Isolated Square‐Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO2 to CO

Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectiv...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 34; pp. 11752 - 11756
Main Authors Zhang, Hai‐Xia, Hong, Qin‐Long, Li, Jing, Wang, Fei, Huang, Xinsong, Chen, Shumei, Tu, Wenguang, Yu, Dingshan, Xu, Rong, Zhou, Tianhua, Zhang, Jian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 19.08.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well‐defined copper‐based boron imidazolate cage (BIF‐29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2. Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady‐state and time‐resolved fluorescence spectra show these Cu sites promote the separation of electron–hole pairs and electron transfer. As a result, the cage achieves solar‐driven reduction of CO2 to CO with an evolution rate of 3334 μmol g−1 h−1 and a high selectivity of 82.6 %. The cat on the cage: A copper‐based boron imidazolate cage with isolated, coordinatively unsaturated single copper atom active sites was found to be as an excellent co‐catalyst for highly efficient and selective solar‐driven CO2 reduction to CO.
AbstractList Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well‐defined copper‐based boron imidazolate cage (BIF‐29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2. Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady‐state and time‐resolved fluorescence spectra show these Cu sites promote the separation of electron–hole pairs and electron transfer. As a result, the cage achieves solar‐driven reduction of CO2 to CO with an evolution rate of 3334 μmol g−1 h−1 and a high selectivity of 82.6 %.
Photocatalytic reduction of CO2 to value-added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well-defined copper-based boron imidazolate cage (BIF-29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2 . Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady-state and time-resolved fluorescence spectra show these Cu sites promote the separation of electron-hole pairs and electron transfer. As a result, the cage achieves solar-driven reduction of CO2 to CO with an evolution rate of 3334 μmol g-1  h-1 and a high selectivity of 82.6 %.Photocatalytic reduction of CO2 to value-added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well-defined copper-based boron imidazolate cage (BIF-29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2 . Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady-state and time-resolved fluorescence spectra show these Cu sites promote the separation of electron-hole pairs and electron transfer. As a result, the cage achieves solar-driven reduction of CO2 to CO with an evolution rate of 3334 μmol g-1  h-1 and a high selectivity of 82.6 %.
Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well‐defined copper‐based boron imidazolate cage (BIF‐29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2. Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady‐state and time‐resolved fluorescence spectra show these Cu sites promote the separation of electron–hole pairs and electron transfer. As a result, the cage achieves solar‐driven reduction of CO2 to CO with an evolution rate of 3334 μmol g−1 h−1 and a high selectivity of 82.6 %. The cat on the cage: A copper‐based boron imidazolate cage with isolated, coordinatively unsaturated single copper atom active sites was found to be as an excellent co‐catalyst for highly efficient and selective solar‐driven CO2 reduction to CO.
Author Zhang, Hai‐Xia
Huang, Xinsong
Tu, Wenguang
Wang, Fei
Hong, Qin‐Long
Zhang, Jian
Chen, Shumei
Xu, Rong
Li, Jing
Yu, Dingshan
Zhou, Tianhua
Author_xml – sequence: 1
  givenname: Hai‐Xia
  surname: Zhang
  fullname: Zhang, Hai‐Xia
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Qin‐Long
  surname: Hong
  fullname: Hong, Qin‐Long
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: School of Chemistry Sun Yat-Sen University
– sequence: 4
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  email: wangfei04@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Xinsong
  surname: Huang
  fullname: Huang, Xinsong
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Shumei
  surname: Chen
  fullname: Chen, Shumei
  organization: Fuzhou University
– sequence: 7
  givenname: Wenguang
  surname: Tu
  fullname: Tu, Wenguang
  organization: Nanyang Technological University
– sequence: 8
  givenname: Dingshan
  surname: Yu
  fullname: Yu, Dingshan
  organization: School of Chemistry Sun Yat-Sen University
– sequence: 9
  givenname: Rong
  surname: Xu
  fullname: Xu, Rong
  organization: Nanyang Technological University
– sequence: 10
  givenname: Tianhua
  orcidid: 0000-0002-7858-0047
  surname: Zhou
  fullname: Zhou, Tianhua
  email: thzhou@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: Chinese Academy of Sciences
BookMark eNpdkM1OwzAQhC1UJNrClbMlLlxS1nZiO8dSFahUtRU_58hxnJIqtdP8CJUTj8Az8iS4FHHgNLvSN6udGaCeddYgdElgRADojbKFGVEgMUSSxyeoTyJKAiYE6_k5ZCwQMiJnaNA0G89LCbyP3KxxpWpNhp92narN18fnqlRW1Xjiqsp4Mbb1Ulh862pn8WxbZOr9x4MXyjqt1qbBuavx6tW1fm1VuW8LjR9N1um28BaX48mS4tZ5OUenuSobc_GrQ_RyN32ePATz5f1sMp4Ha8bjOMjz2BCdCilSmYWQRlIQHyQFI3RKWKqoZiGIVGSZCgVoDqAoBx1BlMkIFBui6-Pdqna7zjRtsi0abUqfzbiuSSgNOWWMC_Do1T9047ra-u88xWPJJWfUU_GReitKs0-qutiqep8QSA7lJ4fyk7_yk_FiNv3b2Df1bXzm
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.201905869
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 11756
ExternalDocumentID ANIE201905869
Genre shortCommunication
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51772291,21425102,21773242 and 21603226
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-g3699-ff9e1cb787b8d40b5871773b0e7cb13ba2c3407b7dda470c600a260c505d850a3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 12:13:33 EDT 2025
Fri Jul 25 10:39:12 EDT 2025
Wed Jan 22 16:40:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3699-ff9e1cb787b8d40b5871773b0e7cb13ba2c3407b7dda470c600a260c505d850a3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7858-0047
PQID 2269868632
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2246233670
proquest_journals_2269868632
wiley_primary_10_1002_anie_201905869_ANIE201905869
PublicationCentury 2000
PublicationDate August 19, 2019
PublicationDateYYYYMMDD 2019-08-19
PublicationDate_xml – month: 08
  year: 2019
  text: August 19, 2019
  day: 19
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 219
2015; 15
2018; 122
2019; 9
2018; 28
2011; 278
2015; 5
2018; 140
1963; 67
2019; 55
2017; 27
2014; 26
2019; 141
2019 2019; 58 131
2011; 133
2017; 139
2018; 6
2017; 53
2018; 3
2015; 27
2016 2016; 55 128
2014; 4
2015; 137
2015; 115
2018 2018; 57 130
2017; 10
2015; 44
2011; 21
2013; 135
2018; 30
2018; 52
2002; 71
2008; 22
2018; 11
2016; 28
2018; 10
2012; 63
References_xml – volume: 57 130
  start-page: 9604 9750
  year: 2018 2018
  end-page: 9633 9780
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 2433
  year: 2015
  end-page: 2436
  publication-title: Cryst. Growth Des.
– volume: 30
  start-page: 1704717
  year: 2018
  publication-title: Adv. Mater.
– volume: 135
  start-page: 14413
  year: 2013
  end-page: 14424
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 11378
  year: 2018
  end-page: 11386
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 14310 14522
  year: 2016 2016
  end-page: 14314 14526
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 3070
  year: 2008
  end-page: 3079
  publication-title: Energy Fuels
– volume: 6
  start-page: 4768
  year: 2018
  end-page: 4775
  publication-title: J. Mater. Chem. A
– volume: 133
  start-page: 13445
  year: 2011
  end-page: 13454
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 38
  year: 2018
  end-page: 41
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 8078
  year: 2017
  end-page: 8081
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 4607
  year: 2014
  end-page: 4626
  publication-title: Adv. Mater.
– volume: 11
  start-page: 893
  year: 2018
  end-page: 903
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 345
  year: 2018
  end-page: 350
  publication-title: Nano Energy
– volume: 67
  start-page: 144
  year: 1963
  end-page: 147
  publication-title: J. Phys. Chem.
– volume: 141
  start-page: 2451
  year: 2019
  end-page: 2461
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 7217
  year: 2017
  end-page: 7223
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1705512
  year: 2018
  publication-title: Adv. Mater.
– volume: 63
  start-page: 541
  year: 2012
  end-page: 569
  publication-title: Annu. Rev. Phys. Chem.
– volume: 5
  start-page: 6302
  year: 2015
  end-page: 6309
  publication-title: ACS Catal.
– volume: 21
  start-page: 877
  year: 2011
  end-page: 883
  publication-title: Curr. Biol.
– volume: 55 128
  start-page: 8314 8454
  year: 2016 2016
  end-page: 8318 8458
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 3435
  year: 2018
  end-page: 3440
  publication-title: ChemCatChem
– volume: 30
  start-page: 1803111
  year: 2018
  publication-title: Adv. Mater.
– volume: 55
  start-page: 4845
  year: 2019
  end-page: 4848
  publication-title: Chem. Commun.
– volume: 219
  start-page: 10
  year: 2017
  end-page: 17
  publication-title: Appl. Catal. B
– volume: 27
  start-page: 1702384
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 57 130
  start-page: 9640 9788
  year: 2018 2018
  end-page: 9644 9792
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 7869
  year: 2018
  end-page: 7877
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 7824
  year: 2015
  end-page: 7831
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1800136
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 4824
  year: 2019
  end-page: 4833
  publication-title: ACS Catal.
– volume: 53 126
  start-page: 1034 1052
  year: 2014 2014
  end-page: 1038 1056
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 71
  start-page: 227
  year: 2002
  end-page: 241
  publication-title: Catal. Today
– volume: 140
  start-page: 7437
  year: 2018
  end-page: 7440
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 27991
  year: 2018
  end-page: 28000
  publication-title: J. Phys. Chem. C
– volume: 140
  start-page: 16514
  year: 2018
  end-page: 16520
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4254
  year: 2014
  end-page: 4260
  publication-title: ACS Catal.
– volume: 137
  start-page: 13440
  year: 2015
  end-page: 13443
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 3418 3486
  year: 2014 2014
  end-page: 3421 3489
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 17305
  year: 2017
  end-page: 17308
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 16811 17053
  year: 2018 2018
  end-page: 16815 17057
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 2594
  year: 2017
  end-page: 2597
  publication-title: Chem. Commun.
– volume: 28
  start-page: 6485
  year: 2016
  end-page: 6490
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2222
  year: 2017
  end-page: 2230
  publication-title: Energy Environ. Sci.
– volume: 115
  start-page: 12888
  year: 2015
  end-page: 12935
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 3880 3920
  year: 2019 2019
  end-page: 3884 3924
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 623
  year: 2015
  end-page: 636
  publication-title: Chem. Soc. Rev.
– volume: 58 131
  start-page: 5226 5280
  year: 2019 2019
  end-page: 5231 5285
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 1726
  year: 2019
  end-page: 1732
  publication-title: ACS Catal.
– volume: 278
  start-page: 123
  year: 2011
  end-page: 132
  publication-title: J. Catal.
– volume: 3
  start-page: 140
  year: 2018
  end-page: 147
  publication-title: Nat. Energy
– volume: 57 130
  start-page: 13570 13758
  year: 2018 2018
  end-page: 13574 13762
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
SSID ssj0028806
Score 2.654463
Snippet Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational...
Photocatalytic reduction of CO2 to value-added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 11752
SubjectTerms Boron
Cages
Carbon dioxide
carbon dioxide reduction
Carbon monoxide
Catalysts
Chemical synthesis
Climate change
Conduction
Conduction bands
Copper
Electron transfer
Fluorescence
Global warming
nanocages
Nuclear fuels
Photocatalysis
Reduction
Selectivity
Title Isolated Square‐Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO2 to CO
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201905869
https://www.proquest.com/docview/2269868632
https://www.proquest.com/docview/2246233670
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQF7iUtrRiW4qMxDXgjZ3EOS4rEIvEQzwkbpHHmQBCJNvd7KGc-hP4jf0lnUl2U-gRTkmUWHnMN_Y3jucbIXYihWB8WgQhFD4wfYWBjRECY0DR8OfQNbkwJ6fx0bU5voluXmTxt_oQ3YQbe0bTX7ODO5ju_RMN5QxsXpqVqsjGnMHHC7aYFV10-lEhgbNNL9I64Cr0C9VGFe69bv6KX75kqc0wc7gm3OIB29UlD7uzGnb903_aje95g4_iw5yDykELmk9iCcvPYmW4KP22LqoRIZJIaC4vfxKE8M_vZy5u5CZyWI3HSBtW8pzI-1LuswKCHD3e5-6paSOpv6bx8RankviwPL-r6qqZI_pFd5MXrBTLWJBVIYdnoawr2nwR14cHV8OjYF6ZIbjVcZoGRZFi3wM5O9jcKIgo7EoSDQoTD30NLvSaIkVI8tyZRHliVY4CJ090K7eRcvqrWC6rEjeETGwOsUlQe9DGIsX21qNDYjEpoSuHnthcWCabu9c0I86Y2tjGOuyJ7e40fST-2-FKrGZ8jSFqx_p0PRE2ZsjGrYBH1ko1hxkbIOsMkA1ORwfd0be3NPouVnmf55z76aZYricz_EGkpYatBph_AR8K5xk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHMqFf8SWAkbimtYbO4l9LKtWu9AuqLQSt8jjTNoKkWy32QM98Qg8I0_CTLIJlCOcrPxYcTIz9jcTzzdCvEkUggmujGIoQ2TGCiObIkTGgKLlz6Nvc2GO5un01Lz7nPS7CTkXpuOHGAJubBntfM0GzgHp3d-soZyCzXuznEps6m6LO1zWu_WqjgcGqZjUs0sw0jriOvQ9b6OKd2_2v4Ew_8Sp7UJzcF9AP8Ruf8mXnVUDO-H6L_bG_3qHB-LeGobKvU5vHopbWD0Sm5O--ttjUc9IKQmHFvLTJWkR_vz-g-sb-aWc1IsFUsNknkt5Ucm3TIIgZ18vCn_d9pE0ZdMSeYZXkiCx_HheN3UbJvpGT5PHTBbL6iDrUk4-xLKpqXkiTg_2TybTaF2cITrTqXNRWTocByB7B1sYBQl5XlmmQWEWYKzBx0GTswhZUXiTqUDAypPvFAhxFTZRXj8VG1Vd4TMhM1tAajLUAbSxSO69DeiRgIwjBStgJLZ70eRrC7vKCTY6m9pUxyPxerhMH4l_ePgK6xXfYwjdMUXdSMStHPJFx-GRd2zNcc4CyAcB5Hvz2f5wtPUvnV6JzenJ0WF-OJu_fy7u8nkOQY_dttholit8QRimgZetlv4ClPzrNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU9RAEO5SrFIvIirlKupQ5TUwm5kkM0dY2GIRVgqliltqHh2gKJN1yR7k5E_wN_JL6El2I3DUUyqPqTz665mvJ9NfA3xOOFrpdBHFtnCR7HOMVIo2ktJyGv4MmiYX5nCc7p3I_dPk9E4Wf6sP0U24Bc9o-uvg4BNfbP4VDQ0Z2GFpluaJSvVjeCJTrgKud447AamY0NnmFwkRhTL0C9lGHm_eb3-PYN6lqc04M1wGs3jCdnnJ5casthvu-oF44_-8wkt4MSehbKtFzQo8wvIVPBssar-9hmpEkCQW6tm3n4QhvPn9J1Q3MlM2qCYTpE2Q8pyyi5JtBwkENvpx4c1104ZRh00D5BleMSLE7Oi8qqtmkugX3Y0dB6nYAAZWFWzwNWZ1RZs3cDLc_T7Yi-alGaIzkWodFYXGvrPk7VZ5yW1CcVeWCcsxc7YvrImdoFDRZt4bmXFHtMpQ5OSIb3mVcCNWYamsSnwLLFPepjJD4ayQCim4Vw4NEo3RBC9ve7C2sEw-96-rnEijVqlKRdyD9e40faTwu8OUWM3CNZK4XRCo60HcmCGftAoeeavVHOfBAHlngHxrPNrt9t79S6NP8PRoZ5gfjMZf3sPzcDjMP_f1GizV0xl-IAJT248NRm8B_0rp7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isolated+Square-Planar+Copper+Center+in+Boron+Imidazolate+Nanocages+for+Photocatalytic+Reduction+of+CO2+to+CO&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Hai-Xia&rft.au=Hong%2C+Qin-Long&rft.au=Li%2C+Jing&rft.au=Wang%2C+Fei&rft.date=2019-08-19&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=34&rft.spage=11752&rft_id=info:doi/10.1002%2Fanie.201905869&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon