Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Long‐lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4

Improving the stability of cuprous oxide (Cu2O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2O nanowires are encapsulated by metal–organic frameworks (MOFs) of Cu3(BTC)2 (BTC=1,3,5‐benzene tricarboxylate) using a surfactant‐free method. Such MOFs not onl...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 15; pp. 8455 - 8459
Main Authors Wu, Hao, Kong, Xin Ying, Wen, Xiaoming, Chai, Siang‐Piao, Lovell, Emma C., Tang, Junwang, Ng, Yun Hau
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.04.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Improving the stability of cuprous oxide (Cu2O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2O nanowires are encapsulated by metal–organic frameworks (MOFs) of Cu3(BTC)2 (BTC=1,3,5‐benzene tricarboxylate) using a surfactant‐free method. Such MOFs not only suppress the water vapor‐induced corrosion of Cu2O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2O to the LUMO level of non‐excited Cu3(BTC)2 has been evidenced by time‐resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst. Cu2O nanowires are decorated with Cu3(BTC)2 by a surfactant‐free method. The Cu2O@Cu3(BTC)2 core–shell structure offers enlarged active surfaces and prolonged lifetime of separated electrons for CO2 reduction into CH4, exhibiting enhanced photocatalytic activity and stability compared to the bare Cu2O.
AbstractList Improving the stability of cuprous oxide (Cu2O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2O nanowires are encapsulated by metal–organic frameworks (MOFs) of Cu3(BTC)2 (BTC=1,3,5‐benzene tricarboxylate) using a surfactant‐free method. Such MOFs not only suppress the water vapor‐induced corrosion of Cu2O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2O to the LUMO level of non‐excited Cu3(BTC)2 has been evidenced by time‐resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.
Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu3 (BTC)2 (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2 O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2 O to the LUMO level of non-excited Cu3 (BTC)2 has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu3 (BTC)2 (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2 O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2 O to the LUMO level of non-excited Cu3 (BTC)2 has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.
Improving the stability of cuprous oxide (Cu2O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2O nanowires are encapsulated by metal–organic frameworks (MOFs) of Cu3(BTC)2 (BTC=1,3,5‐benzene tricarboxylate) using a surfactant‐free method. Such MOFs not only suppress the water vapor‐induced corrosion of Cu2O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2O to the LUMO level of non‐excited Cu3(BTC)2 has been evidenced by time‐resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst. Cu2O nanowires are decorated with Cu3(BTC)2 by a surfactant‐free method. The Cu2O@Cu3(BTC)2 core–shell structure offers enlarged active surfaces and prolonged lifetime of separated electrons for CO2 reduction into CH4, exhibiting enhanced photocatalytic activity and stability compared to the bare Cu2O.
Author Wen, Xiaoming
Ng, Yun Hau
Wu, Hao
Chai, Siang‐Piao
Kong, Xin Ying
Lovell, Emma C.
Tang, Junwang
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0003-0836-3239
  surname: Wu
  fullname: Wu, Hao
  organization: The University of New South Wales
– sequence: 2
  givenname: Xin Ying
  surname: Kong
  fullname: Kong, Xin Ying
  organization: Monash University
– sequence: 3
  givenname: Xiaoming
  orcidid: 0000-0001-8298-483X
  surname: Wen
  fullname: Wen, Xiaoming
  organization: Swinburne University of Technology
– sequence: 4
  givenname: Siang‐Piao
  orcidid: 0000-0002-8635-1762
  surname: Chai
  fullname: Chai, Siang‐Piao
  organization: Monash University
– sequence: 5
  givenname: Emma C.
  orcidid: 0000-0002-9027-0316
  surname: Lovell
  fullname: Lovell, Emma C.
  organization: The University of New South Wales
– sequence: 6
  givenname: Junwang
  orcidid: 0000-0002-2323-5510
  surname: Tang
  fullname: Tang, Junwang
  organization: University College London
– sequence: 7
  givenname: Yun Hau
  orcidid: 0000-0001-9142-2126
  surname: Ng
  fullname: Ng, Yun Hau
  email: yunhau.ng@cityu.edu.hk
  organization: The University of New South Wales
BookMark eNpdkT1v2zAQhonCBRqnXTsT6NJFCXmURGk0FDsJ4MRFP2aCos4OU5l0KCmOt_yBAAHyD_NLQiOFh053h_fBfb1jMnLeISFfOTvhjMGpdhZPgAHjmRTZB3LEM-CJkFKMYp4Kkcgi45_IuOtuI18ULD8iT1fY6_b18WURVrGBobOg17j14S89Q-OD7rGh1bAJfujo4sE2SK-181sbsKNLH-jcu9Xr43Nr7_fgjQ6rKEw2m9bG2jr6C1s0fVTpjxvfe6PjuF0fB1ULoD-xGaLoHe09rS7Sz-TjUrcdfvkXj8mf2fR3dZHMF-eX1WSerEReZompJQLoXKd1zWUpm6LMDTMcoMQlmkbWDCQIiRFLzbIGhkZokTMJORouxTH5_t433nU3YNerte0Mtq12GA9VkEqRskJAEdFv_6G3fggubqcgYyXEVxdlpMp3amtb3KlNsGsddooztbdG7a1RB2vU5PpyeqjEG2NniVU
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202015735
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8459
ExternalDocumentID ANIE202015735
Genre shortCommunication
GrantInformation_xml – fundername: Australian Research Council (ARC)
  funderid: Discovery Project DP180102540
– fundername: Research Grants Council, University Grants Committee
  funderid: General Research Fund CityU 11305419
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-g3695-cb7e22a6a4bb1797d896c0c1229efecd7b027237e7e24cfb20ec3a360726ec173
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 23:25:04 EDT 2025
Sun Jul 13 03:28:31 EDT 2025
Wed Jan 22 16:31:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3695-cb7e22a6a4bb1797d896c0c1229efecd7b027237e7e24cfb20ec3a360726ec173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2323-5510
0000-0002-8635-1762
0000-0003-0836-3239
0000-0002-9027-0316
0000-0001-8298-483X
0000-0001-9142-2126
PQID 2509273589
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2473408328
proquest_journals_2509273589
wiley_primary_10_1002_anie_202015735_ANIE202015735
PublicationCentury 2000
PublicationDate April 6, 2021
PublicationDateYYYYMMDD 2021-04-06
PublicationDate_xml – month: 04
  year: 2021
  text: April 6, 2021
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 4
2006; 12
2019; 31
2019; 11
2020; 142
2019; 10
2020 2020; 59 132
2014; 26
2020; 11
2020; 32
2013; 7
2019; 141
2016; 16
2014; 136
2019 2019; 58 131
2020; 8
2018; 6
2015; 25
2017; 30
2020; 5
2018; 8
2016 2016; 55 128
2012; 3
2010; 26
2015; 115
2018 2018; 57 130
2015; 119
References_xml – volume: 141
  start-page: 7115
  year: 2019
  end-page: 7121
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 690
  year: 2019
  end-page: 699
  publication-title: Nat. Energy
– volume: 25
  start-page: 5360
  year: 2015
  end-page: 5367
  publication-title: Adv. Funct. Mater.
– volume: 142
  start-page: 21513
  year: 2020
  end-page: 21521
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 5201
  year: 2019
  end-page: 5210
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 222
  year: 2019
  end-page: 228
  publication-title: Nat. Chem.
– volume: 8
  start-page: 9744
  year: 2018
  end-page: 9754
  publication-title: ACS Catal.
– volume: 30
  year: 2017
  publication-title: Adv. Mater.
– volume: 119
  start-page: 26275
  year: 2015
  end-page: 26282
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 5274
  year: 2014
  end-page: 5309
  publication-title: Adv. Mater.
– volume: 55 128
  start-page: 8840 8986
  year: 2016 2016
  end-page: 8845 8991
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 11860 11986
  year: 2019 2019
  end-page: 11867 11993
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 1848
  year: 2016
  end-page: 1857
  publication-title: Nano Lett.
– volume: 141
  start-page: 10924
  year: 2019
  end-page: 10929
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 14301
  year: 2010
  end-page: 14307
  publication-title: Langmuir
– volume: 10
  start-page: 676
  year: 2019
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1709
  year: 2013
  end-page: 1717
  publication-title: ACS Nano
– volume: 59 132
  start-page: 23641 23849
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 957
  year: 2019
  end-page: 968
  publication-title: Nat. Energy
– volume: 8
  start-page: 5638
  year: 2020
  end-page: 5646
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 221
  year: 2020
  end-page: 223
  publication-title: ACS Energy Lett.
– volume: 26
  start-page: 4783
  year: 2014
  end-page: 4788
  publication-title: Adv. Mater.
– volume: 12
  start-page: 7353
  year: 2006
  end-page: 7363
  publication-title: Chem. Eur. J.
– volume: 57 130
  start-page: 13613 13801
  year: 2018 2018
  end-page: 13617 13805
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 115
  start-page: 12888
  year: 2015
  end-page: 12935
  publication-title: Chem. Rev.
– volume: 136
  start-page: 2703
  year: 2014
  end-page: 2706
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 9491 9591
  year: 2019 2019
  end-page: 9495 9595
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 5226 5280
  year: 2019 2019
  end-page: 5231 5285
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 7175
  year: 2018
  end-page: 7181
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 3482
  year: 2012
  publication-title: Chem. Sci.
– volume: 58 131
  start-page: 11752 11878
  year: 2019 2019
  end-page: 11756 11882
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 6190
  year: 2020
  publication-title: Nat. Commun.
SSID ssj0028806
Score 2.6694503
Snippet Improving the stability of cuprous oxide (Cu2O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2O nanowires are...
Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 8455
SubjectTerms Benzene
Carbon dioxide
carbon dioxide fixation
charge transfer
Conduction bands
Copper oxides
Metal oxides
Metal-organic frameworks
Methane
Nanocomposites
nanostructures
Nanotechnology
Nanowires
Photocatalysis
Photoluminescence
Photons
Photosynthesis
Separation
Stability
Water vapor
Title Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Long‐lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202015735
https://www.proquest.com/docview/2509273589
https://www.proquest.com/docview/2473408328
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7iRS_u4k4Er9VOkjbtcagOo7jhAt5KtlFRWnE6oJ7mDwiC_9Bf4nvttC5HPZY0Jc1b8iV573uEbNkYHECgrGdVz-A1o-9FkdOeCK3BQ3_Oy9IJR8dh91IcXAVX37L4K36I5sANLaP012jgSvd3vkhDMQMb9newgAWSY5Y5BmwhKjpr-KMYKGeVXsS5h1Xoa9ZGn-387P4DX35HqeUy05kmqh5gFV1ytz0o9LZ5-cXd-J8_mCFTIwxK25XSzJIxl82RiaQu_TZPXo8cYPKP4XuVqWlopw7horu4XQV8amkygEEO-vTk6dY6Cl46R9rjPgUUTA_z7Ppj-HYPrhReRDImaBgBXnqb0fOy-g600tObvMjLM6RnGA1NThg9QzZZ1Bda5DTpigVy2dm7SLreqG6Dd83DOPCMlo4xFSqhNdi7tFEcGt-0GItdzxkrNeyFGZcOXhOmp5nvDFc89CULnWlJvkjGszxzS4Tylm35sbJcKi1ia5Wve0KyIMKISCGjZbJWyy0dGV8_BVQXAyoLoniZbDbNMIV4F6IyB3OTMiG5APjJ4BOsFFL6UNF7pBWRM0tRPGkjnrR9vL_XPK38pdMqmWQYEYNxP-EaGS8eB24dIE2hN0q1_QTJXvG_
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYoHOiFAgVBC9RIvQaythMnRxRYLWV3QRQkbpb_FhAoqbpZqe2JF6hUiTfkSZhJNqFwhGPkOHI8P_5sz3xDyFeXggOItAucHlm8ZgyDJPEmELGzeOjPeVU6YTCMe-fi20XURBNiLkzND9EeuKFlVP4aDRwPpHefWEMxBRs2eLCCRZJH78gclvWudlWnLYMUA_WsE4w4D7AOfcPbGLLd5_2fIcz_cWq10HQ_ENMMsY4vudmZlGbH_nnB3vimf1gkC1MYSvdqvVkiMz5fJvNZU_3tI_k78ADLH-7u62RNS7tNFBfdxx0rQFRHswmMcjKmx7-unafgqAtkPh5TAMK0X-SXD3f_bsGbwovIxwQNU8xLr3P6vSrAA6305Kooi-oY6TeMhmbHjJ4ioSyqDC0LmvXECjnvHpxlvWBauiG45HEaBdZIz5iOtTAGTF66JI1taDuMpX7krZMGtsOMSw-vCTsyLPSWax6HksXediRfJbN5kfs1QnnHdcJUOy61EalzOjQjIVmUYFCkkMk62WgEp6b2N1YA7FIAZlGSrpPtthmmEK9DdO5hbhQTkgtAoAw-wSopqR81w4equZyZQvGoVjxqb3h40D59ek2nL2S-dzboq_7h8Ogzec8wQAbDgOINMlv-nPhNQDil2ap0-BHjD_Xa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9UwFG8QEuVFQSWiqCXhdbDbdu32SHa5uSBcCErCW9N_Q6LZCHc3UZ_4AiYmfkM-iedsdxN8lMel69L1_Omv7Tm_Q8iWz8ABJMZH3hQOrxnjKE2DjYT0Dg_9OW9KJxxN5PhMHJwn53ey-Ft-iP7ADS2j8ddo4Fe-2PlLGooZ2LC_gwUsUTx5RJaEjFPU6-FpTyDFQDvb_CLOIyxD39E2xmznfv97APMuTG3WmdEzYroRtuElX7Zntd12P_4hb3zIL6yQp3MQSndbrVklC6F8Tp7kXe23F-TnUQBQfnvzu03VdHTUxXDRIe5XAaB6ms9gkLMpPf526QMFN10h7_GUAgymh1V5cXvz6yv4UngR2ZigYY546WVJPzbld6CVnnyu6qo5RPoOo6H5MaOnSCeLCkPriuZj8ZKcjfY-5eNoXrghuuAySyJnVWDMSCOsBYNXPs2ki92AsSwUwXllYTPMuArwmnCFZXFw3HAZKyaDGyi-RhbLqgyvCOUDP4gz47kyVmTem9gWQrEkxZBIodJ1stHJTc-tb6oB1mUAy5I0WyebfTNMIV6GmDLA3GgmFBeAPxl8gjVC0lctv4dumZyZRvHoXjx6d7K_1z-9_p9O78njk-FIH-5PPrwhywyjYzAGSG6Qxfp6Ft4CvKntu0aD_wAna_SS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic+Framework+Decorated+Cuprous+Oxide+Nanowires+for+Long%E2%80%90lived+Charges+Applied+in+Selective+Photocatalytic+CO2+Reduction+to+CH4&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Hao&rft.au=Kong%2C+Xin+Ying&rft.au=Wen%2C+Xiaoming&rft.au=Chai%2C+Siang%E2%80%90Piao&rft.date=2021-04-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=15&rft.spage=8455&rft.epage=8459&rft_id=info:doi/10.1002%2Fanie.202015735&rft.externalDBID=10.1002%252Fanie.202015735&rft.externalDocID=ANIE202015735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon