Isolated Square‐Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO2 to CO
Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectiv...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 34; pp. 11752 - 11756 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
19.08.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well‐defined copper‐based boron imidazolate cage (BIF‐29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2. Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady‐state and time‐resolved fluorescence spectra show these Cu sites promote the separation of electron–hole pairs and electron transfer. As a result, the cage achieves solar‐driven reduction of CO2 to CO with an evolution rate of 3334 μmol g−1 h−1 and a high selectivity of 82.6 %.
The cat on the cage: A copper‐based boron imidazolate cage with isolated, coordinatively unsaturated single copper atom active sites was found to be as an excellent co‐catalyst for highly efficient and selective solar‐driven CO2 reduction to CO. |
---|---|
AbstractList | Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well‐defined copper‐based boron imidazolate cage (BIF‐29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2. Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady‐state and time‐resolved fluorescence spectra show these Cu sites promote the separation of electron–hole pairs and electron transfer. As a result, the cage achieves solar‐driven reduction of CO2 to CO with an evolution rate of 3334 μmol g−1 h−1 and a high selectivity of 82.6 %. Photocatalytic reduction of CO2 to value-added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well-defined copper-based boron imidazolate cage (BIF-29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2 . Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady-state and time-resolved fluorescence spectra show these Cu sites promote the separation of electron-hole pairs and electron transfer. As a result, the cage achieves solar-driven reduction of CO2 to CO with an evolution rate of 3334 μmol g-1 h-1 and a high selectivity of 82.6 %.Photocatalytic reduction of CO2 to value-added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well-defined copper-based boron imidazolate cage (BIF-29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2 . Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady-state and time-resolved fluorescence spectra show these Cu sites promote the separation of electron-hole pairs and electron transfer. As a result, the cage achieves solar-driven reduction of CO2 to CO with an evolution rate of 3334 μmol g-1 h-1 and a high selectivity of 82.6 %. Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well‐defined copper‐based boron imidazolate cage (BIF‐29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2. Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady‐state and time‐resolved fluorescence spectra show these Cu sites promote the separation of electron–hole pairs and electron transfer. As a result, the cage achieves solar‐driven reduction of CO2 to CO with an evolution rate of 3334 μmol g−1 h−1 and a high selectivity of 82.6 %. The cat on the cage: A copper‐based boron imidazolate cage with isolated, coordinatively unsaturated single copper atom active sites was found to be as an excellent co‐catalyst for highly efficient and selective solar‐driven CO2 reduction to CO. |
Author | Zhang, Hai‐Xia Huang, Xinsong Tu, Wenguang Wang, Fei Hong, Qin‐Long Zhang, Jian Chen, Shumei Xu, Rong Li, Jing Yu, Dingshan Zhou, Tianhua |
Author_xml | – sequence: 1 givenname: Hai‐Xia surname: Zhang fullname: Zhang, Hai‐Xia organization: Chinese Academy of Sciences – sequence: 2 givenname: Qin‐Long surname: Hong fullname: Hong, Qin‐Long organization: Chinese Academy of Sciences – sequence: 3 givenname: Jing surname: Li fullname: Li, Jing organization: School of Chemistry Sun Yat-Sen University – sequence: 4 givenname: Fei surname: Wang fullname: Wang, Fei email: wangfei04@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 5 givenname: Xinsong surname: Huang fullname: Huang, Xinsong organization: Chinese Academy of Sciences – sequence: 6 givenname: Shumei surname: Chen fullname: Chen, Shumei organization: Fuzhou University – sequence: 7 givenname: Wenguang surname: Tu fullname: Tu, Wenguang organization: Nanyang Technological University – sequence: 8 givenname: Dingshan surname: Yu fullname: Yu, Dingshan organization: School of Chemistry Sun Yat-Sen University – sequence: 9 givenname: Rong surname: Xu fullname: Xu, Rong organization: Nanyang Technological University – sequence: 10 givenname: Tianhua orcidid: 0000-0002-7858-0047 surname: Zhou fullname: Zhou, Tianhua email: thzhou@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 11 givenname: Jian surname: Zhang fullname: Zhang, Jian organization: Chinese Academy of Sciences |
BookMark | eNpdkM1OwzAQhC1UJNrClbMlLlxS1nZiO8dSFahUtRU_58hxnJIqtdP8CJUTj8Az8iS4FHHgNLvSN6udGaCeddYgdElgRADojbKFGVEgMUSSxyeoTyJKAiYE6_k5ZCwQMiJnaNA0G89LCbyP3KxxpWpNhp92narN18fnqlRW1Xjiqsp4Mbb1Ulh862pn8WxbZOr9x4MXyjqt1qbBuavx6tW1fm1VuW8LjR9N1um28BaX48mS4tZ5OUenuSobc_GrQ_RyN32ePATz5f1sMp4Ha8bjOMjz2BCdCilSmYWQRlIQHyQFI3RKWKqoZiGIVGSZCgVoDqAoBx1BlMkIFBui6-Pdqna7zjRtsi0abUqfzbiuSSgNOWWMC_Do1T9047ra-u88xWPJJWfUU_GReitKs0-qutiqep8QSA7lJ4fyk7_yk_FiNv3b2Df1bXzm |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.201905869 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 11756 |
ExternalDocumentID | ANIE201905869 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51772291,21425102,21773242 and 21603226 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-g3699-ff9e1cb787b8d40b5871773b0e7cb13ba2c3407b7dda470c600a260c505d850a3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 12:13:33 EDT 2025 Fri Jul 25 10:39:12 EDT 2025 Wed Jan 22 16:40:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3699-ff9e1cb787b8d40b5871773b0e7cb13ba2c3407b7dda470c600a260c505d850a3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7858-0047 |
PQID | 2269868632 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2246233670 proquest_journals_2269868632 wiley_primary_10_1002_anie_201905869_ANIE201905869 |
PublicationCentury | 2000 |
PublicationDate | August 19, 2019 |
PublicationDateYYYYMMDD | 2019-08-19 |
PublicationDate_xml | – month: 08 year: 2019 text: August 19, 2019 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 219 2015; 15 2018; 122 2019; 9 2018; 28 2011; 278 2015; 5 2018; 140 1963; 67 2019; 55 2017; 27 2014; 26 2019; 141 2019 2019; 58 131 2011; 133 2017; 139 2018; 6 2017; 53 2018; 3 2015; 27 2016 2016; 55 128 2014; 4 2015; 137 2015; 115 2018 2018; 57 130 2017; 10 2015; 44 2011; 21 2013; 135 2018; 30 2018; 52 2002; 71 2008; 22 2018; 11 2016; 28 2018; 10 2012; 63 |
References_xml | – volume: 57 130 start-page: 9604 9750 year: 2018 2018 end-page: 9633 9780 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 2433 year: 2015 end-page: 2436 publication-title: Cryst. Growth Des. – volume: 30 start-page: 1704717 year: 2018 publication-title: Adv. Mater. – volume: 135 start-page: 14413 year: 2013 end-page: 14424 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 11378 year: 2018 end-page: 11386 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 14310 14522 year: 2016 2016 end-page: 14314 14526 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 3070 year: 2008 end-page: 3079 publication-title: Energy Fuels – volume: 6 start-page: 4768 year: 2018 end-page: 4775 publication-title: J. Mater. Chem. A – volume: 133 start-page: 13445 year: 2011 end-page: 13454 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 38 year: 2018 end-page: 41 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 8078 year: 2017 end-page: 8081 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 4607 year: 2014 end-page: 4626 publication-title: Adv. Mater. – volume: 11 start-page: 893 year: 2018 end-page: 903 publication-title: Energy Environ. Sci. – volume: 52 start-page: 345 year: 2018 end-page: 350 publication-title: Nano Energy – volume: 67 start-page: 144 year: 1963 end-page: 147 publication-title: J. Phys. Chem. – volume: 141 start-page: 2451 year: 2019 end-page: 2461 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 7217 year: 2017 end-page: 7223 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1705512 year: 2018 publication-title: Adv. Mater. – volume: 63 start-page: 541 year: 2012 end-page: 569 publication-title: Annu. Rev. Phys. Chem. – volume: 5 start-page: 6302 year: 2015 end-page: 6309 publication-title: ACS Catal. – volume: 21 start-page: 877 year: 2011 end-page: 883 publication-title: Curr. Biol. – volume: 55 128 start-page: 8314 8454 year: 2016 2016 end-page: 8318 8458 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 3435 year: 2018 end-page: 3440 publication-title: ChemCatChem – volume: 30 start-page: 1803111 year: 2018 publication-title: Adv. Mater. – volume: 55 start-page: 4845 year: 2019 end-page: 4848 publication-title: Chem. Commun. – volume: 219 start-page: 10 year: 2017 end-page: 17 publication-title: Appl. Catal. B – volume: 27 start-page: 1702384 year: 2017 publication-title: Adv. Funct. Mater. – volume: 57 130 start-page: 9640 9788 year: 2018 2018 end-page: 9644 9792 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 7869 year: 2018 end-page: 7877 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 7824 year: 2015 end-page: 7831 publication-title: Adv. Mater. – volume: 28 start-page: 1800136 year: 2018 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 4824 year: 2019 end-page: 4833 publication-title: ACS Catal. – volume: 53 126 start-page: 1034 1052 year: 2014 2014 end-page: 1038 1056 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 71 start-page: 227 year: 2002 end-page: 241 publication-title: Catal. Today – volume: 140 start-page: 7437 year: 2018 end-page: 7440 publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 27991 year: 2018 end-page: 28000 publication-title: J. Phys. Chem. C – volume: 140 start-page: 16514 year: 2018 end-page: 16520 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4254 year: 2014 end-page: 4260 publication-title: ACS Catal. – volume: 137 start-page: 13440 year: 2015 end-page: 13443 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 3418 3486 year: 2014 2014 end-page: 3421 3489 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 17305 year: 2017 end-page: 17308 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 16811 17053 year: 2018 2018 end-page: 16815 17057 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 2594 year: 2017 end-page: 2597 publication-title: Chem. Commun. – volume: 28 start-page: 6485 year: 2016 end-page: 6490 publication-title: Adv. Mater. – volume: 10 start-page: 2222 year: 2017 end-page: 2230 publication-title: Energy Environ. Sci. – volume: 115 start-page: 12888 year: 2015 end-page: 12935 publication-title: Chem. Rev. – volume: 58 131 start-page: 3880 3920 year: 2019 2019 end-page: 3884 3924 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 623 year: 2015 end-page: 636 publication-title: Chem. Soc. Rev. – volume: 58 131 start-page: 5226 5280 year: 2019 2019 end-page: 5231 5285 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 1726 year: 2019 end-page: 1732 publication-title: ACS Catal. – volume: 278 start-page: 123 year: 2011 end-page: 132 publication-title: J. Catal. – volume: 3 start-page: 140 year: 2018 end-page: 147 publication-title: Nat. Energy – volume: 57 130 start-page: 13570 13758 year: 2018 2018 end-page: 13574 13762 publication-title: Angew. Chem. Int. Ed. Angew. Chem. |
SSID | ssj0028806 |
Score | 2.654463 |
Snippet | Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational... Photocatalytic reduction of CO2 to value-added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 11752 |
SubjectTerms | Boron Cages Carbon dioxide carbon dioxide reduction Carbon monoxide Catalysts Chemical synthesis Climate change Conduction Conduction bands Copper Electron transfer Fluorescence Global warming nanocages Nuclear fuels Photocatalysis Reduction Selectivity |
Title | Isolated Square‐Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO2 to CO |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201905869 https://www.proquest.com/docview/2269868632 https://www.proquest.com/docview/2246233670 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQF7iUtrRiW4qMxDXgjZ3EOS4rEIvEQzwkbpHHmQBCJNvd7KGc-hP4jf0lnUl2U-gRTkmUWHnMN_Y3jucbIXYihWB8WgQhFD4wfYWBjRECY0DR8OfQNbkwJ6fx0bU5voluXmTxt_oQ3YQbe0bTX7ODO5ju_RMN5QxsXpqVqsjGnMHHC7aYFV10-lEhgbNNL9I64Cr0C9VGFe69bv6KX75kqc0wc7gm3OIB29UlD7uzGnb903_aje95g4_iw5yDykELmk9iCcvPYmW4KP22LqoRIZJIaC4vfxKE8M_vZy5u5CZyWI3HSBtW8pzI-1LuswKCHD3e5-6paSOpv6bx8RankviwPL-r6qqZI_pFd5MXrBTLWJBVIYdnoawr2nwR14cHV8OjYF6ZIbjVcZoGRZFi3wM5O9jcKIgo7EoSDQoTD30NLvSaIkVI8tyZRHliVY4CJ090K7eRcvqrWC6rEjeETGwOsUlQe9DGIsX21qNDYjEpoSuHnthcWCabu9c0I86Y2tjGOuyJ7e40fST-2-FKrGZ8jSFqx_p0PRE2ZsjGrYBH1ko1hxkbIOsMkA1ORwfd0be3NPouVnmf55z76aZYricz_EGkpYatBph_AR8K5xk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHMqFf8SWAkbimtYbO4l9LKtWu9AuqLQSt8jjTNoKkWy32QM98Qg8I0_CTLIJlCOcrPxYcTIz9jcTzzdCvEkUggmujGIoQ2TGCiObIkTGgKLlz6Nvc2GO5un01Lz7nPS7CTkXpuOHGAJubBntfM0GzgHp3d-soZyCzXuznEps6m6LO1zWu_WqjgcGqZjUs0sw0jriOvQ9b6OKd2_2v4Ew_8Sp7UJzcF9AP8Ruf8mXnVUDO-H6L_bG_3qHB-LeGobKvU5vHopbWD0Sm5O--ttjUc9IKQmHFvLTJWkR_vz-g-sb-aWc1IsFUsNknkt5Ucm3TIIgZ18vCn_d9pE0ZdMSeYZXkiCx_HheN3UbJvpGT5PHTBbL6iDrUk4-xLKpqXkiTg_2TybTaF2cITrTqXNRWTocByB7B1sYBQl5XlmmQWEWYKzBx0GTswhZUXiTqUDAypPvFAhxFTZRXj8VG1Vd4TMhM1tAajLUAbSxSO69DeiRgIwjBStgJLZ70eRrC7vKCTY6m9pUxyPxerhMH4l_ePgK6xXfYwjdMUXdSMStHPJFx-GRd2zNcc4CyAcB5Hvz2f5wtPUvnV6JzenJ0WF-OJu_fy7u8nkOQY_dttholit8QRimgZetlv4ClPzrNA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU9RAEO5SrFIvIirlKupQ5TUwm5kkM0dY2GIRVgqliltqHh2gKJN1yR7k5E_wN_JL6El2I3DUUyqPqTz665mvJ9NfA3xOOFrpdBHFtnCR7HOMVIo2ktJyGv4MmiYX5nCc7p3I_dPk9E4Wf6sP0U24Bc9o-uvg4BNfbP4VDQ0Z2GFpluaJSvVjeCJTrgKud447AamY0NnmFwkRhTL0C9lGHm_eb3-PYN6lqc04M1wGs3jCdnnJ5casthvu-oF44_-8wkt4MSehbKtFzQo8wvIVPBssar-9hmpEkCQW6tm3n4QhvPn9J1Q3MlM2qCYTpE2Q8pyyi5JtBwkENvpx4c1104ZRh00D5BleMSLE7Oi8qqtmkugX3Y0dB6nYAAZWFWzwNWZ1RZs3cDLc_T7Yi-alGaIzkWodFYXGvrPk7VZ5yW1CcVeWCcsxc7YvrImdoFDRZt4bmXFHtMpQ5OSIb3mVcCNWYamsSnwLLFPepjJD4ayQCim4Vw4NEo3RBC9ve7C2sEw-96-rnEijVqlKRdyD9e40faTwu8OUWM3CNZK4XRCo60HcmCGftAoeeavVHOfBAHlngHxrPNrt9t79S6NP8PRoZ5gfjMZf3sPzcDjMP_f1GizV0xl-IAJT248NRm8B_0rp7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isolated+Square-Planar+Copper+Center+in+Boron+Imidazolate+Nanocages+for+Photocatalytic+Reduction+of+CO2+to+CO&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Hai-Xia&rft.au=Hong%2C+Qin-Long&rft.au=Li%2C+Jing&rft.au=Wang%2C+Fei&rft.date=2019-08-19&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=34&rft.spage=11752&rft_id=info:doi/10.1002%2Fanie.201905869&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |