Metal–Organic‐Framework‐Based Catalysts for Photoreduction of CO2

Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 35; pp. e1705512 - n/a
Main Authors Li, Rui, Zhang, Wang, Zhou, Kun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 29.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion. Photocatalyst materials based on metal–organic frameworks (MOFs) have great potential for carbon dioxide (CO2) reduction due to their tailorable light‐absorption ability, unique pore texture, and excellent CO2 adsorption capacity. A comprehensive review of recent advances in the design, synthesis, and CO2 photoreduction applications of MOF‐based photocatalysts is presented to offer valuable insights toward the exploitation of new‐generation photocatalyst materials.
AbstractList Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion. Photocatalyst materials based on metal–organic frameworks (MOFs) have great potential for carbon dioxide (CO2) reduction due to their tailorable light‐absorption ability, unique pore texture, and excellent CO2 adsorption capacity. A comprehensive review of recent advances in the design, synthesis, and CO2 photoreduction applications of MOF‐based photocatalysts is presented to offer valuable insights toward the exploitation of new‐generation photocatalyst materials.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal-organic frameworks (MOFs) have attracted much attention as CO2 photoreduction-related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light-absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF-based photocatalysts are discussed here, beginning with the introduction of the characteristics of high-efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti-O, Zr-O, and Fe-O clusters and functional organic linkers such as amino-modified, photosensitizer-functionalized, and electron-rich conjugated linkers) and three types of MOF-based composites (metal-MOF, semiconductor-MOF, and photosensitizer-MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF-based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal-organic frameworks (MOFs) have attracted much attention as CO2 photoreduction-related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light-absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF-based photocatalysts are discussed here, beginning with the introduction of the characteristics of high-efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti-O, Zr-O, and Fe-O clusters and functional organic linkers such as amino-modified, photosensitizer-functionalized, and electron-rich conjugated linkers) and three types of MOF-based composites (metal-MOF, semiconductor-MOF, and photosensitizer-MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF-based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.
Author Zhang, Wang
Zhou, Kun
Li, Rui
Author_xml – sequence: 1
  givenname: Rui
  surname: Li
  fullname: Li, Rui
  organization: Nanyang Technological University
– sequence: 2
  givenname: Wang
  surname: Zhang
  fullname: Zhang, Wang
  organization: Nanyang Technological University
– sequence: 3
  givenname: Kun
  orcidid: 0000-0001-7660-2911
  surname: Zhou
  fullname: Zhou, Kun
  email: kzhou@ntu.edu.sg
  organization: Nanyang Technological University
BookMark eNpd0L1OwzAUBWALFYm2sDJHYmFJsR3_xGMJtCC1KgPMluPYJSWJi50KdesjIPGGfRJSFXVguvdKn66OzgD0GtcYAK4RHCEI8Z0qajXCEHFIKcJnoI8oRjGBgvZAH4qExoKR9AIMQlhBCAWDrA-mc9Oqar_7Wfilakq9331PvKrNl_Mf3X6vgimiTHVmG9oQWeejl3fXOm-KjW5L10TORtkCX4Jzq6pgrv7mELxNHl-zp3i2mD5n41m8TJjAcUoRy61CTCtNlaGCdzF4bhNmck2o4dBykhOWWqFTW2jF0wImPOeWM0GsSYbg9vh37d3nxoRW1mXQpqpUY9wmSAwpERgjgjt684-u3MY3XbpOiQQlhBLYKXFUX2VltnLty1r5rURQHkqVh1LlqVQ5fpiPT1fyC4IscTA
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201705512
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201705512
Genre reviewArticle
GrantInformation_xml – fundername: Ministry of Education, Singapore
  funderid: 1‐RG128/14
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-g3692-8516bfa16cac5ae5979607bf36ebc45e70f74b468f9c8fdca78d037b7f7694fe3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:57:30 EDT 2025
Mon Jul 14 10:32:05 EDT 2025
Wed Aug 20 07:25:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3692-8516bfa16cac5ae5979607bf36ebc45e70f74b468f9c8fdca78d037b7f7694fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7660-2911
PQID 2093134540
PQPubID 2045203
PageCount 31
ParticipantIDs proquest_miscellaneous_2054922142
proquest_journals_2093134540
wiley_primary_10_1002_adma_201705512_ADMA201705512
PublicationCentury 2000
PublicationDate August 29, 2018
PublicationDateYYYYMMDD 2018-08-29
PublicationDate_xml – month: 08
  year: 2018
  text: August 29, 2018
  day: 29
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2013; 3
2010; 16
2013; 1
2016; 307
2014; 26
2016; 2016
2013; 5
2014; 136
2014; 20
2017; 209
2010; 20
1979; 277
2012; 134
2015; 137
2000; 406
2013; 52
2010; 110
2014; 16
2013; 113
2017; 200
2012; 22
2014; 10
2016; 45
2004; 43
2015; 51
2015; 54
1978; 275
2013; 341
2011; 4
2016; 18
2011; 3
2016; 16
1996; 98
2007; 13
2011; 133
2014; 43
2017; 139
2016; 4
2016; 6
2012; 413–414
2016; 1
2012; 112
2010; 46
2015; 115
2013; 78
2014; 39
2012; 48
2016; 28
2012; 116
2016; 296
2008; 130
2016; 9
2012; 41
2017; 5
2017; 7
2017; 2
2017; 4
2009; 42
2013; 23
2017; 46
2011; 11
2007; 35
2017; 9
2012; 51
2016; 183
2013; 19
2014; 5
2014; 4
2014; 2
2016; 118
2017; 33
2015; 41
2017; 35
2014; 57
2003; 0
2014; 8
2014; 7
2014; 50
2014; 6
2009; 325
2012; 63
2014; 53
2014; 118
2015; 162
2001; 123
2015; 17
2015; 6
2015; 3
2013; 49
2015; 287
2011; 40
2015; 11
2017; 23
2016; 52
2017; 29
2009; 131
2017; 210
2015; 8
2014; 114
2005; 44
2016; 55
2015; 25
2012; 2
2015; 27
2012; 3
2016; 539
2013; 135
2017; 19
2011; 47
2015; 1083
2009; 38
References_xml – volume: 19
  start-page: 14279
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 6
  start-page: 7485
  year: 2016
  publication-title: ACS Catal.
– volume: 5
  start-page: 5612
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 136
  start-page: 8839
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 106
  year: 2015
  publication-title: J. Photochem. Photobiol. C
– volume: 46
  start-page: 2799
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 19615
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 115
  start-page: 12888
  year: 2015
  publication-title: Chem. Rev.
– volume: 63
  start-page: 541
  year: 2012
  publication-title: Annu. Rev. Phys. Chem.
– volume: 136
  start-page: 16978
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 3594
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 296
  start-page: 386
  year: 2016
  publication-title: Chem. Eng. J.
– volume: 277
  start-page: 637
  year: 1979
  publication-title: Nature
– volume: 539
  start-page: 76
  year: 2016
  publication-title: Nature
– volume: 52
  start-page: 12878
  year: 2013
  publication-title: Inorg. Chem.
– volume: 38
  start-page: 1477
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 5815
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 673
  year: 2012
  publication-title: Chem. Rev.
– volume: 8
  start-page: 603
  year: 2015
  publication-title: ChemSusChem
– volume: 4
  start-page: 4254
  year: 2014
  publication-title: ACS Catal.
– volume: 137
  start-page: 13440
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 6761
  year: 2013
  publication-title: Chem. Commun.
– volume: 5
  start-page: 3808
  year: 2014
  publication-title: Chem. Sci.
– volume: 8
  start-page: 364
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 5561
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 41
  start-page: 2308
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 5106
  year: 2007
  publication-title: Chem. Eur. J.
– volume: 55
  start-page: 9389
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 33
  start-page: 1737
  year: 2017
  publication-title: Mater. Sci. Technol.
– volume: 123
  start-page: 8239
  year: 2001
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 724
  year: 2012
  publication-title: Chem. Rev.
– volume: 287
  start-page: 364
  year: 2015
  publication-title: J. Hazard. Mater.
– volume: 1
  start-page: 11126
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 341
  start-page: 974
  year: 2013
  publication-title: Science
– volume: 131
  start-page: 10857
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 345
  year: 2017
  publication-title: Mater. Horiz.
– volume: 4
  start-page: 2177
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 3038
  year: 2015
  publication-title: Adv. Mater.
– volume: 116
  start-page: 20848
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 2839
  year: 2010
  publication-title: Cryst. Growth Des.
– volume: 50
  start-page: 7063
  year: 2014
  publication-title: Chem. Commun.
– volume: 325
  start-page: 1652
  year: 2009
  publication-title: Science
– volume: 41
  start-page: 7909
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 23
  start-page: 1612
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 35
  start-page: 5938
  year: 2007
  publication-title: Energy Policy
– volume: 7
  start-page: 3478
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 9374
  year: 2013
  publication-title: Nanoscale
– volume: 11
  start-page: 1111
  year: 2011
  publication-title: Nano Lett.
– volume: 16
  start-page: 11133
  year: 2010
  publication-title: Chem. Eur. J.
– volume: 118
  start-page: 204
  year: 2016
  publication-title: Energy Convers. Manage.
– volume: 110
  start-page: 4606
  year: 2010
  publication-title: Chem. Rev.
– volume: 9
  start-page: 9688
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 7935
  year: 2016
  publication-title: ACS Catal.
– volume: 20
  start-page: 3141
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 1
  start-page: 16034
  year: 2016
  publication-title: Nat. Energy
– volume: 51
  start-page: 3364
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 6297
  year: 2014
  publication-title: ACS Nano
– volume: 35
  start-page: 135
  year: 2017
  publication-title: Chin. J. Chem.
– volume: 20
  start-page: 4780
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 2657
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 43
  start-page: 5415
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 18
  start-page: 32319
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 307
  start-page: 106
  year: 2016
  publication-title: Coord. Chem. Rev.
– volume: 26
  start-page: 4607
  year: 2014
  publication-title: Adv. Mater.
– volume: 2
  start-page: 16250
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 2114
  year: 2012
  publication-title: Chem. Sci.
– volume: 3
  start-page: 1435
  year: 2013
  publication-title: Catal. Sci. Technol.
– volume: 134
  start-page: 18082
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 10942
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 209
  start-page: 476
  year: 2017
  publication-title: Appl. Catal. B
– volume: 133
  start-page: 13445
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 17045
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 46
  start-page: 3431
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 2395
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  start-page: 14656
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 9767
  year: 2014
  publication-title: Nanoscale
– volume: 5
  start-page: 11854
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 247
  year: 2015
  publication-title: CrystEngComm
– volume: 51
  start-page: 5735
  year: 2015
  publication-title: Chem. Commun.
– volume: 22
  start-page: 6746
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 118
  start-page: 4567
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 43
  start-page: 6286
  year: 2004
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 11894
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 275
  start-page: 115
  year: 1978
  publication-title: Nature
– volume: 29
  start-page: 1703663
  year: 2017
  publication-title: Adv. Mater.
– volume: 183
  start-page: 47
  year: 2016
  publication-title: Appl. Catal. B
– volume: 135
  start-page: 14488
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 9987
  year: 2014
  publication-title: Chem. Rev.
– volume: 16
  start-page: 4919
  year: 2014
  publication-title: CrystEngComm
– volume: 2016
  start-page: 4310
  year: 2016
  publication-title: Eur. J. Inorg. Chem.
– volume: 53
  start-page: 1034
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 38
  start-page: 1450
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 5359
  year: 2016
  publication-title: ACS Catal.
– volume: 11
  start-page: 3097
  year: 2015
  publication-title: Small
– volume: 19
  start-page: 4118
  year: 2017
  publication-title: CrystEngComm
– volume: 1
  start-page: 11563
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 7372
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 113
  start-page: 6621
  year: 2013
  publication-title: Chem. Rev.
– volume: 44
  start-page: 6900
  year: 2005
  publication-title: Inorg. Chem.
– volume: 48
  start-page: 10286
  year: 2012
  publication-title: Chem. Commun.
– volume: 8
  start-page: 1923
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1097
  year: 2016
  publication-title: ACS Catal.
– volume: 9
  start-page: 2177
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 6821
  year: 2015
  publication-title: Inorg. Chem.
– volume: 43
  start-page: 6097
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 6847
  year: 2015
  publication-title: Chem. Sci.
– volume: 46
  start-page: 7700
  year: 2010
  publication-title: Chem. Commun.
– volume: 51
  start-page: 16549
  year: 2015
  publication-title: Chem. Commun.
– volume: 55
  start-page: 2308
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 3430
  year: 2015
  publication-title: Chem. Commun.
– volume: 54
  start-page: 8375
  year: 2015
  publication-title: Inorg. Chem.
– volume: 41
  start-page: 1049
  year: 2015
  publication-title: Ceram. Int.
– volume: 413–414
  start-page: 103
  year: 2012
  publication-title: Appl. Catal. A
– volume: 18
  start-page: 7563
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 51
  start-page: 2645
  year: 2015
  publication-title: Chem. Commun.
– volume: 98
  start-page: 87
  year: 1996
  publication-title: J. Photochem. Photobiol. A
– volume: 40
  start-page: 3703
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 210
  start-page: 131
  year: 2017
  publication-title: Appl. Catal. B
– volume: 45
  start-page: 8753
  year: 2016
  publication-title: Dalton Trans.
– volume: 54
  start-page: 3259
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 131
  start-page: 18198
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 426
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 26
  start-page: 4783
  year: 2014
  publication-title: Adv. Mater.
– volume: 55
  start-page: 5414
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 47
  start-page: 5632
  year: 2011
  publication-title: Chem. Commun.
– volume: 51
  start-page: 2056
  year: 2015
  publication-title: Chem. Commun.
– volume: 406
  start-page: 695
  year: 2000
  publication-title: Nature
– volume: 23
  start-page: 3931
  year: 2017
  publication-title: Chem. Eur. J.
– volume: 135
  start-page: 12886
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 765
  year: 2014
  publication-title: Renewable Sustainable Energy Rev.
– volume: 112
  start-page: 1105
  year: 2012
  publication-title: Chem. Rev.
– volume: 4
  start-page: 15126
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 23676
  year: 2016
  publication-title: Sci. Rep.
– volume: 7
  start-page: 338
  year: 2017
  publication-title: ACS Catal.
– volume: 2
  start-page: 52
  year: 2017
  publication-title: Chem
– volume: 46
  start-page: 126
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 52
  start-page: 35
  year: 2016
  publication-title: Chem. Commun.
– volume: 22
  start-page: 21849
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 42
  start-page: 1983
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 50
  start-page: 8944
  year: 2014
  publication-title: Chem. Commun.
– volume: 78
  start-page: 274
  year: 2013
  publication-title: ChemPlusChem
– volume: 3
  start-page: 104416
  year: 2015
  publication-title: APL Mater.
– volume: 50
  start-page: 6923
  year: 2014
  publication-title: Chem. Commun.
– volume: 200
  start-page: 48
  year: 2017
  publication-title: Appl. Catal. B
– volume: 57
  start-page: 70
  year: 2014
  publication-title: Sci. China Mater.
– volume: 1083
  start-page: 127
  year: 2015
  publication-title: J. Mol. Struct.
– volume: 131
  start-page: 3814
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 8819
  year: 2016
  publication-title: Adv. Mater.
– volume: 2016
  start-page: 4358
  year: 2016
  publication-title: Eur. J. Inorg. Chem.
– volume: 16
  start-page: 450
  year: 2016
  publication-title: J. CO2 Util.
– volume: 162
  start-page: 494
  year: 2015
  publication-title: Appl. Catal. B
– volume: 44
  start-page: 2326
  year: 2005
  publication-title: Inorg. Chem.
– volume: 136
  start-page: 2703
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 5360
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 130
  start-page: 2023
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 3634
  year: 2013
  publication-title: Chem. Commun.
– volume: 55
  start-page: 14310
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 10575
  year: 2013
  publication-title: Chem. Commun.
– volume: 6
  start-page: 2011
  year: 2016
  publication-title: RSC Adv.
– volume: 43
  start-page: 7520
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 6011
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 7681
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 3109
  year: 2015
  publication-title: Chem. Commun.
– volume: 3
  start-page: 15764
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 130
  start-page: 13850
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1817
  year: 2012
  publication-title: ACS Catal.
– volume: 10
  start-page: 1932
  year: 2014
  publication-title: Small
– volume: 5
  start-page: 12498
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 2630
  year: 2012
  publication-title: ACS Catal.
– volume: 7
  start-page: 612
  year: 2017
  publication-title: Sci. Rep.
– volume: 200
  start-page: 386
  year: 2017
  publication-title: Appl. Catal. B
– volume: 139
  start-page: 356
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 0
  start-page: 2781
  year: 2003
  publication-title: Dalton Trans.
– volume: 5
  start-page: 7654
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 2334
  year: 2004
  publication-title: Angew. Chem., Int. Ed.
– volume: 43
  start-page: 5982
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 134
  start-page: 7211
  year: 2012
  publication-title: J. Am. Chem. Soc.
SSID ssj0009606
Score 2.6863034
SecondaryResourceType review_article
Snippet Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e1705512
SubjectTerms Absorption
Adsorption
Carbon dioxide
Catalysis
Catalysts
CO2 reduction
Composite materials
Emissions control
energy conversion
Fossil fuels
Iron
Metal clusters
Metal-organic frameworks
Metallurgical constituents
metal–organic‐framework‐based composites
Photocatalysis
Photocatalysts
Photochemistry
Titanium
Zirconium
Title Metal–Organic‐Framework‐Based Catalysts for Photoreduction of CO2
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705512
https://www.proquest.com/docview/2093134540
https://www.proquest.com/docview/2054922142
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsNAFIYHcaUL72K1SgS3aXOZTJJlrdYiVEUsdBfmqiAkYtKFrvoIgm_YJ_GcpOnFpe4mJAOZM3Nm_rmcbwi5EAqxT8q1A9CuNqWK27GvKKSkBgfRoXYwGnlwx_pDejsKRktR_BUfYr7ghp5R9tfo4Fzk7QU0lKuSG1TiYMprhvHAFqqixwU_CuV5CdvzAztmNKqpjY7XXs2-oi-XVWo5zPS2Ca9_sDpd8toaF6IlP3-xG_9Tgh2yNdOgVqdqNLtkTad7ZHOJTLhPbgYaVPl08l3Fasrp5KtXH-OC9CWMfcrq4tLPR17kFihf6-Elg_k7kmCxrq3MWN1774AMe9dP3b49u3PBfvZZDJ1j4DJhuMsklwHXMN0AG4bC-EwLSQMdOiakgrLIxDIySvIwUo4fitCELKZG-4dkPc1SfUQsEDdM-QGH4kHPoGMhTBAxzbTyEAmqG6RZ2zyZOU6eeFBXro9YwAY5n7-GJo_7GDzV2Ri_QawcsuIaxCsNnLxVaI6kgjB7CZo2mZs26VwNOvOn479kOiEbkEaYt-3FTbJevI_1KciRQpyVTe4HY4bZ0w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LTtwwFIaPKF20LKClRUyBNkh0GZg4jpMsWExnmA6XoVUFErsQx8cgIU0qJiMEKx4BiSfhVXgEnqTnJJMBuqzEorvclfhc_NuxPwOsacPYJ-O5AWlXV0qTurFvJG1lSAGCITZ5NnJ_X_UO5c5RcDQFd_VcmIoPMelw48go8zUHOHdIbzxSQ1NTgoNKHownxuMqd_Hyglptw83tDpn4qxDdrYN2zx0vLOCe-CqmDBB4StvUU1maBSmSpiYdH2rrK9SZDDBs2lBqqSIbZ5E1WRpGpumHOrShiqVFn577Cl7zMuKM6-_8eiRWcYOgxPv5gRsrGdWcyKbYeP6-zxTtU11cVmzdObivi6Qaz3K2Pir0enb1Fy3yvyqzdzA7ltlOq4qL9zCFg3mYeQJf_ADf-0gNj4fr22o6avZwfdOtR6rR9jeq3o3T5t6ty2ExdEjcOz9P8yI_Z9gtu7OTW6f9Q3yEwxf5kgWYHuQDXASH9JsyfpBScVLyw1hrG0QKFRrB1FNswHJt5GScG4aJIOfwfCYfNmB1cpqimn_VpAPMR3wNk_MYh9cAUVo0-V3RR5KKMy0SNmUyMWXS6vRbk71P_3LTF3jTO-jvJXvb-7tL8JaOM7vcFfEyTBfnI1wh9VXoz6W_O3D80s7yBy1wOWU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LTtwwFIaPuEhVWQC9iaHQplK7DCSO4yQLFsNMp1A6FFVFYhfi-LhISBPEZIRgxSNU4kV4FV6BJ-GcZDJAl5VYsMtdic_Fvx37M8BnbRj7ZHw3JO3qSmkyNwmMpK0cKUAwQo9nI_d31da-_H4QHkzBdTMXpuZDTDrcODKqfM0BfmLs-j00NDMVN6jCwfhiPKxyB8_PqNE23NjukoW_CNH7-ruz5Y7XFXD_BCqhBBD6StvMV3mWhxmSpCYZH2kbKNS5DDHybCS1VLFN8tiaPIti4wWRjmykEmkxoOdOw6xUXsKLRXR_3QOruD1Q0f2C0E2UjBtMpCfWH7_vI0H7UBZX9VpvAW6aEqmHsxyvjUq9ll_8A4t8TkW2CPNjke2066h4BVM4eA1zD9CLb-BbH6nZcXt5VU9GzW8v__aacWq0vUmVu3E63Ld1PiyHDkl7Z--oKItTRt2yMzuFdTo_xVvYf5IveQczg2KAS-CQelMmCDMqTkp9mGhtw1ihQiOYeYotWGlsnI4zwzAV5Bt-wNzDFnyanKaY5h812QCLEV_D3DyG4bVAVAZNT2r2SFpTpkXKpkwnpkzb3X57srf8Pzd9hBd73V76Y3t35z28pMMMLndFsgIz5ekIV0l6lfpD5e0OHD61r9wBLS44FA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic%E2%80%90Framework%E2%80%90Based+Catalysts+for+Photoreduction+of+CO2&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Rui&rft.au=Zhang%2C+Wang&rft.au=Zhou%2C+Kun&rft.date=2018-08-29&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201705512&rft.externalDBID=10.1002%252Fadma.201705512&rft.externalDocID=ADMA201705512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon