Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca–CeO2/LiTFSI/PEO Composite Electrolyte for High‐Rate and High‐Voltage All‐Solid‐State Battery

Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 21
Main Authors Chen, Hao, Adekoya, David, Hencz, Luke, Ma, Jun, Chen, Su, Yan, Cheng, Zhao, Huijun, Cui, Guanglei, Zhang, Shanqing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO2 (Ca–CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO2/LiTFSI/PEO. Ca–CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10−4 S cm−1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO2/LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability. Ca‐doped CeO2 nanotubes with rich oxygen vacancies provide abundant interaction sites for stable and seamless contact with flexible polyethylene oxide (PEO) and afford enhanced ionic conductivity (1.3 × 10−4 S cm−1 at 60 °C) and increased transference number of 0.453 with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. The all‐solid‐state batteries based on the as‐prepared (Ca–CeO2/PEO/LiTFSI) electrolyte deliver superior rate capability, excellent long‐term cycling, and high‐voltage stability.
AbstractList Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO2 (Ca–CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO2/LiTFSI/PEO. Ca–CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10−4 S cm−1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO2/LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability.
Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO2 (Ca–CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO2/LiTFSI/PEO. Ca–CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10−4 S cm−1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO2/LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability. Ca‐doped CeO2 nanotubes with rich oxygen vacancies provide abundant interaction sites for stable and seamless contact with flexible polyethylene oxide (PEO) and afford enhanced ionic conductivity (1.3 × 10−4 S cm−1 at 60 °C) and increased transference number of 0.453 with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. The all‐solid‐state batteries based on the as‐prepared (Ca–CeO2/PEO/LiTFSI) electrolyte deliver superior rate capability, excellent long‐term cycling, and high‐voltage stability.
Author Zhao, Huijun
Hencz, Luke
Adekoya, David
Chen, Su
Cui, Guanglei
Zhang, Shanqing
Ma, Jun
Yan, Cheng
Chen, Hao
Author_xml – sequence: 1
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  organization: Griffith University
– sequence: 2
  givenname: David
  surname: Adekoya
  fullname: Adekoya, David
  organization: Griffith University
– sequence: 3
  givenname: Luke
  surname: Hencz
  fullname: Hencz, Luke
  organization: Griffith University
– sequence: 4
  givenname: Jun
  surname: Ma
  fullname: Ma, Jun
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Su
  surname: Chen
  fullname: Chen, Su
  organization: Queensland University of Technology (QUT)
– sequence: 6
  givenname: Cheng
  surname: Yan
  fullname: Yan, Cheng
  organization: Queensland University of Technology (QUT)
– sequence: 7
  givenname: Huijun
  surname: Zhao
  fullname: Zhao, Huijun
  organization: Griffith University
– sequence: 8
  givenname: Guanglei
  surname: Cui
  fullname: Cui, Guanglei
  email: cuigl@qibebt.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Shanqing
  orcidid: 0000-0001-5192-1844
  surname: Zhang
  fullname: Zhang, Shanqing
  email: s.zhang@griffith.edu.au
  organization: Griffith University
BookMark eNo9kc1Kw0AUhQdR8HfresB17Pw1P8saqi1UK211G6aZmzoyydRkqmTnIwi-gk_WJ3FCS-_m3AMf51445-i4shUgdE3JLSWE9SRU5S0jjPgRyRE6oyEVQRgLcnzYOTtFV03zvmMo4fwM_c2dXBrAc5ClgabB48pBXcgcGiwrhWdyrRUe20rnOLWV2uROf2rXYlvgVG6_f1OYst5EL-7n497zcOqhcm0b7QAPDeSutqb1e2FrPNKrt-33z0x630Xv_as1Tq4AD4zxbm6NVp26DruTzn_TXqKTQpoGrvZ6gV7uh4t0FEymD-N0MAlWPIqTIAmBJ0UexX25zInKI04SEoZ9FqmCRn2qKCdEMVYoJSAWki5FomImQCkvUcgv0M0ud13bjw00Lnu3m7ryJzMmSCyiRIjIU8mO-tIG2mxd61LWbUZJ1jWRdU1khyaywfDp8eD4P2pmhdE
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202000049
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM202000049
Genre article
GrantInformation_xml – fundername: Australian Research Council
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-g3789-96e39fc785abc0dc7309066527df1751d1300d22fdd4e84a1b49d824eddd82763
ISSN 1614-6832
IngestDate Fri Jul 25 12:12:57 EDT 2025
Wed Jan 22 16:33:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g3789-96e39fc785abc0dc7309066527df1751d1300d22fdd4e84a1b49d824eddd82763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5192-1844
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/aenm.202000049
PQID 2408479447
PQPubID 886389
PageCount 13
ParticipantIDs proquest_journals_2408479447
wiley_primary_10_1002_aenm_202000049_AENM202000049
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 166
2015; 15
2007; 168
2015; 6
1999 2009; 103 57
2019; 5
2017; 4
2009; 180
2013; 87
2009 1967; 20 38
2016 2018; 113 30
2016; 10
2020; 59
1991 2003; 138 91
2019; 18
2017 2019 2018; 2 12 8
2017; 29
2003; 115
2017 2011; 9 394
2019 2011; 5 196
2015; 7
2001 2017 2019; 92 164 0
1998; 394
2010; 45
1995 2008; 81 179
2020; 7
1996 2012; 408 27
2017; 31
2018; 18
2016; 6
2001 2002; 90 37
2018; 3
2016; 1
2018; 2
2019; 61
2009; 92
2004; 16
2003; 6
2019; 116
1996; 85
2019; 29
2011; 65
2005 2017; 146 2
2012; 116
1987; 28
2019 2018; 29 14
2016; 22
2010; 71
References_xml – volume: 146 2
  start-page: 397
  year: 2005 2017
  publication-title: J. Power Sources Nat. Energy
– volume: 166
  start-page: 275
  year: 2004
  publication-title: Solid State Ionics
– volume: 5
  start-page: 2326
  year: 2019
  publication-title: Chem
– volume: 71
  start-page: 329
  year: 2010
  publication-title: J. Phys. Chem. Solids
– volume: 22
  start-page: 1259
  year: 2016
  publication-title: Ionics
– volume: 394
  start-page: 456
  year: 1998
  publication-title: Nature
– volume: 2
  start-page: 1991
  year: 2018
  publication-title: Joule
– volume: 113 30
  start-page: 7094
  year: 2016 2018
  publication-title: Proc. Natl. Acad. Sci. USA Adv. Mater.
– volume: 45
  start-page: 527
  year: 2010
  publication-title: Mater. Res. Bull.
– volume: 116
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 408 27
  start-page: 113 2996
  year: 1996 2012
  publication-title: J. Electroanal. Chem. J. Mater. Res.
– volume: 180
  start-page: 392
  year: 2009
  publication-title: Solid State Ionics
– volume: 7
  start-page: 4720
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 3104
  year: 2018
  publication-title: Nano Lett.
– volume: 90 37
  start-page: 2517 683
  year: 2001 2002
  publication-title: J. Appl. Phys. J. Mater. Sci.
– volume: 168
  start-page: 178
  year: 2007
  publication-title: J. Power Sources
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 9 394
  start-page: 492 105
  year: 2017 2011
  publication-title: ChemCatChem Appl. Catal., A
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 81 179
  start-page: 53 661
  year: 1995 2008
  publication-title: Solid State Ionics Solid State Ionics
– volume: 2 12 8
  start-page: 938
  year: 2017 2019 2018
  publication-title: Nat. Rev. Mater. Energy Environ. Sci. Adv. Energy Mater.
– volume: 20 38
  start-page: 2376
  year: 2009 1967
  publication-title: Nanotechnology J. Appl. Phys.
– volume: 6
  start-page: 7402
  year: 2015
  publication-title: Nat. Commun.
– volume: 85
  start-page: 67
  year: 1996
  publication-title: Solid State Ionics
– volume: 28
  start-page: 2324
  year: 1987
  publication-title: Polymer
– volume: 29 14
  start-page: 49
  year: 2019 2018
  publication-title: Adv. Funct. Mater. Energy Storage Mater.
– volume: 18
  start-page: 1080
  year: 2018
  publication-title: Aerosol Air Qual. Res.
– volume: 15
  start-page: 2740
  year: 2015
  publication-title: Nano Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 65
  start-page: 2377
  year: 2011
  publication-title: Mater. Lett.
– volume: 5 196
  start-page: 753 8651
  year: 2019 2011
  publication-title: Chem J. Power Sources
– volume: 59
  start-page: 4131
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: E40
  year: 2003
  publication-title: Electrochem. Solid‐State Lett.
– volume: 16
  start-page: 2599
  year: 2004
  publication-title: Chem. Mater.
– volume: 92
  start-page: 2745
  year: 2009
  publication-title: J. Am. Ceram. Soc.
– volume: 18
  start-page: 1278
  year: 2019
  publication-title: Nat. Mater.
– volume: 115
  start-page: 288
  year: 2003
  publication-title: J. Power Sources
– volume: 61
  start-page: 567
  year: 2019
  publication-title: Nano Energy
– volume: 103 57
  start-page: 7627 722
  year: 1999 2009
  publication-title: J. Phys. Chem. B Acta Mater.
– volume: 138 91
  start-page: 1918
  year: 1991 2003
  publication-title: J. Electrochem. Soc. Phys. Rev. Lett.
– volume: 92 164 0
  start-page: 234
  year: 2001 2017 2019
  publication-title: J. Power Sources J. Electrochem. Soc. Adv. Mater.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 31
  start-page: 478
  year: 2017
  publication-title: Nano Energy
– volume: 3
  start-page: 38
  year: 2018
  publication-title: OpenNano
SSID ssj0000491033
Score 2.6834586
Snippet Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms all‐solid‐state batteries
CeO 2 nanotubes
Cerium oxides
Density functional theory
Electrolytes
Ethylene oxide
Ion currents
Ions
Lithium
lithium ion batteries
Lithium ions
Nanotubes
Polyethylene oxide
Solid electrolytes
Voltage stability
Title Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca–CeO2/LiTFSI/PEO Composite Electrolyte for High‐Rate and High‐Voltage All‐Solid‐State Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202000049
https://www.proquest.com/docview/2408479447
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9gIHxK8oFLQHbpGJs7Zj-xiFVClKWkRS1Ju13l2jqsauwDmUUx8BiVfgyXrgOZjZtdc2IAS9-Gft2Irn88zs-ptvCXnpeXEUZwI6OaHvOj5XqROHXuZApGJSpCJyM6wdXh1NFif-m9PgdDD40WEtbav0lfjyx7qSm1gV2sCuWCX7H5a1F4UG2Ab7whIsDMt_sjFkilj4tFb8Y44eSw_vZZpkpesO-cWZHB7qOW5mZYHKrmaqCF2T1dAcvJk6RnnU5dnmYH0IG2_nx9pNIJ1LDedmnpz8sjLy4EgMsQyJd5Cp6lv1Wt-XeYVUoGme27Z1mcPjsXuY4g6Ntmfvu_K0oSQoU5MI-bR5kC0NwfjJBS9bqoE6Ly_5Lwx9XX8h9PD4cnveYfiaWpSiO9zB3JaWVXtoyCecSVQPiqpum9F9sm7d7cDXVGHXEd7Gv9_Ch5Gj5apAjQJm-k9toGzIAfbM4O_nGlnh-dHKHr9Fdhl0Z8Af705fr5ZrOxoIx8aup6tBmv_XKIy6bNS_Sa8v1O1R6ZRoc4_crfsydGqAeZ8MVPGA3OkoXD4k3w1EaQNR2kKUAm6ohijVEKVdiNIyozN-ffUNwTky0BwBMKkFJu0AkwIwKULw-uorQlJfut6vwUgBjLCnYYhrBCCtAfiInBzMN7OFU08M4nzwwggVZZUHDiaMAp4KVwqIUjF-QmShzMDJjCV-o5WMZVL6KvL5OPVjGTFfSQkriKiPyU5RFuoJoSLkyhsr5StwVkLAuYHPZMCCCHqdXjrZI_vNw07qN_9zgrKAODODH-4Rpg2QXBhtmMSogLMETZZYkyU9FDy9yY-ekdvt67BPdqpPW_Uc8uEqfVGD6SdDYa7E
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Seamless+Interfaces+and+Rapid+Ionic+Conductivity+of+Ca%E2%80%93CeO2%2FLiTFSI%2FPEO+Composite+Electrolyte+for+High%E2%80%90Rate+and+High%E2%80%90Voltage+All%E2%80%90Solid%E2%80%90State+Battery&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Hao&rft.au=Adekoya%2C+David&rft.au=Hencz%2C+Luke&rft.au=Ma%2C+Jun&rft.date=2020-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202000049&rft.externalDBID=10.1002%252Faenm.202000049&rft.externalDocID=AENM202000049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon