: 2015 publication-title: Adv. Mater. – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 3585 year: 2002 publication-title: J. Mater. Sci. – volume: 24 start-page: 905 year: 2016 publication-title: Prog. Photovoltaics – volume: 345 start-page: 542 year: 2014 publication-title: Science – volume: 7 start-page: 486 year: 2013 publication-title: Nat. Photonics – volume: 4 start-page: 17939 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 2892 year: 2016 publication-title: Energy Environ. Sci. – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 28 start-page: 9839 year: 2016 publication-title: Adv. Mater. – volume: 71 start-page: 1713 year: 1995 publication-title: Synth. Met. – volume: 5 start-page: 1434 year: 2017 publication-title: J. Mater. Chem. A – volume: 499 start-page: 316 year: 2013 publication-title: Nature – volume: 99 start-page: 153506 year: 2011 publication-title: Appl. Phys. Lett. – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 369 start-page: 467 year: 1994 publication-title: Nature – volume: 26 start-page: 6454 year: 2014 publication-title: Adv. Mater. – volume: 1 start-page: 5628 year: 2013 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1400532 year: 2015 publication-title: Adv. Mater. Interfaces – year: 2016 publication-title: Science – volume: 119 start-page: 25673 year: 2015 publication-title: J. Phys. Chem. C – volume: 82 start-page: 245207 year: 2010 publication-title: Phys. Rev. B – volume: 7 start-page: 811 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 295 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 10640 year: 2014 publication-title: ACS Nano – volume: 15 start-page: 247 year: 2016 publication-title: Nat. Mater. – volume: 7 start-page: 6216 year: 2015 publication-title: Nanoscale – volume: 351 start-page: 151 year: 2016 publication-title: Science – volume: 5 start-page: 648 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 25 start-page: 4613 year: 2013 publication-title: Chem. Mater. – volume: 26 start-page: 2041 year: 2014 publication-title: Adv. Mater. – volume: 7 start-page: 703 year: 2015 publication-title: Nat. Chem. – volume: 24 start-page: 7102 year: 2014 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 10030 year: 2015 publication-title: Nat. Commun. – volume: 24 start-page: 3250 year: 2014 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1377 year: 2014 publication-title: Energy Environ. Sci. – volume: 9 start-page: 3770 year: 2016 publication-title: Energy Environ. Sci. – volume: 8 start-page: 489 year: 2014 publication-title: Nat. Photonics – volume: 28 start-page: 6695 year: 2016 publication-title: Adv. Mater. – volume: 342 start-page: 317 year: 2013 publication-title: Science – volume: 7 start-page: 3061 year: 2014 publication-title: Energy Environ. Sci. – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 350 start-page: 944 year: 2015 publication-title: Science – volume: 5 start-page: 1004 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 8990 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 4466 year: 2014 publication-title: Chem. Mater. – volume: 52 start-page: 9019 year: 2013 publication-title: Inorg. Chem. – volume: 2 start-page: 591 year: 2012 publication-title: Sci. Rep. – volume: 6 start-page: 1601353 year: 2016 publication-title: Adv. Energy Mater. – volume: 345 start-page: 295 year: 2014 publication-title: Science – volume: 501 start-page: 395 year: 2013 publication-title: Nature |
SSID | ssj0009606 |
Score | 2.5866427 |
Snippet | Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic–inorganic hybrid perovskite solar cells (PVSCs), critical concerns... Despite the breakthrough of over 22% power conversion efficiency demonstrated in organic-inorganic hybrid perovskite solar cells (PVSCs), critical concerns... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | ambient stability Commercialization Conductors Energy conversion efficiency hole‐conductor free Illumination Materials science mesoscopic perovskite solar cells Perovskites Photovoltaic cells power conversion efficiency Solar cells Stability Strontium strontium chloride Toxicity |
Title | SrCl2 Derived Perovskite Facilitating a High Efficiency of 16% in Hole‐Conductor‐Free Fully Printable Mesoscopic Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606608 https://www.proquest.com/docview/1920428104 https://www.proquest.com/docview/1865820820 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDeNKDv8XplAheq23Spu1xbI4hTIY_wFtJ0kTE0Uq7DfTk3Yt_o3-J77Xb3DzqrSFN0_Ly2u9L8z4h5MwLuZU2NE7ILHd8boQTx8w4seIBhzGSshTnO_rXonfvXz0EDwtZ_DUfYj7hhp5Rva_RwaUqL36goTKtuEEeKvAq2xcXbKEquvnhR6E8r2B7PHBi4UczaqPLLpabL-nLRZVafWa6m0TObrBeXfJ8Ph6pc_32i934nyfYIhtTDUpb9aDZJism2yHrC2TCXfJxW7SHjHagODEpHZgin5Q40Uu7Uk_B3tkjlRTXidDLikOBSZw0txTidPqU0V4-NF_vn-08Q6RsXsBxtzBwAQh6X-kA-hlh2hbtmzLH3JgnvdjNLYbctG2Gw3KP3Hcv79o9Z7pvg_PI4yBypFJC-K7C4BHUpfQ0863nRtoKUIueVKm1UOMyI6z2cUMrEWoVWeaH2pOu4ftkNcszc0ColVoLm3ogRKwvLEQ_ynpGcwb9qJAHDdKc2S2ZOl-ZgGjFSBACzQY5nVeD2-C_EJmZfAznRCC9GOqfBmGVkZKXGu-R1CBnlqB5krl5klan35qXDv_S6IisMRQFSIqMmmR1VIzNMUiakTqphu03hZ3w5A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEMdHpRygB74rFgoYiR7TJnbiJAcOq92utrRbVbSVegu2Y1cVq6RKdovKiTsXXoVX4RF4Emay2e2WI1IP3GIlsSNn7Pxn4vkZ4F0QC6dcbL2YO-GFwkovTbn1Ui0igTaS85ziHaMDOTwJP5xGpyvwc54LM-NDLAJuNDKa-ZoGOAWkt6-poSpvwEEBSXA_addV7tmrL-i11e93-_iKNzkf7Bz3hl67sYB3JtIo8ZTWUoa-Ju8G5Y8KDA9d4CfGSZQzgdK5c3jG51Y6E9KOSzI2OnE8jE2gfCuw3jtwl7YRJ1x__-M1sYocggbvJyIvlWEy50T6fPvm895QtMu6uPmwDR7Cr3mXzNazfN6aTvSW-foXLfK_6rNH8KCV2aw7GxePYcUWT2BtCb74FL4fVb0xZ30sXtqcHdqqvKwpls0GyrTs8uKMKUZLYdhOg9qgPFVWOhbITXZesGE5tr-__eiVBVFzywqPB5XFCrA7rtghtjOhzDQ2snVJ6T_nZrmZI4oqsJ4dj-tncHIrvbEOq0VZ2OfAnDJGujxAreVC6dDB0y6wRnBsR8ci6sDG3FCydn6pM9Tl5OyiL92Bt4vTODPQ7x5V2HKK1ySoLjlJvA7wxiqyixnBJJuxqnlG5pAtzCHr9kfdRenFv9z0Bu4Nj0f72f7uwd5LuM9JAxEYM9mA1Uk1ta9QwU3062bMMPh02wb3B7yrTpk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAcyr_YUsBI9Jg2sRMnOfSw2jTaUrZaUSr1FmzHripWSZXsFpUT9154FF6FV-iTdCbJbrcckXrgFsuJbTkzzvdNPJ8J-eCF3EobGidkljs-N8KJY2acWPGAg43kLMd4x-hADI_8j8fB8Qr5Pc-FafUhFgE39IxmvUYHP8vt9o1oqMwb3SAPEbgbddsq983FdyBt9c5eAm94k7F098tg6HTnCjgnPA4iRyolhO8qJDeAfqSnmW89N9JWAJrxpMqthRqXGWG1jwcuiVCryDI_1J50DYd275H7vnBjPCwi-XwjWIV8oFH344ETCz-ay0S6bPv2eG8B2mVY3HzX0sfkz3xG2u0s37ZmU7Wlf_wlFvk_TdkTstaBbNpvveIpWTHFM_JoSXrxObk8rAYTRhMonpucjk1VntcYyaap1J1yeXFCJcWNMHS3EdrALFVaWuqJTXpa0GE5MVc_fw3KAjVzywqu08pAA8DqL-gY-pliXhodmbrE5J9TvdzNIcYU6MBMJvULcnQns_GSrBZlYV4RaqXWwuYeIC3rCwv0TlnPaM6gHxXyoEc25naSdatLnQEqR6oLTLpH3i-qYV3Anz2yMOUM7okAWzIEeD3CGqPIzlr9kqxVqmYZmkO2MIesn4z6i9L6vzz0jjwYJ2n2ae9g_zV5yBAAoSpmtEFWp9XMvAH4NlVvG4-h5Otd29s1ZkpNSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SrCl2+Derived+Perovskite+Facilitating+a+High+Efficiency+of+16%25+in+Hole-Conductor-Free+Fully+Printable+Mesoscopic+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Hua&rft.au=Wang%2C+Huan&rft.au=Williams%2C+Spencer+T&rft.au=Xiong%2C+Dehua&rft.date=2017-04-18&rft.eissn=1521-4095&rft.volume=29&rft.issue=15&rft_id=info:doi/10.1002%2Fadma.201606608&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |