Cocatalysts in Semiconductor‐based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities
Ever‐increasing fossil‐fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost‐effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing so...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
15.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201704649 |
Cover
Loading…
Abstract | Ever‐increasing fossil‐fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost‐effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half‐reaction of CO2 conversion with an oxidative half reaction, e.g., H2O oxidation, to create a carbon‐neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar‐light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2‐reduction cocatalysts for semiconductor‐based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided.
Active and stable CO2‐reduction cocatalysts can obviously enhance the efficiency, selectivity, and stability of semiconductor‐based photocatalytic CO2 reduction. All of the developed CO2‐reduction cocatalysts are summarized, and their functions and insightful mechanisms are discussed. This can pave new avenues to the exploration of novel highly active and selective cocatalysts, toward high‐performance solar fuel production. |
---|---|
AbstractList | Ever‐increasing fossil‐fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost‐effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half‐reaction of CO2 conversion with an oxidative half reaction, e.g., H2O oxidation, to create a carbon‐neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar‐light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2‐reduction cocatalysts for semiconductor‐based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided.
Active and stable CO2‐reduction cocatalysts can obviously enhance the efficiency, selectivity, and stability of semiconductor‐based photocatalytic CO2 reduction. All of the developed CO2‐reduction cocatalysts are summarized, and their functions and insightful mechanisms are discussed. This can pave new avenues to the exploration of novel highly active and selective cocatalysts, toward high‐performance solar fuel production. Ever-increasing fossil-fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO2 conversion with an oxidative half reaction, e.g., H2O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2-reduction cocatalysts for semiconductor-based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. Ever-increasing fossil-fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO2 conversion with an oxidative half reaction, e.g., H2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2 -reduction cocatalysts for semiconductor-based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided.Ever-increasing fossil-fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO2 conversion with an oxidative half reaction, e.g., H2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2 -reduction cocatalysts for semiconductor-based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. |
Author | Jaroniec, Mietek Qiao, Shi‐Zhang Ran, Jingrun |
Author_xml | – sequence: 1 givenname: Jingrun surname: Ran fullname: Ran, Jingrun organization: University of Adelaide – sequence: 2 givenname: Mietek surname: Jaroniec fullname: Jaroniec, Mietek organization: Kent State University – sequence: 3 givenname: Shi‐Zhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shi‐Zhang email: s.qiao@adelaide.edu.au organization: Tianjin University |
BookMark | eNpd0M9O3DAQBnALgcTy58o5EpceCIztxIl7WwXaIlEtKnC2vPaENUrsJXao9sYj8Iw8SbMCcehpvpF-Go2-A7Lrg0dCTiicUwB2oW2vzxnQCgpRyB0yoyWjeQGy3CUzkLzMpSjqfXIQ4xMASAFiRnwTjE6628QUM-ezO-ydCd6OJoXh_fVtqSPa7HYV0qdLzmTNgmV_cGtc8N-zuVk5fMEefYpnWbPSXYf-Eaesvc0W63UY0uhdchiPyF6ru4jHn_OQPPy4um9-5TeLn9fN_CZ_5ELKvKptW0ELSyFqWUnLS6O5Fczyui2ZqI1ua7FEWNIpSTSGAocSkInCMqQtPyTfPu6uh_A8Ykyqd9Fg12mPYYyKylqWZcWYmOjpf_QpjIOfvlMMgEIlCsonJT_UX9fhRq0H1-thoyiobfdq27366l7NL3_Pvzb-DwICfjI |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201704649 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201704649 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 21576202 – fundername: Australian Research Council funderid: DP160104866; DP170104464; LP160100927 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-g3699-78df70f0b668979d35ca3d62d38f5268caf86be0b1caf9ecc103050e264d2e1f3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 16:36:09 EDT 2025 Sun Jul 13 04:23:08 EDT 2025 Wed Jan 22 16:24:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3699-78df70f0b668979d35ca3d62d38f5268caf86be0b1caf9ecc103050e264d2e1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4568-8422 |
PQID | 2001076413 |
PQPubID | 2045203 |
PageCount | 31 |
ParticipantIDs | proquest_miscellaneous_1989557226 proquest_journals_2001076413 wiley_primary_10_1002_adma_201704649_ADMA201704649 |
PublicationCentury | 2000 |
PublicationDate | February 15, 2018 |
PublicationDateYYYYMMDD | 2018-02-15 |
PublicationDate_xml | – month: 02 year: 2018 text: February 15, 2018 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 2011; 994 2013; 3 2005; 296 2013; 2 2012; 429–430 2014; 26 2010; 100 2016; 266 2014; 28 2013; 5 2012; 12 2013; 6 2014; 136 1979; 277 2010; 1 2012; 134 2012; 111–112 2013; 134–135 2013; 52 2013; 117 2010; 110 2014; 16 2007; 8 2014; 14 2012; 25 2012; 123–124 2017; 200 2014; 122 2010; 4 2003; 41 2012; 22 2016; 45 2011; 1 2015; 51 2013; 467 2012; 181 2015; 54 1978; 57 2012; 37 2011; 4 2011; 3 2012; 105 2016; 16 2011; 133 2014; 43 2015; 68 2016; 4 2016; 6 2010; 49 2016; 1 2016; 3 2011; 95 2008; 47 2005; 7 2005; 6 2011; 87 2015; 119 2012; 48 2011; 141 2014; 144 2016; 28 2012; 116 2014; 147 2016; 9 2006; 103 1994; 98 2013; 209 2013; 23 1997; 111 2011; 11 2011; 13 1994; 27 2011; 14 2010; 380 2016; 180 2012; 51 1994; 20 2013; 19 2014; 4 2003; 249 2006; 62 2014; 2 1993; 72 2015; 40 2015; 178 2015; 44 1997; 101 2016; 234 1988; 135 2011; 21 2016; 198 2014; 50 2014; 7 2014; 6 1998; 56 2016; 351 1990; 94 2015; 2 2015; 168–169 2015; 162 2015; 163 2004; 221 2001; 70 2012; 142 2002; 37 2015; 5 2015; 3 2013; 49 2013; 42 2015; 10 2009; 131 2015; 9 2015; 8 2015; 7 2014; 152–153 2012; 73 2016; 55 2015; 24 1995; 86 2013; 140–141 2004; 97 2015; 25 2012; 2 2013; 38 2016; 658 1993; 97 2010; 132 2013; 257 2009; 9 2016; 138 2008; 335 2011; 47 1992; 64 2015; 1083 2012; 5 2007; 45 2010; 96 1994; 53 |
References_xml | – volume: 94 start-page: 3784 year: 1990 publication-title: J. Phys. Chem. – volume: 6 start-page: 7485 year: 2016 publication-title: ACS Catal. – volume: 16 start-page: 11492 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 3247 year: 2012 publication-title: RSC Adv. – volume: 28 start-page: 22 year: 2014 publication-title: Energy Fuels – volume: 180 start-page: 130 year: 2016 publication-title: Appl. Catal., B – volume: 55 start-page: 14310 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 209 start-page: 21 year: 2013 publication-title: Catal. Today – volume: 47 start-page: 8361 year: 2011 publication-title: Chem. Commun. – volume: 234 start-page: 1 year: 2016 publication-title: Micropor. Mesopor. Mater. – volume: 277 start-page: 637 year: 1979 publication-title: Nature – volume: 12 start-page: 1476 year: 2012 publication-title: Cryst. Growth Des. – volume: 73 start-page: 788 year: 2012 publication-title: J. Phys. Chem. Solids – volume: 2 start-page: 261 year: 2015 publication-title: Mater. Horiz. – volume: 163 start-page: 241 year: 2015 publication-title: Appl. Catal., B – volume: 266 start-page: 160 year: 2016 publication-title: Catal. Today – volume: 49 start-page: 6400 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 61 year: 1994 publication-title: Catal. Lett. – volume: 198 start-page: 180 year: 2016 publication-title: Appl. Catal., B – volume: 6 start-page: 15488 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 1025 year: 2016 publication-title: Catal. Sci. Technol. – volume: 6 start-page: 2315 year: 2014 publication-title: ChemCatChem – volume: 3 start-page: 4505 year: 2013 publication-title: RSC Adv. – volume: 7 start-page: 13369 year: 2015 publication-title: Nanoscale – volume: 4 start-page: 43172 year: 2014 publication-title: RSC Adv. – volume: 105 start-page: 53 year: 2012 publication-title: Sol. Energy Mater. Sol. Cells – volume: 62 start-page: 169 year: 2006 publication-title: Appl. Catal., B – volume: 119 start-page: 6819 year: 2015 publication-title: J. Phys. Chem. C – volume: 658 start-page: 309 year: 2016 publication-title: Chem. Phys. Lett. – volume: 141 start-page: 525 year: 2011 publication-title: Catal. Lett. – volume: 200 start-page: 141 year: 2017 publication-title: Appl. Catal., B – volume: 4 start-page: 1259 year: 2010 publication-title: ACS Nano – volume: 23 start-page: 1743 year: 2013 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 16810 year: 2015 publication-title: J. Mater. Chem. A – volume: 21 start-page: 13452 year: 2011 publication-title: J. Mater. Chem. – volume: 45 start-page: 717 year: 2007 publication-title: Carbon – volume: 87 start-page: 995 year: 2011 publication-title: Photochem. Photobiol. – volume: 49 start-page: 10127 year: 2013 publication-title: Chem. Commun. – volume: 19 start-page: 82 year: 2013 publication-title: Renewable Sustainable Energy Rev. – volume: 116 start-page: 16047 year: 2012 publication-title: J. Phys. Chem. C – volume: 100 start-page: 386 year: 2010 publication-title: Appl. Catal., B – volume: 51 start-page: 858 year: 2015 publication-title: Chem. Commun. – volume: 13 start-page: 2029 year: 2011 publication-title: Green Chem. – volume: 5 start-page: 6066 year: 2012 publication-title: Energy Environ. Sci. – volume: 38 start-page: 82 year: 2013 publication-title: Catal. Commun. – volume: 178 start-page: 170 year: 2015 publication-title: Appl. Catal., B – volume: 1 start-page: 48 year: 2010 publication-title: J. Phys. Chem. Lett. – volume: 168–169 start-page: 458 year: 2015 publication-title: Appl. Catal., B – volume: 3 start-page: 2381 year: 2015 publication-title: ACS Sustainable Chem. Eng. – volume: 122 start-page: 183 year: 2014 publication-title: Sol. Energy Mater. Sol. Cells – volume: 51 start-page: 12732 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 3112 year: 2013 publication-title: Energy Environ. Sci. – volume: 994 start-page: 325 year: 2011 publication-title: J. Mol. Struct. – volume: 52 start-page: 7372 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 97 start-page: 531 year: 1993 publication-title: J. Phys. Chem. – volume: 97 start-page: 113 year: 2004 publication-title: Catal. Today – volume: 2 start-page: 15146 year: 2014 publication-title: J. Mater. Chem. A – volume: 162 start-page: 494 year: 2015 publication-title: Appl. Catal., B – volume: 22 start-page: 2033 year: 2012 publication-title: J. Mater. Chem. – volume: 136 start-page: 15969 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 593 year: 2011 publication-title: Catal. Sci. Technol. – volume: 47 start-page: 131 year: 2008 publication-title: Top. Catal. – volume: 16 start-page: 5883 year: 2016 publication-title: Nano Lett. – volume: 26 start-page: 4607 year: 2014 publication-title: Adv. Mater. – volume: 50 start-page: 6094 year: 2014 publication-title: Chem. Commun. – volume: 56 start-page: 11 year: 1998 publication-title: Catal. Lett. – volume: 249 start-page: 11 year: 2003 publication-title: Appl. Catal., A – volume: 47 start-page: 2041 year: 2011 publication-title: Chem. Commun. – volume: 111–112 start-page: 119 year: 2012 publication-title: Appl. Catal., B – volume: 110 start-page: 6503 year: 2010 publication-title: Chem. Rev. – volume: 16 start-page: 14656 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 43 start-page: 7787 year: 2014 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 20856 year: 2014 publication-title: RSC Adv. – volume: 57 start-page: 100 year: 1978 publication-title: Chem. Phys. Lett. – volume: 181 start-page: 82 year: 2012 publication-title: Catal. Today – volume: 135 start-page: 3069 year: 1988 publication-title: J. Electrochem. Soc. – volume: 221 start-page: 432 year: 2004 publication-title: J. Catal. – volume: 1 start-page: 185 year: 2016 publication-title: Nanoscale Horiz. – volume: 5 start-page: 1086 year: 2013 publication-title: Anal. Methods – volume: 49 start-page: 2451 year: 2013 publication-title: Chem. Commun. – volume: 147 start-page: 940 year: 2014 publication-title: Appl. Catal., B – volume: 5 start-page: 5902 year: 2012 publication-title: Energy Environ. Sci. – volume: 64 start-page: 255 year: 1992 publication-title: J. Photochem. Photobiol., A – volume: 152–153 start-page: 309 year: 2014 publication-title: Appl. Catal., B – volume: 133 start-page: 20863 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 8398 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 3407 year: 2014 publication-title: J. Mater. Chem. A – volume: 138 start-page: 6292 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 1249 year: 2015 publication-title: Dalton Trans. – volume: 123–124 start-page: 257 year: 2012 publication-title: Appl. Catal., B – volume: 68 start-page: 203 year: 2015 publication-title: Mater. Res. Bull. – volume: 4 start-page: 1487 year: 2011 publication-title: Energy Environ. Sci. – volume: 9 start-page: 2177 year: 2016 publication-title: Energy Environ. Sci. – volume: 52 start-page: 5776 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 20 start-page: 815 year: 1994 publication-title: Res. Chem. Intermed. – volume: 144 start-page: 855 year: 2014 publication-title: Appl. Catal., B – volume: 9 start-page: 2111 year: 2015 publication-title: ACS Nano – volume: 14 start-page: F5 year: 2011 publication-title: Electrochem. Solid‐State Lett. – volume: 25 start-page: 78 year: 2012 publication-title: Catal. Commun. – volume: 4 start-page: 3637 year: 2014 publication-title: ACS Catal. – volume: 3 start-page: 902 year: 2016 publication-title: Environ. Sci.: Nano – volume: 4 start-page: 44442 year: 2014 publication-title: RSC Adv. – volume: 3 start-page: 2594 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 2427 year: 2016 publication-title: Adv. Mater. – volume: 467 start-page: 474 year: 2013 publication-title: Appl. Catal., A – volume: 115 start-page: 10180 year: 2011 publication-title: J. Phys. Chem. C – volume: 111 start-page: 223 year: 1997 publication-title: J. Photochem. Photobiol., A – volume: 73 start-page: 661 year: 2012 publication-title: J. Phys. Chem. Solids – volume: 3 start-page: 14487 year: 2015 publication-title: J. Mater. Chem. A – volume: 42 start-page: 2568 year: 2013 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 313 year: 2005 publication-title: Catal. Commun. – volume: 45 start-page: 3221 year: 2016 publication-title: Chem. Soc. Rev. – volume: 21 start-page: 13429 year: 2011 publication-title: J. Mater. Chem. – volume: 48 start-page: 58 year: 2012 publication-title: Chem. Commun. – volume: 2 start-page: M49 year: 2013 publication-title: ECS Solid State Lett. – volume: 49 start-page: 5101 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1546 year: 2007 publication-title: Catal. Commun. – volume: 4 start-page: 3644 year: 2014 publication-title: ACS Catal. – volume: 16 start-page: 24417 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 142 start-page: 1202 year: 2012 publication-title: Catal. Lett. – volume: 4 start-page: 15126 year: 2016 publication-title: J. Mater. Chem. A – volume: 380 start-page: 172 year: 2010 publication-title: Appl. Catal., A – volume: 2 start-page: 3165 year: 2012 publication-title: RSC Adv. – volume: 53 start-page: 187 year: 1994 publication-title: Sol. Energy – volume: 103 start-page: 15729 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 1 year: 2015 publication-title: J. CO2 Util. – volume: 351 start-page: 74 year: 2016 publication-title: Science – volume: 133 start-page: 4754 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2865 year: 2011 publication-title: Nano Lett. – volume: 140–141 start-page: 164 year: 2013 publication-title: Appl. Catal., B – volume: 296 start-page: 194 year: 2005 publication-title: Appl. Catal., A – volume: 134 start-page: 11276 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 3708 year: 2015 publication-title: Energy Environ. Sci. – volume: 54 start-page: 2406 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 9217 year: 2012 publication-title: Energy Environ. Sci. – volume: 24 start-page: 16 year: 2015 publication-title: J. Photochem. Photobiol., C – volume: 98 start-page: 7147 year: 1994 publication-title: J. Phys. Chem. – volume: 41 start-page: 387 year: 2003 publication-title: Appl. Catal., B – volume: 25 start-page: 141 year: 2015 publication-title: Curr. Opin. Chem. Biol. – volume: 117 start-page: 25939 year: 2013 publication-title: J. Phys. Chem. C – volume: 1083 start-page: 127 year: 2015 publication-title: J. Mol. Struct. – volume: 101 start-page: 2632 year: 1997 publication-title: J. Phys. Chem. B – volume: 37 start-page: 9967 year: 2012 publication-title: Int. J. Hydrogen Energy – volume: 96 start-page: 239 year: 2010 publication-title: Appl. Catal., B – volume: 22 start-page: 1215 year: 2012 publication-title: Adv. Funct. Mater. – volume: 131 start-page: 381 year: 2009 publication-title: Catal. Lett. – volume: 134–135 start-page: 349 year: 2013 publication-title: Appl. Catal., B – volume: 7 start-page: 1086 year: 2014 publication-title: ChemSusChem – volume: 86 start-page: 191 year: 1995 publication-title: J. Photochem. Photobiol., A – volume: 70 start-page: 103 year: 2001 publication-title: Mater. Chem. Phys. – volume: 43 start-page: 7520 year: 2014 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 4481 year: 2015 publication-title: Catal. Sci. Technol. – volume: 95 start-page: 2949 year: 2011 publication-title: Sol. Energy Mater. Sol. Cells – volume: 335 start-page: 112 year: 2008 publication-title: Appl. Catal., A – volume: 7 start-page: 1528 year: 2014 publication-title: Nano Res. – volume: 7 start-page: 667 year: 2005 publication-title: Green Chem. – volume: 9 start-page: 731 year: 2009 publication-title: Nano Lett. – volume: 6 start-page: 562 year: 2013 publication-title: ChemSusChem – volume: 257 start-page: 171 year: 2013 publication-title: Coord. Chem. Rev. – volume: 132 start-page: 14385 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 841 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 57446 year: 2016 publication-title: RSC Adv. – volume: 14 start-page: 6097 year: 2014 publication-title: Nano Lett. – volume: 40 start-page: 10049 year: 2015 publication-title: Int. J. Hydrogen Energy – volume: 3 start-page: 11313 year: 2015 publication-title: J. Mater. Chem. A – volume: 37 start-page: 37 year: 2002 publication-title: Appl. Catal., B – volume: 72 start-page: 269 year: 1993 publication-title: J. Photochem. Photobiol., A – volume: 429–430 start-page: 31 year: 2012 publication-title: Appl. Catal., A – volume: 6 start-page: 944 year: 2013 publication-title: ChemSusChem |
SSID | ssj0009606 |
Score | 2.7038913 |
SecondaryResourceType | review_article |
Snippet | Ever‐increasing fossil‐fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction... Ever-increasing fossil-fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carbon dioxide Catalytic converters Charge transfer CO2 reduction cocatalysts Conversion Electromagnetic absorption Energy policy Fuel combustion Hydrocarbon fuels Materials science Oxidation Photocatalysis semiconductors Separation Solar energy solar fuels |
Title | Cocatalysts in Semiconductor‐based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704649 https://www.proquest.com/docview/2001076413 https://www.proquest.com/docview/1989557226 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTsQgFIaJcaUL78bxFkxcWi1QaOtuMmqMiZd4Sdw1UEAnJtTYzkJXPoLP6JPIoTPj6FJ3NC1NyeGUHzh8B6FdgJKFYx_ESuMnKJxEiiVZBDA4JWNLmIUF_fMLcXqXnN3z-4lT_C0fYrzgBp4R_tfg4FLVB9_QUKkDN4iksDkHJ_ggYAtU0fU3PwrkeYDtMR7lIslG1MaYHvys_kNfTqrUMMyczCM5-sA2uuRpf9Co_fLtF7vxPy1YQHNDDYq7badZRFPGLaHZCTLhMnK9KizsvNZNjfsO30AMfeUADlu9fL5_wOCn8dVj1Qyf86_CvUuKrwEFC8Y-xN3ysW8Cjryp93BvlLXFl6XT-PIZlP_ABaLrCro7Ob7tnUbD1AzRAxN5HqWZtmlsYyVElqe5ZryUTAuqWWYBIFNKmwllYkV8KffdBLKZ8dh4-aWpIZatomlXObOGcElMapLYathxTCiRVHJFRakSRrnOyw7aHJmmGPpXDckz_bxV-BG4g3bGt71nwHaHdKYa1AVEg3Geen3ZQTTYoXhuCR5Fy2qmBVigGFug6B6dd8dX63-ptIFmfDmDsG7CN9F08zIwW161NGo79MwvcqzmlA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHUA60h_LVii2FGokjaWM7dhJuq4VqKd0WlVbiFtmxTatKTtVkD3DiEXhGngSPs9m2HOHmfDhKNJ74b3v8G4A3CCWL2z6oUzYMUARNNM-KBGFwWqWOcocT-rMjOT3LDr6KIZoQ98L0fIjlhBt6Rvxfo4PjhPTeDTVUmQgOojmuzpX34QGm9Y6jqpMbghQK9Ijb4yIpZVYM3MaU7d2tf0dh3tapsaPZfwR6eMU-vuRyd97p3frHX_TG__qGx7C-kKFk3LebJ3DP-qewdgtO-Az8pIlzO9_briUXnnzBMPrGIx-2uf798xf2f4Z8Pm-6xX3hUWRyzMgJ0mDR3u_IuD6_sJFI3rVvyWRI3BLKyhtyfIXif-4j1HUDzvY_nE6mySI7Q_KNy7JM8sK4PHWplrIo89JwUStuJDO8cMiQqZUrpLappqFUhpaCCc1EaoMCM8xSxzdhxTfePgdSU5vbLHUGFx0zRhVTQjNZ64wzYcp6BNuDbaqFi7WYPzMMXWXohEfwenk5OAeueChvm3lbYUCYEHmQmCNg0RDVVQ_xqHpcM6vQAtXSAtX4_Wy8PNr6l0o78HB6OjusDj8efXoBq-F8gVHeVGzDSnc9ty-DiOn0q9hM_wDgV-qv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHpZUQHHhXLC1gJI6kje3YSbitdlmVRx8qVOotsmO7WyE5qyZ7gBMfoZ-RT4LH2d1uOcLNeThKNDPx3_b4Z4C3CCWLyz6oUzZ0UARNNM-KBGFwWqWOcocD-odH8uAs-3QuztdW8fd8iNWAG0ZG_F9jgM-M27-BhioTuUE0x8m58g5sZTIt0K_HpzcAKdTnkbbHRVLKrFhiG1O2f7v-LYG5LlNjOzN5CGr5hn16yfe9eaf36p9_wRv_5xMewYOFCCXD3msew4b1T-D-GprwKfhRE0d2frRdSy49-YpJ9I1HOmxz9fvXNbZ-hpxMm25xX3gUGR0zcoosWLT2ezKsp5c28si79h0ZLbdtCWXlDTmeofSf-4h0fQZnkw_fRgfJYm-G5ILLskzywrg8damWsijz0nBRK24kM7xwSJCplSuktqmmoVQGP8HtzERqg_4yzFLHt2HTN94-B1JTm9ssdQanHDNGFVNCM1nrjDNhynoAu0vTVIsAa3H3zNBxlaEJHsCb1eUQGjjfobxt5m2F6WBC5EFgDoBFO1SzHuFR9bBmVqEFqpUFquH4cLg6evEvlV7D3ZPxpPry8ejzDtwLpwtM8aZiFza7q7l9GRRMp19FJ_0DTL_pZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cocatalysts+in+Semiconductor%E2%80%90based+Photocatalytic+CO2+Reduction%3A+Achievements%2C+Challenges%2C+and+Opportunities&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ran%2C+Jingrun&rft.au=Jaroniec%2C+Mietek&rft.au=Qiao%2C+Shi%E2%80%90Zhang&rft.date=2018-02-15&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201704649&rft.externalDBID=10.1002%252Fadma.201704649&rft.externalDocID=ADMA201704649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |