Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca–CeO2/LiTFSI/PEO Composite Electrolyte for High‐Rate and High‐Voltage All‐Solid‐State Battery
Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 21 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO2 (Ca–CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO2/LiTFSI/PEO. Ca–CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10−4 S cm−1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO2/LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability.
Ca‐doped CeO2 nanotubes with rich oxygen vacancies provide abundant interaction sites for stable and seamless contact with flexible polyethylene oxide (PEO) and afford enhanced ionic conductivity (1.3 × 10−4 S cm−1 at 60 °C) and increased transference number of 0.453 with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. The all‐solid‐state batteries based on the as‐prepared (Ca–CeO2/PEO/LiTFSI) electrolyte deliver superior rate capability, excellent long‐term cycling, and high‐voltage stability. |
---|---|
AbstractList | Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO2 (Ca–CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO2/LiTFSI/PEO. Ca–CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10−4 S cm−1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO2/LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability. Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO2 (Ca–CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO2/LiTFSI/PEO. Ca–CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10−4 S cm−1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO2/LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability. Ca‐doped CeO2 nanotubes with rich oxygen vacancies provide abundant interaction sites for stable and seamless contact with flexible polyethylene oxide (PEO) and afford enhanced ionic conductivity (1.3 × 10−4 S cm−1 at 60 °C) and increased transference number of 0.453 with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. The all‐solid‐state batteries based on the as‐prepared (Ca–CeO2/PEO/LiTFSI) electrolyte deliver superior rate capability, excellent long‐term cycling, and high‐voltage stability. |
Author | Zhao, Huijun Hencz, Luke Adekoya, David Chen, Su Cui, Guanglei Zhang, Shanqing Ma, Jun Yan, Cheng Chen, Hao |
Author_xml | – sequence: 1 givenname: Hao surname: Chen fullname: Chen, Hao organization: Griffith University – sequence: 2 givenname: David surname: Adekoya fullname: Adekoya, David organization: Griffith University – sequence: 3 givenname: Luke surname: Hencz fullname: Hencz, Luke organization: Griffith University – sequence: 4 givenname: Jun surname: Ma fullname: Ma, Jun organization: Chinese Academy of Sciences – sequence: 5 givenname: Su surname: Chen fullname: Chen, Su organization: Queensland University of Technology (QUT) – sequence: 6 givenname: Cheng surname: Yan fullname: Yan, Cheng organization: Queensland University of Technology (QUT) – sequence: 7 givenname: Huijun surname: Zhao fullname: Zhao, Huijun organization: Griffith University – sequence: 8 givenname: Guanglei surname: Cui fullname: Cui, Guanglei email: cuigl@qibebt.ac.cn organization: Chinese Academy of Sciences – sequence: 9 givenname: Shanqing orcidid: 0000-0001-5192-1844 surname: Zhang fullname: Zhang, Shanqing email: s.zhang@griffith.edu.au organization: Griffith University |
BookMark | eNo9kc1Kw0AUhQdR8HfresB17Pw1P8saqi1UK211G6aZmzoyydRkqmTnIwi-gk_WJ3FCS-_m3AMf51445-i4shUgdE3JLSWE9SRU5S0jjPgRyRE6oyEVQRgLcnzYOTtFV03zvmMo4fwM_c2dXBrAc5ClgabB48pBXcgcGiwrhWdyrRUe20rnOLWV2uROf2rXYlvgVG6_f1OYst5EL-7n497zcOqhcm0b7QAPDeSutqb1e2FrPNKrt-33z0x630Xv_as1Tq4AD4zxbm6NVp26DruTzn_TXqKTQpoGrvZ6gV7uh4t0FEymD-N0MAlWPIqTIAmBJ0UexX25zInKI04SEoZ9FqmCRn2qKCdEMVYoJSAWki5FomImQCkvUcgv0M0ud13bjw00Lnu3m7ryJzMmSCyiRIjIU8mO-tIG2mxd61LWbUZJ1jWRdU1khyaywfDp8eD4P2pmhdE |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202000049 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM202000049 |
Genre | article |
GrantInformation_xml | – fundername: Australian Research Council |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-g3789-96e39fc785abc0dc7309066527df1751d1300d22fdd4e84a1b49d824eddd82763 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:12:57 EDT 2025 Wed Jan 22 16:33:15 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g3789-96e39fc785abc0dc7309066527df1751d1300d22fdd4e84a1b49d824eddd82763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5192-1844 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/aenm.202000049 |
PQID | 2408479447 |
PQPubID | 886389 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2408479447 wiley_primary_10_1002_aenm_202000049_AENM202000049 |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 166 2015; 15 2007; 168 2015; 6 1999 2009; 103 57 2019; 5 2017; 4 2009; 180 2013; 87 2009 1967; 20 38 2016 2018; 113 30 2016; 10 2020; 59 1991 2003; 138 91 2019; 18 2017 2019 2018; 2 12 8 2017; 29 2003; 115 2017 2011; 9 394 2019 2011; 5 196 2015; 7 2001 2017 2019; 92 164 0 1998; 394 2010; 45 1995 2008; 81 179 2020; 7 1996 2012; 408 27 2017; 31 2018; 18 2016; 6 2001 2002; 90 37 2018; 3 2016; 1 2018; 2 2019; 61 2009; 92 2004; 16 2003; 6 2019; 116 1996; 85 2019; 29 2011; 65 2005 2017; 146 2 2012; 116 1987; 28 2019 2018; 29 14 2016; 22 2010; 71 |
References_xml | – volume: 146 2 start-page: 397 year: 2005 2017 publication-title: J. Power Sources Nat. Energy – volume: 166 start-page: 275 year: 2004 publication-title: Solid State Ionics – volume: 5 start-page: 2326 year: 2019 publication-title: Chem – volume: 71 start-page: 329 year: 2010 publication-title: J. Phys. Chem. Solids – volume: 22 start-page: 1259 year: 2016 publication-title: Ionics – volume: 394 start-page: 456 year: 1998 publication-title: Nature – volume: 2 start-page: 1991 year: 2018 publication-title: Joule – volume: 113 30 start-page: 7094 year: 2016 2018 publication-title: Proc. Natl. Acad. Sci. USA Adv. Mater. – volume: 45 start-page: 527 year: 2010 publication-title: Mater. Res. Bull. – volume: 116 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 408 27 start-page: 113 2996 year: 1996 2012 publication-title: J. Electroanal. Chem. J. Mater. Res. – volume: 180 start-page: 392 year: 2009 publication-title: Solid State Ionics – volume: 7 start-page: 4720 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 18 start-page: 3104 year: 2018 publication-title: Nano Lett. – volume: 90 37 start-page: 2517 683 year: 2001 2002 publication-title: J. Appl. Phys. J. Mater. Sci. – volume: 168 start-page: 178 year: 2007 publication-title: J. Power Sources – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 9 394 start-page: 492 105 year: 2017 2011 publication-title: ChemCatChem Appl. Catal., A – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 10 year: 2016 publication-title: ACS Nano – volume: 81 179 start-page: 53 661 year: 1995 2008 publication-title: Solid State Ionics Solid State Ionics – volume: 2 12 8 start-page: 938 year: 2017 2019 2018 publication-title: Nat. Rev. Mater. Energy Environ. Sci. Adv. Energy Mater. – volume: 20 38 start-page: 2376 year: 2009 1967 publication-title: Nanotechnology J. Appl. Phys. – volume: 6 start-page: 7402 year: 2015 publication-title: Nat. Commun. – volume: 85 start-page: 67 year: 1996 publication-title: Solid State Ionics – volume: 28 start-page: 2324 year: 1987 publication-title: Polymer – volume: 29 14 start-page: 49 year: 2019 2018 publication-title: Adv. Funct. Mater. Energy Storage Mater. – volume: 18 start-page: 1080 year: 2018 publication-title: Aerosol Air Qual. Res. – volume: 15 start-page: 2740 year: 2015 publication-title: Nano Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 65 start-page: 2377 year: 2011 publication-title: Mater. Lett. – volume: 5 196 start-page: 753 8651 year: 2019 2011 publication-title: Chem J. Power Sources – volume: 59 start-page: 4131 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: E40 year: 2003 publication-title: Electrochem. Solid‐State Lett. – volume: 16 start-page: 2599 year: 2004 publication-title: Chem. Mater. – volume: 92 start-page: 2745 year: 2009 publication-title: J. Am. Ceram. Soc. – volume: 18 start-page: 1278 year: 2019 publication-title: Nat. Mater. – volume: 115 start-page: 288 year: 2003 publication-title: J. Power Sources – volume: 61 start-page: 567 year: 2019 publication-title: Nano Energy – volume: 103 57 start-page: 7627 722 year: 1999 2009 publication-title: J. Phys. Chem. B Acta Mater. – volume: 138 91 start-page: 1918 year: 1991 2003 publication-title: J. Electrochem. Soc. Phys. Rev. Lett. – volume: 92 164 0 start-page: 234 year: 2001 2017 2019 publication-title: J. Power Sources J. Electrochem. Soc. Adv. Mater. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 31 start-page: 478 year: 2017 publication-title: Nano Energy – volume: 3 start-page: 38 year: 2018 publication-title: OpenNano |
SSID | ssj0000491033 |
Score | 2.6834586 |
Snippet | Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | all‐solid‐state batteries CeO 2 nanotubes Cerium oxides Density functional theory Electrolytes Ethylene oxide Ion currents Ions Lithium lithium ion batteries Lithium ions Nanotubes Polyethylene oxide Solid electrolytes Voltage stability |
Title | Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca–CeO2/LiTFSI/PEO Composite Electrolyte for High‐Rate and High‐Voltage All‐Solid‐State Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202000049 https://www.proquest.com/docview/2408479447 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9gIHxK8oFLQHbpGJs7Zj-xiFVClKWkRS1Ju13l2jqsauwDmUUx8BiVfgyXrgOZjZtdc2IAS9-Gft2Irn88zs-ptvCXnpeXEUZwI6OaHvOj5XqROHXuZApGJSpCJyM6wdXh1NFif-m9PgdDD40WEtbav0lfjyx7qSm1gV2sCuWCX7H5a1F4UG2Ab7whIsDMt_sjFkilj4tFb8Y44eSw_vZZpkpesO-cWZHB7qOW5mZYHKrmaqCF2T1dAcvJk6RnnU5dnmYH0IG2_nx9pNIJ1LDedmnpz8sjLy4EgMsQyJd5Cp6lv1Wt-XeYVUoGme27Z1mcPjsXuY4g6Ntmfvu_K0oSQoU5MI-bR5kC0NwfjJBS9bqoE6Ly_5Lwx9XX8h9PD4cnveYfiaWpSiO9zB3JaWVXtoyCecSVQPiqpum9F9sm7d7cDXVGHXEd7Gv9_Ch5Gj5apAjQJm-k9toGzIAfbM4O_nGlnh-dHKHr9Fdhl0Z8Af705fr5ZrOxoIx8aup6tBmv_XKIy6bNS_Sa8v1O1R6ZRoc4_crfsydGqAeZ8MVPGA3OkoXD4k3w1EaQNR2kKUAm6ohijVEKVdiNIyozN-ffUNwTky0BwBMKkFJu0AkwIwKULw-uorQlJfut6vwUgBjLCnYYhrBCCtAfiInBzMN7OFU08M4nzwwggVZZUHDiaMAp4KVwqIUjF-QmShzMDJjCV-o5WMZVL6KvL5OPVjGTFfSQkriKiPyU5RFuoJoSLkyhsr5StwVkLAuYHPZMCCCHqdXjrZI_vNw07qN_9zgrKAODODH-4Rpg2QXBhtmMSogLMETZZYkyU9FDy9yY-ekdvt67BPdqpPW_Uc8uEqfVGD6SdDYa7E |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Seamless+Interfaces+and+Rapid+Ionic+Conductivity+of+Ca%E2%80%93CeO2%2FLiTFSI%2FPEO+Composite+Electrolyte+for+High%E2%80%90Rate+and+High%E2%80%90Voltage+All%E2%80%90Solid%E2%80%90State+Battery&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Hao&rft.au=Adekoya%2C+David&rft.au=Hencz%2C+Luke&rft.au=Ma%2C+Jun&rft.date=2020-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202000049&rft.externalDBID=10.1002%252Faenm.202000049&rft.externalDocID=AENM202000049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |