Cocatalysts in Semiconductor‐based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities

Ever‐increasing fossil‐fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost‐effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing so...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 7
Main Authors Ran, Jingrun, Jaroniec, Mietek, Qiao, Shi‐Zhang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 15.02.2018
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201704649

Cover

Loading…
Abstract Ever‐increasing fossil‐fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost‐effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half‐reaction of CO2 conversion with an oxidative half reaction, e.g., H2O oxidation, to create a carbon‐neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar‐light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2‐reduction cocatalysts for semiconductor‐based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. Active and stable CO2‐reduction cocatalysts can obviously enhance the efficiency, selectivity, and stability of semiconductor‐based photocatalytic CO2 reduction. All of the developed CO2‐reduction cocatalysts are summarized, and their functions and insightful mechanisms are discussed. This can pave new avenues to the exploration of novel highly active and selective cocatalysts, toward high‐performance solar fuel production.
AbstractList Ever‐increasing fossil‐fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost‐effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half‐reaction of CO2 conversion with an oxidative half reaction, e.g., H2O oxidation, to create a carbon‐neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar‐light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2‐reduction cocatalysts for semiconductor‐based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. Active and stable CO2‐reduction cocatalysts can obviously enhance the efficiency, selectivity, and stability of semiconductor‐based photocatalytic CO2 reduction. All of the developed CO2‐reduction cocatalysts are summarized, and their functions and insightful mechanisms are discussed. This can pave new avenues to the exploration of novel highly active and selective cocatalysts, toward high‐performance solar fuel production.
Ever-increasing fossil-fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO2 conversion with an oxidative half reaction, e.g., H2O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2-reduction cocatalysts for semiconductor-based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided.
Ever-increasing fossil-fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO2 conversion with an oxidative half reaction, e.g., H2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2 -reduction cocatalysts for semiconductor-based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided.Ever-increasing fossil-fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO2 conversion with an oxidative half reaction, e.g., H2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2 -reduction cocatalysts for semiconductor-based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided.
Author Jaroniec, Mietek
Qiao, Shi‐Zhang
Ran, Jingrun
Author_xml – sequence: 1
  givenname: Jingrun
  surname: Ran
  fullname: Ran, Jingrun
  organization: University of Adelaide
– sequence: 2
  givenname: Mietek
  surname: Jaroniec
  fullname: Jaroniec, Mietek
  organization: Kent State University
– sequence: 3
  givenname: Shi‐Zhang
  orcidid: 0000-0002-4568-8422
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  email: s.qiao@adelaide.edu.au
  organization: Tianjin University
BookMark eNpd0M9O3DAQBnALgcTy58o5EpceCIztxIl7WwXaIlEtKnC2vPaENUrsJXao9sYj8Iw8SbMCcehpvpF-Go2-A7Lrg0dCTiicUwB2oW2vzxnQCgpRyB0yoyWjeQGy3CUzkLzMpSjqfXIQ4xMASAFiRnwTjE6628QUM-ezO-ydCd6OJoXh_fVtqSPa7HYV0qdLzmTNgmV_cGtc8N-zuVk5fMEefYpnWbPSXYf-Eaesvc0W63UY0uhdchiPyF6ru4jHn_OQPPy4um9-5TeLn9fN_CZ_5ELKvKptW0ELSyFqWUnLS6O5Fczyui2ZqI1ua7FEWNIpSTSGAocSkInCMqQtPyTfPu6uh_A8Ykyqd9Fg12mPYYyKylqWZcWYmOjpf_QpjIOfvlMMgEIlCsonJT_UX9fhRq0H1-thoyiobfdq27366l7NL3_Pvzb-DwICfjI
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201704649
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201704649
Genre reviewArticle
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 21576202
– fundername: Australian Research Council
  funderid: DP160104866; DP170104464; LP160100927
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-g3699-78df70f0b668979d35ca3d62d38f5268caf86be0b1caf9ecc103050e264d2e1f3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 16:36:09 EDT 2025
Sun Jul 13 04:23:08 EDT 2025
Wed Jan 22 16:24:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3699-78df70f0b668979d35ca3d62d38f5268caf86be0b1caf9ecc103050e264d2e1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4568-8422
PQID 2001076413
PQPubID 2045203
PageCount 31
ParticipantIDs proquest_miscellaneous_1989557226
proquest_journals_2001076413
wiley_primary_10_1002_adma_201704649_ADMA201704649
PublicationCentury 2000
PublicationDate February 15, 2018
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: February 15, 2018
  day: 15
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2011; 994
2013; 3
2005; 296
2013; 2
2012; 429–430
2014; 26
2010; 100
2016; 266
2014; 28
2013; 5
2012; 12
2013; 6
2014; 136
1979; 277
2010; 1
2012; 134
2012; 111–112
2013; 134–135
2013; 52
2013; 117
2010; 110
2014; 16
2007; 8
2014; 14
2012; 25
2012; 123–124
2017; 200
2014; 122
2010; 4
2003; 41
2012; 22
2016; 45
2011; 1
2015; 51
2013; 467
2012; 181
2015; 54
1978; 57
2012; 37
2011; 4
2011; 3
2012; 105
2016; 16
2011; 133
2014; 43
2015; 68
2016; 4
2016; 6
2010; 49
2016; 1
2016; 3
2011; 95
2008; 47
2005; 7
2005; 6
2011; 87
2015; 119
2012; 48
2011; 141
2014; 144
2016; 28
2012; 116
2014; 147
2016; 9
2006; 103
1994; 98
2013; 209
2013; 23
1997; 111
2011; 11
2011; 13
1994; 27
2011; 14
2010; 380
2016; 180
2012; 51
1994; 20
2013; 19
2014; 4
2003; 249
2006; 62
2014; 2
1993; 72
2015; 40
2015; 178
2015; 44
1997; 101
2016; 234
1988; 135
2011; 21
2016; 198
2014; 50
2014; 7
2014; 6
1998; 56
2016; 351
1990; 94
2015; 2
2015; 168–169
2015; 162
2015; 163
2004; 221
2001; 70
2012; 142
2002; 37
2015; 5
2015; 3
2013; 49
2013; 42
2015; 10
2009; 131
2015; 9
2015; 8
2015; 7
2014; 152–153
2012; 73
2016; 55
2015; 24
1995; 86
2013; 140–141
2004; 97
2015; 25
2012; 2
2013; 38
2016; 658
1993; 97
2010; 132
2013; 257
2009; 9
2016; 138
2008; 335
2011; 47
1992; 64
2015; 1083
2012; 5
2007; 45
2010; 96
1994; 53
References_xml – volume: 94
  start-page: 3784
  year: 1990
  publication-title: J. Phys. Chem.
– volume: 6
  start-page: 7485
  year: 2016
  publication-title: ACS Catal.
– volume: 16
  start-page: 11492
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 3247
  year: 2012
  publication-title: RSC Adv.
– volume: 28
  start-page: 22
  year: 2014
  publication-title: Energy Fuels
– volume: 180
  start-page: 130
  year: 2016
  publication-title: Appl. Catal., B
– volume: 55
  start-page: 14310
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 209
  start-page: 21
  year: 2013
  publication-title: Catal. Today
– volume: 47
  start-page: 8361
  year: 2011
  publication-title: Chem. Commun.
– volume: 234
  start-page: 1
  year: 2016
  publication-title: Micropor. Mesopor. Mater.
– volume: 277
  start-page: 637
  year: 1979
  publication-title: Nature
– volume: 12
  start-page: 1476
  year: 2012
  publication-title: Cryst. Growth Des.
– volume: 73
  start-page: 788
  year: 2012
  publication-title: J. Phys. Chem. Solids
– volume: 2
  start-page: 261
  year: 2015
  publication-title: Mater. Horiz.
– volume: 163
  start-page: 241
  year: 2015
  publication-title: Appl. Catal., B
– volume: 266
  start-page: 160
  year: 2016
  publication-title: Catal. Today
– volume: 49
  start-page: 6400
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 61
  year: 1994
  publication-title: Catal. Lett.
– volume: 198
  start-page: 180
  year: 2016
  publication-title: Appl. Catal., B
– volume: 6
  start-page: 15488
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 1025
  year: 2016
  publication-title: Catal. Sci. Technol.
– volume: 6
  start-page: 2315
  year: 2014
  publication-title: ChemCatChem
– volume: 3
  start-page: 4505
  year: 2013
  publication-title: RSC Adv.
– volume: 7
  start-page: 13369
  year: 2015
  publication-title: Nanoscale
– volume: 4
  start-page: 43172
  year: 2014
  publication-title: RSC Adv.
– volume: 105
  start-page: 53
  year: 2012
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 62
  start-page: 169
  year: 2006
  publication-title: Appl. Catal., B
– volume: 119
  start-page: 6819
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 658
  start-page: 309
  year: 2016
  publication-title: Chem. Phys. Lett.
– volume: 141
  start-page: 525
  year: 2011
  publication-title: Catal. Lett.
– volume: 200
  start-page: 141
  year: 2017
  publication-title: Appl. Catal., B
– volume: 4
  start-page: 1259
  year: 2010
  publication-title: ACS Nano
– volume: 23
  start-page: 1743
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 16810
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 21
  start-page: 13452
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 45
  start-page: 717
  year: 2007
  publication-title: Carbon
– volume: 87
  start-page: 995
  year: 2011
  publication-title: Photochem. Photobiol.
– volume: 49
  start-page: 10127
  year: 2013
  publication-title: Chem. Commun.
– volume: 19
  start-page: 82
  year: 2013
  publication-title: Renewable Sustainable Energy Rev.
– volume: 116
  start-page: 16047
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 100
  start-page: 386
  year: 2010
  publication-title: Appl. Catal., B
– volume: 51
  start-page: 858
  year: 2015
  publication-title: Chem. Commun.
– volume: 13
  start-page: 2029
  year: 2011
  publication-title: Green Chem.
– volume: 5
  start-page: 6066
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 82
  year: 2013
  publication-title: Catal. Commun.
– volume: 178
  start-page: 170
  year: 2015
  publication-title: Appl. Catal., B
– volume: 1
  start-page: 48
  year: 2010
  publication-title: J. Phys. Chem. Lett.
– volume: 168–169
  start-page: 458
  year: 2015
  publication-title: Appl. Catal., B
– volume: 3
  start-page: 2381
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– volume: 122
  start-page: 183
  year: 2014
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 51
  start-page: 12732
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 3112
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 994
  start-page: 325
  year: 2011
  publication-title: J. Mol. Struct.
– volume: 52
  start-page: 7372
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 97
  start-page: 531
  year: 1993
  publication-title: J. Phys. Chem.
– volume: 97
  start-page: 113
  year: 2004
  publication-title: Catal. Today
– volume: 2
  start-page: 15146
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 162
  start-page: 494
  year: 2015
  publication-title: Appl. Catal., B
– volume: 22
  start-page: 2033
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 136
  start-page: 15969
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 593
  year: 2011
  publication-title: Catal. Sci. Technol.
– volume: 47
  start-page: 131
  year: 2008
  publication-title: Top. Catal.
– volume: 16
  start-page: 5883
  year: 2016
  publication-title: Nano Lett.
– volume: 26
  start-page: 4607
  year: 2014
  publication-title: Adv. Mater.
– volume: 50
  start-page: 6094
  year: 2014
  publication-title: Chem. Commun.
– volume: 56
  start-page: 11
  year: 1998
  publication-title: Catal. Lett.
– volume: 249
  start-page: 11
  year: 2003
  publication-title: Appl. Catal., A
– volume: 47
  start-page: 2041
  year: 2011
  publication-title: Chem. Commun.
– volume: 111–112
  start-page: 119
  year: 2012
  publication-title: Appl. Catal., B
– volume: 110
  start-page: 6503
  year: 2010
  publication-title: Chem. Rev.
– volume: 16
  start-page: 14656
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 43
  start-page: 7787
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 20856
  year: 2014
  publication-title: RSC Adv.
– volume: 57
  start-page: 100
  year: 1978
  publication-title: Chem. Phys. Lett.
– volume: 181
  start-page: 82
  year: 2012
  publication-title: Catal. Today
– volume: 135
  start-page: 3069
  year: 1988
  publication-title: J. Electrochem. Soc.
– volume: 221
  start-page: 432
  year: 2004
  publication-title: J. Catal.
– volume: 1
  start-page: 185
  year: 2016
  publication-title: Nanoscale Horiz.
– volume: 5
  start-page: 1086
  year: 2013
  publication-title: Anal. Methods
– volume: 49
  start-page: 2451
  year: 2013
  publication-title: Chem. Commun.
– volume: 147
  start-page: 940
  year: 2014
  publication-title: Appl. Catal., B
– volume: 5
  start-page: 5902
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 64
  start-page: 255
  year: 1992
  publication-title: J. Photochem. Photobiol., A
– volume: 152–153
  start-page: 309
  year: 2014
  publication-title: Appl. Catal., B
– volume: 133
  start-page: 20863
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 8398
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 3407
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 138
  start-page: 6292
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 1249
  year: 2015
  publication-title: Dalton Trans.
– volume: 123–124
  start-page: 257
  year: 2012
  publication-title: Appl. Catal., B
– volume: 68
  start-page: 203
  year: 2015
  publication-title: Mater. Res. Bull.
– volume: 4
  start-page: 1487
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 2177
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 5776
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 20
  start-page: 815
  year: 1994
  publication-title: Res. Chem. Intermed.
– volume: 144
  start-page: 855
  year: 2014
  publication-title: Appl. Catal., B
– volume: 9
  start-page: 2111
  year: 2015
  publication-title: ACS Nano
– volume: 14
  start-page: F5
  year: 2011
  publication-title: Electrochem. Solid‐State Lett.
– volume: 25
  start-page: 78
  year: 2012
  publication-title: Catal. Commun.
– volume: 4
  start-page: 3637
  year: 2014
  publication-title: ACS Catal.
– volume: 3
  start-page: 902
  year: 2016
  publication-title: Environ. Sci.: Nano
– volume: 4
  start-page: 44442
  year: 2014
  publication-title: RSC Adv.
– volume: 3
  start-page: 2594
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 2427
  year: 2016
  publication-title: Adv. Mater.
– volume: 467
  start-page: 474
  year: 2013
  publication-title: Appl. Catal., A
– volume: 115
  start-page: 10180
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 111
  start-page: 223
  year: 1997
  publication-title: J. Photochem. Photobiol., A
– volume: 73
  start-page: 661
  year: 2012
  publication-title: J. Phys. Chem. Solids
– volume: 3
  start-page: 14487
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 42
  start-page: 2568
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 313
  year: 2005
  publication-title: Catal. Commun.
– volume: 45
  start-page: 3221
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 13429
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 48
  start-page: 58
  year: 2012
  publication-title: Chem. Commun.
– volume: 2
  start-page: M49
  year: 2013
  publication-title: ECS Solid State Lett.
– volume: 49
  start-page: 5101
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1546
  year: 2007
  publication-title: Catal. Commun.
– volume: 4
  start-page: 3644
  year: 2014
  publication-title: ACS Catal.
– volume: 16
  start-page: 24417
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 142
  start-page: 1202
  year: 2012
  publication-title: Catal. Lett.
– volume: 4
  start-page: 15126
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 380
  start-page: 172
  year: 2010
  publication-title: Appl. Catal., A
– volume: 2
  start-page: 3165
  year: 2012
  publication-title: RSC Adv.
– volume: 53
  start-page: 187
  year: 1994
  publication-title: Sol. Energy
– volume: 103
  start-page: 15729
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 1
  year: 2015
  publication-title: J. CO2 Util.
– volume: 351
  start-page: 74
  year: 2016
  publication-title: Science
– volume: 133
  start-page: 4754
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2865
  year: 2011
  publication-title: Nano Lett.
– volume: 140–141
  start-page: 164
  year: 2013
  publication-title: Appl. Catal., B
– volume: 296
  start-page: 194
  year: 2005
  publication-title: Appl. Catal., A
– volume: 134
  start-page: 11276
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 3708
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 2406
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 9217
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 16
  year: 2015
  publication-title: J. Photochem. Photobiol., C
– volume: 98
  start-page: 7147
  year: 1994
  publication-title: J. Phys. Chem.
– volume: 41
  start-page: 387
  year: 2003
  publication-title: Appl. Catal., B
– volume: 25
  start-page: 141
  year: 2015
  publication-title: Curr. Opin. Chem. Biol.
– volume: 117
  start-page: 25939
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 1083
  start-page: 127
  year: 2015
  publication-title: J. Mol. Struct.
– volume: 101
  start-page: 2632
  year: 1997
  publication-title: J. Phys. Chem. B
– volume: 37
  start-page: 9967
  year: 2012
  publication-title: Int. J. Hydrogen Energy
– volume: 96
  start-page: 239
  year: 2010
  publication-title: Appl. Catal., B
– volume: 22
  start-page: 1215
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 131
  start-page: 381
  year: 2009
  publication-title: Catal. Lett.
– volume: 134–135
  start-page: 349
  year: 2013
  publication-title: Appl. Catal., B
– volume: 7
  start-page: 1086
  year: 2014
  publication-title: ChemSusChem
– volume: 86
  start-page: 191
  year: 1995
  publication-title: J. Photochem. Photobiol., A
– volume: 70
  start-page: 103
  year: 2001
  publication-title: Mater. Chem. Phys.
– volume: 43
  start-page: 7520
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 4481
  year: 2015
  publication-title: Catal. Sci. Technol.
– volume: 95
  start-page: 2949
  year: 2011
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 335
  start-page: 112
  year: 2008
  publication-title: Appl. Catal., A
– volume: 7
  start-page: 1528
  year: 2014
  publication-title: Nano Res.
– volume: 7
  start-page: 667
  year: 2005
  publication-title: Green Chem.
– volume: 9
  start-page: 731
  year: 2009
  publication-title: Nano Lett.
– volume: 6
  start-page: 562
  year: 2013
  publication-title: ChemSusChem
– volume: 257
  start-page: 171
  year: 2013
  publication-title: Coord. Chem. Rev.
– volume: 132
  start-page: 14385
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 841
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 57446
  year: 2016
  publication-title: RSC Adv.
– volume: 14
  start-page: 6097
  year: 2014
  publication-title: Nano Lett.
– volume: 40
  start-page: 10049
  year: 2015
  publication-title: Int. J. Hydrogen Energy
– volume: 3
  start-page: 11313
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 37
  start-page: 37
  year: 2002
  publication-title: Appl. Catal., B
– volume: 72
  start-page: 269
  year: 1993
  publication-title: J. Photochem. Photobiol., A
– volume: 429–430
  start-page: 31
  year: 2012
  publication-title: Appl. Catal., A
– volume: 6
  start-page: 944
  year: 2013
  publication-title: ChemSusChem
SSID ssj0009606
Score 2.7038913
SecondaryResourceType review_article
Snippet Ever‐increasing fossil‐fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction...
Ever-increasing fossil-fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Carbon dioxide
Catalytic converters
Charge transfer
CO2 reduction
cocatalysts
Conversion
Electromagnetic absorption
Energy policy
Fuel combustion
Hydrocarbon fuels
Materials science
Oxidation
Photocatalysis
semiconductors
Separation
Solar energy
solar fuels
Title Cocatalysts in Semiconductor‐based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704649
https://www.proquest.com/docview/2001076413
https://www.proquest.com/docview/1989557226
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTsQgFIaJcaUL78bxFkxcWi1QaOtuMmqMiZd4Sdw1UEAnJtTYzkJXPoLP6JPIoTPj6FJ3NC1NyeGUHzh8B6FdgJKFYx_ESuMnKJxEiiVZBDA4JWNLmIUF_fMLcXqXnN3z-4lT_C0fYrzgBp4R_tfg4FLVB9_QUKkDN4iksDkHJ_ggYAtU0fU3PwrkeYDtMR7lIslG1MaYHvys_kNfTqrUMMyczCM5-sA2uuRpf9Co_fLtF7vxPy1YQHNDDYq7badZRFPGLaHZCTLhMnK9KizsvNZNjfsO30AMfeUADlu9fL5_wOCn8dVj1Qyf86_CvUuKrwEFC8Y-xN3ysW8Cjryp93BvlLXFl6XT-PIZlP_ABaLrCro7Ob7tnUbD1AzRAxN5HqWZtmlsYyVElqe5ZryUTAuqWWYBIFNKmwllYkV8KffdBLKZ8dh4-aWpIZatomlXObOGcElMapLYathxTCiRVHJFRakSRrnOyw7aHJmmGPpXDckz_bxV-BG4g3bGt71nwHaHdKYa1AVEg3Geen3ZQTTYoXhuCR5Fy2qmBVigGFug6B6dd8dX63-ptIFmfDmDsG7CN9F08zIwW161NGo79MwvcqzmlA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHUA60h_LVii2FGokjaWM7dhJuq4VqKd0WlVbiFtmxTatKTtVkD3DiEXhGngSPs9m2HOHmfDhKNJ74b3v8G4A3CCWL2z6oUzYMUARNNM-KBGFwWqWOcocT-rMjOT3LDr6KIZoQ98L0fIjlhBt6Rvxfo4PjhPTeDTVUmQgOojmuzpX34QGm9Y6jqpMbghQK9Ijb4yIpZVYM3MaU7d2tf0dh3tapsaPZfwR6eMU-vuRyd97p3frHX_TG__qGx7C-kKFk3LebJ3DP-qewdgtO-Az8pIlzO9_briUXnnzBMPrGIx-2uf798xf2f4Z8Pm-6xX3hUWRyzMgJ0mDR3u_IuD6_sJFI3rVvyWRI3BLKyhtyfIXif-4j1HUDzvY_nE6mySI7Q_KNy7JM8sK4PHWplrIo89JwUStuJDO8cMiQqZUrpLappqFUhpaCCc1EaoMCM8xSxzdhxTfePgdSU5vbLHUGFx0zRhVTQjNZ64wzYcp6BNuDbaqFi7WYPzMMXWXohEfwenk5OAeueChvm3lbYUCYEHmQmCNg0RDVVQ_xqHpcM6vQAtXSAtX4_Wy8PNr6l0o78HB6OjusDj8efXoBq-F8gVHeVGzDSnc9ty-DiOn0q9hM_wDgV-qv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHpZUQHHhXLC1gJI6kje3YSbitdlmVRx8qVOotsmO7WyE5qyZ7gBMfoZ-RT4LH2d1uOcLNeThKNDPx3_b4Z4C3CCWLyz6oUzZ0UARNNM-KBGFwWqWOcocD-odH8uAs-3QuztdW8fd8iNWAG0ZG_F9jgM-M27-BhioTuUE0x8m58g5sZTIt0K_HpzcAKdTnkbbHRVLKrFhiG1O2f7v-LYG5LlNjOzN5CGr5hn16yfe9eaf36p9_wRv_5xMewYOFCCXD3msew4b1T-D-GprwKfhRE0d2frRdSy49-YpJ9I1HOmxz9fvXNbZ-hpxMm25xX3gUGR0zcoosWLT2ezKsp5c28si79h0ZLbdtCWXlDTmeofSf-4h0fQZnkw_fRgfJYm-G5ILLskzywrg8damWsijz0nBRK24kM7xwSJCplSuktqmmoVQGP8HtzERqg_4yzFLHt2HTN94-B1JTm9ssdQanHDNGFVNCM1nrjDNhynoAu0vTVIsAa3H3zNBxlaEJHsCb1eUQGjjfobxt5m2F6WBC5EFgDoBFO1SzHuFR9bBmVqEFqpUFquH4cLg6evEvlV7D3ZPxpPry8ejzDtwLpwtM8aZiFza7q7l9GRRMp19FJ_0DTL_pZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cocatalysts+in+Semiconductor%E2%80%90based+Photocatalytic+CO2+Reduction%3A+Achievements%2C+Challenges%2C+and+Opportunities&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ran%2C+Jingrun&rft.au=Jaroniec%2C+Mietek&rft.au=Qiao%2C+Shi%E2%80%90Zhang&rft.date=2018-02-15&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201704649&rft.externalDBID=10.1002%252Fadma.201704649&rft.externalDocID=ADMA201704649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon