Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Long‐lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4
Improving the stability of cuprous oxide (Cu2O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2O nanowires are encapsulated by metal–organic frameworks (MOFs) of Cu3(BTC)2 (BTC=1,3,5‐benzene tricarboxylate) using a surfactant‐free method. Such MOFs not onl...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 15; pp. 8455 - 8459 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.04.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Improving the stability of cuprous oxide (Cu2O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2O nanowires are encapsulated by metal–organic frameworks (MOFs) of Cu3(BTC)2 (BTC=1,3,5‐benzene tricarboxylate) using a surfactant‐free method. Such MOFs not only suppress the water vapor‐induced corrosion of Cu2O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2O to the LUMO level of non‐excited Cu3(BTC)2 has been evidenced by time‐resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.
Cu2O nanowires are decorated with Cu3(BTC)2 by a surfactant‐free method. The Cu2O@Cu3(BTC)2 core–shell structure offers enlarged active surfaces and prolonged lifetime of separated electrons for CO2 reduction into CH4, exhibiting enhanced photocatalytic activity and stability compared to the bare Cu2O. |
---|---|
AbstractList | Improving the stability of cuprous oxide (Cu2O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2O nanowires are encapsulated by metal–organic frameworks (MOFs) of Cu3(BTC)2 (BTC=1,3,5‐benzene tricarboxylate) using a surfactant‐free method. Such MOFs not only suppress the water vapor‐induced corrosion of Cu2O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2O to the LUMO level of non‐excited Cu3(BTC)2 has been evidenced by time‐resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst. Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu3 (BTC)2 (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2 O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2 O to the LUMO level of non-excited Cu3 (BTC)2 has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu3 (BTC)2 (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2 O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2 O to the LUMO level of non-excited Cu3 (BTC)2 has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst. Improving the stability of cuprous oxide (Cu2O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2O nanowires are encapsulated by metal–organic frameworks (MOFs) of Cu3(BTC)2 (BTC=1,3,5‐benzene tricarboxylate) using a surfactant‐free method. Such MOFs not only suppress the water vapor‐induced corrosion of Cu2O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2O to the LUMO level of non‐excited Cu3(BTC)2 has been evidenced by time‐resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst. Cu2O nanowires are decorated with Cu3(BTC)2 by a surfactant‐free method. The Cu2O@Cu3(BTC)2 core–shell structure offers enlarged active surfaces and prolonged lifetime of separated electrons for CO2 reduction into CH4, exhibiting enhanced photocatalytic activity and stability compared to the bare Cu2O. |
Author | Wen, Xiaoming Ng, Yun Hau Wu, Hao Chai, Siang‐Piao Kong, Xin Ying Lovell, Emma C. Tang, Junwang |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0003-0836-3239 surname: Wu fullname: Wu, Hao organization: The University of New South Wales – sequence: 2 givenname: Xin Ying surname: Kong fullname: Kong, Xin Ying organization: Monash University – sequence: 3 givenname: Xiaoming orcidid: 0000-0001-8298-483X surname: Wen fullname: Wen, Xiaoming organization: Swinburne University of Technology – sequence: 4 givenname: Siang‐Piao orcidid: 0000-0002-8635-1762 surname: Chai fullname: Chai, Siang‐Piao organization: Monash University – sequence: 5 givenname: Emma C. orcidid: 0000-0002-9027-0316 surname: Lovell fullname: Lovell, Emma C. organization: The University of New South Wales – sequence: 6 givenname: Junwang orcidid: 0000-0002-2323-5510 surname: Tang fullname: Tang, Junwang organization: University College London – sequence: 7 givenname: Yun Hau orcidid: 0000-0001-9142-2126 surname: Ng fullname: Ng, Yun Hau email: yunhau.ng@cityu.edu.hk organization: The University of New South Wales |
BookMark | eNpdkT1v2zAQhonCBRqnXTsT6NJFCXmURGk0FDsJ4MRFP2aCos4OU5l0KCmOt_yBAAHyD_NLQiOFh053h_fBfb1jMnLeISFfOTvhjMGpdhZPgAHjmRTZB3LEM-CJkFKMYp4Kkcgi45_IuOtuI18ULD8iT1fY6_b18WURVrGBobOg17j14S89Q-OD7rGh1bAJfujo4sE2SK-181sbsKNLH-jcu9Xr43Nr7_fgjQ6rKEw2m9bG2jr6C1s0fVTpjxvfe6PjuF0fB1ULoD-xGaLoHe09rS7Sz-TjUrcdfvkXj8mf2fR3dZHMF-eX1WSerEReZompJQLoXKd1zWUpm6LMDTMcoMQlmkbWDCQIiRFLzbIGhkZokTMJORouxTH5_t433nU3YNerte0Mtq12GA9VkEqRskJAEdFv_6G3fggubqcgYyXEVxdlpMp3amtb3KlNsGsddooztbdG7a1RB2vU5PpyeqjEG2NniVU |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202015735 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8459 |
ExternalDocumentID | ANIE202015735 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Australian Research Council (ARC) funderid: Discovery Project DP180102540 – fundername: Research Grants Council, University Grants Committee funderid: General Research Fund CityU 11305419 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-g3695-cb7e22a6a4bb1797d896c0c1229efecd7b027237e7e24cfb20ec3a360726ec173 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 23:25:04 EDT 2025 Sun Jul 13 03:28:31 EDT 2025 Wed Jan 22 16:31:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3695-cb7e22a6a4bb1797d896c0c1229efecd7b027237e7e24cfb20ec3a360726ec173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2323-5510 0000-0002-8635-1762 0000-0003-0836-3239 0000-0002-9027-0316 0000-0001-8298-483X 0000-0001-9142-2126 |
PQID | 2509273589 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2473408328 proquest_journals_2509273589 wiley_primary_10_1002_anie_202015735_ANIE202015735 |
PublicationCentury | 2000 |
PublicationDate | April 6, 2021 |
PublicationDateYYYYMMDD | 2021-04-06 |
PublicationDate_xml | – month: 04 year: 2021 text: April 6, 2021 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 4 2006; 12 2019; 31 2019; 11 2020; 142 2019; 10 2020 2020; 59 132 2014; 26 2020; 11 2020; 32 2013; 7 2019; 141 2016; 16 2014; 136 2019 2019; 58 131 2020; 8 2018; 6 2015; 25 2017; 30 2020; 5 2018; 8 2016 2016; 55 128 2012; 3 2010; 26 2015; 115 2018 2018; 57 130 2015; 119 |
References_xml | – volume: 141 start-page: 7115 year: 2019 end-page: 7121 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 690 year: 2019 end-page: 699 publication-title: Nat. Energy – volume: 25 start-page: 5360 year: 2015 end-page: 5367 publication-title: Adv. Funct. Mater. – volume: 142 start-page: 21513 year: 2020 end-page: 21521 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 5201 year: 2019 end-page: 5210 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 222 year: 2019 end-page: 228 publication-title: Nat. Chem. – volume: 8 start-page: 9744 year: 2018 end-page: 9754 publication-title: ACS Catal. – volume: 30 year: 2017 publication-title: Adv. Mater. – volume: 119 start-page: 26275 year: 2015 end-page: 26282 publication-title: J. Phys. Chem. C – volume: 26 start-page: 5274 year: 2014 end-page: 5309 publication-title: Adv. Mater. – volume: 55 128 start-page: 8840 8986 year: 2016 2016 end-page: 8845 8991 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 11860 11986 year: 2019 2019 end-page: 11867 11993 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 1848 year: 2016 end-page: 1857 publication-title: Nano Lett. – volume: 141 start-page: 10924 year: 2019 end-page: 10929 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 14301 year: 2010 end-page: 14307 publication-title: Langmuir – volume: 10 start-page: 676 year: 2019 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 7 start-page: 1709 year: 2013 end-page: 1717 publication-title: ACS Nano – volume: 59 132 start-page: 23641 23849 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 957 year: 2019 end-page: 968 publication-title: Nat. Energy – volume: 8 start-page: 5638 year: 2020 end-page: 5646 publication-title: J. Mater. Chem. A – volume: 5 start-page: 221 year: 2020 end-page: 223 publication-title: ACS Energy Lett. – volume: 26 start-page: 4783 year: 2014 end-page: 4788 publication-title: Adv. Mater. – volume: 12 start-page: 7353 year: 2006 end-page: 7363 publication-title: Chem. Eur. J. – volume: 57 130 start-page: 13613 13801 year: 2018 2018 end-page: 13617 13805 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 115 start-page: 12888 year: 2015 end-page: 12935 publication-title: Chem. Rev. – volume: 136 start-page: 2703 year: 2014 end-page: 2706 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 9491 9591 year: 2019 2019 end-page: 9495 9595 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 5226 5280 year: 2019 2019 end-page: 5231 5285 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 7175 year: 2018 end-page: 7181 publication-title: J. Mater. Chem. A – volume: 3 start-page: 3482 year: 2012 publication-title: Chem. Sci. – volume: 58 131 start-page: 11752 11878 year: 2019 2019 end-page: 11756 11882 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 6190 year: 2020 publication-title: Nat. Commun. |
SSID | ssj0028806 |
Score | 2.6694503 |
Snippet | Improving the stability of cuprous oxide (Cu2O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2O nanowires are... Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 8455 |
SubjectTerms | Benzene Carbon dioxide carbon dioxide fixation charge transfer Conduction bands Copper oxides Metal oxides Metal-organic frameworks Methane Nanocomposites nanostructures Nanotechnology Nanowires Photocatalysis Photoluminescence Photons Photosynthesis Separation Stability Water vapor |
Title | Metal–Organic Framework Decorated Cuprous Oxide Nanowires for Long‐lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202015735 https://www.proquest.com/docview/2509273589 https://www.proquest.com/docview/2473408328 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7iRS_u4k4Er9VOkjbtcagOo7jhAt5KtlFRWnE6oJ7mDwiC_9Bf4nvttC5HPZY0Jc1b8iV573uEbNkYHECgrGdVz-A1o-9FkdOeCK3BQ3_Oy9IJR8dh91IcXAVX37L4K36I5sANLaP012jgSvd3vkhDMQMb9newgAWSY5Y5BmwhKjpr-KMYKGeVXsS5h1Xoa9ZGn-387P4DX35HqeUy05kmqh5gFV1ytz0o9LZ5-cXd-J8_mCFTIwxK25XSzJIxl82RiaQu_TZPXo8cYPKP4XuVqWlopw7horu4XQV8amkygEEO-vTk6dY6Cl46R9rjPgUUTA_z7Ppj-HYPrhReRDImaBgBXnqb0fOy-g600tObvMjLM6RnGA1NThg9QzZZ1Bda5DTpigVy2dm7SLreqG6Dd83DOPCMlo4xFSqhNdi7tFEcGt-0GItdzxkrNeyFGZcOXhOmp5nvDFc89CULnWlJvkjGszxzS4Tylm35sbJcKi1ia5Wve0KyIMKISCGjZbJWyy0dGV8_BVQXAyoLoniZbDbNMIV4F6IyB3OTMiG5APjJ4BOsFFL6UNF7pBWRM0tRPGkjnrR9vL_XPK38pdMqmWQYEYNxP-EaGS8eB24dIE2hN0q1_QTJXvG_ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYoHOiFAgVBC9RIvQaythMnRxRYLWV3QRQkbpb_FhAoqbpZqe2JF6hUiTfkSZhJNqFwhGPkOHI8P_5sz3xDyFeXggOItAucHlm8ZgyDJPEmELGzeOjPeVU6YTCMe-fi20XURBNiLkzND9EeuKFlVP4aDRwPpHefWEMxBRs2eLCCRZJH78gclvWudlWnLYMUA_WsE4w4D7AOfcPbGLLd5_2fIcz_cWq10HQ_ENMMsY4vudmZlGbH_nnB3vimf1gkC1MYSvdqvVkiMz5fJvNZU_3tI_k78ADLH-7u62RNS7tNFBfdxx0rQFRHswmMcjKmx7-unafgqAtkPh5TAMK0X-SXD3f_bsGbwovIxwQNU8xLr3P6vSrAA6305Kooi-oY6TeMhmbHjJ4ioSyqDC0LmvXECjnvHpxlvWBauiG45HEaBdZIz5iOtTAGTF66JI1taDuMpX7krZMGtsOMSw-vCTsyLPSWax6HksXediRfJbN5kfs1QnnHdcJUOy61EalzOjQjIVmUYFCkkMk62WgEp6b2N1YA7FIAZlGSrpPtthmmEK9DdO5hbhQTkgtAoAw-wSopqR81w4equZyZQvGoVjxqb3h40D59ek2nL2S-dzboq_7h8Ogzec8wQAbDgOINMlv-nPhNQDil2ap0-BHjD_Xa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9UwFG8QEuVFQSWiqCXhdbDbdu32SHa5uSBcCErCW9N_Q6LZCHc3UZ_4AiYmfkM-iedsdxN8lMel69L1_Omv7Tm_Q8iWz8ABJMZH3hQOrxnjKE2DjYT0Dg_9OW9KJxxN5PhMHJwn53ey-Ft-iP7ADS2j8ddo4Fe-2PlLGooZ2LC_gwUsUTx5RJaEjFPU6-FpTyDFQDvb_CLOIyxD39E2xmznfv97APMuTG3WmdEzYroRtuElX7Zntd12P_4hb3zIL6yQp3MQSndbrVklC6F8Tp7kXe23F-TnUQBQfnvzu03VdHTUxXDRIe5XAaB6ms9gkLMpPf526QMFN10h7_GUAgymh1V5cXvz6yv4UngR2ZigYY546WVJPzbld6CVnnyu6qo5RPoOo6H5MaOnSCeLCkPriuZj8ZKcjfY-5eNoXrghuuAySyJnVWDMSCOsBYNXPs2ki92AsSwUwXllYTPMuArwmnCFZXFw3HAZKyaDGyi-RhbLqgyvCOUDP4gz47kyVmTem9gWQrEkxZBIodJ1stHJTc-tb6oB1mUAy5I0WyebfTNMIV6GmDLA3GgmFBeAPxl8gjVC0lctv4dumZyZRvHoXjx6d7K_1z-9_p9O78njk-FIH-5PPrwhywyjYzAGSG6Qxfp6Ft4CvKntu0aD_wAna_SS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic+Framework+Decorated+Cuprous+Oxide+Nanowires+for+Long%E2%80%90lived+Charges+Applied+in+Selective+Photocatalytic+CO2+Reduction+to+CH4&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wu%2C+Hao&rft.au=Kong%2C+Xin+Ying&rft.au=Wen%2C+Xiaoming&rft.au=Chai%2C+Siang%E2%80%90Piao&rft.date=2021-04-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=15&rft.spage=8455&rft.epage=8459&rft_id=info:doi/10.1002%2Fanie.202015735&rft.externalDBID=10.1002%252Fanie.202015735&rft.externalDocID=ANIE202015735 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |