Metal–Organic‐Framework‐Based Catalysts for Photoreduction of CO2
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 35; pp. e1705512 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
29.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.
Photocatalyst materials based on metal–organic frameworks (MOFs) have great potential for carbon dioxide (CO2) reduction due to their tailorable light‐absorption ability, unique pore texture, and excellent CO2 adsorption capacity. A comprehensive review of recent advances in the design, synthesis, and CO2 photoreduction applications of MOF‐based photocatalysts is presented to offer valuable insights toward the exploitation of new‐generation photocatalyst materials. |
---|---|
AbstractList | Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.
Photocatalyst materials based on metal–organic frameworks (MOFs) have great potential for carbon dioxide (CO2) reduction due to their tailorable light‐absorption ability, unique pore texture, and excellent CO2 adsorption capacity. A comprehensive review of recent advances in the design, synthesis, and CO2 photoreduction applications of MOF‐based photocatalysts is presented to offer valuable insights toward the exploitation of new‐generation photocatalyst materials. Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion. Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal-organic frameworks (MOFs) have attracted much attention as CO2 photoreduction-related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light-absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF-based photocatalysts are discussed here, beginning with the introduction of the characteristics of high-efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti-O, Zr-O, and Fe-O clusters and functional organic linkers such as amino-modified, photosensitizer-functionalized, and electron-rich conjugated linkers) and three types of MOF-based composites (metal-MOF, semiconductor-MOF, and photosensitizer-MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF-based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal-organic frameworks (MOFs) have attracted much attention as CO2 photoreduction-related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light-absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF-based photocatalysts are discussed here, beginning with the introduction of the characteristics of high-efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti-O, Zr-O, and Fe-O clusters and functional organic linkers such as amino-modified, photosensitizer-functionalized, and electron-rich conjugated linkers) and three types of MOF-based composites (metal-MOF, semiconductor-MOF, and photosensitizer-MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF-based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion. |
Author | Zhang, Wang Zhou, Kun Li, Rui |
Author_xml | – sequence: 1 givenname: Rui surname: Li fullname: Li, Rui organization: Nanyang Technological University – sequence: 2 givenname: Wang surname: Zhang fullname: Zhang, Wang organization: Nanyang Technological University – sequence: 3 givenname: Kun orcidid: 0000-0001-7660-2911 surname: Zhou fullname: Zhou, Kun email: kzhou@ntu.edu.sg organization: Nanyang Technological University |
BookMark | eNpd0L1OwzAUBWALFYm2sDJHYmFJsR3_xGMJtCC1KgPMluPYJSWJi50KdesjIPGGfRJSFXVguvdKn66OzgD0GtcYAK4RHCEI8Z0qajXCEHFIKcJnoI8oRjGBgvZAH4qExoKR9AIMQlhBCAWDrA-mc9Oqar_7Wfilakq9331PvKrNl_Mf3X6vgimiTHVmG9oQWeejl3fXOm-KjW5L10TORtkCX4Jzq6pgrv7mELxNHl-zp3i2mD5n41m8TJjAcUoRy61CTCtNlaGCdzF4bhNmck2o4dBykhOWWqFTW2jF0wImPOeWM0GsSYbg9vh37d3nxoRW1mXQpqpUY9wmSAwpERgjgjt684-u3MY3XbpOiQQlhBLYKXFUX2VltnLty1r5rURQHkqVh1LlqVQ5fpiPT1fyC4IscTA |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201705512 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201705512 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Ministry of Education, Singapore funderid: 1‐RG128/14 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-g3692-8516bfa16cac5ae5979607bf36ebc45e70f74b468f9c8fdca78d037b7f7694fe3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:57:30 EDT 2025 Mon Jul 14 10:32:05 EDT 2025 Wed Aug 20 07:25:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3692-8516bfa16cac5ae5979607bf36ebc45e70f74b468f9c8fdca78d037b7f7694fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7660-2911 |
PQID | 2093134540 |
PQPubID | 2045203 |
PageCount | 31 |
ParticipantIDs | proquest_miscellaneous_2054922142 proquest_journals_2093134540 wiley_primary_10_1002_adma_201705512_ADMA201705512 |
PublicationCentury | 2000 |
PublicationDate | August 29, 2018 |
PublicationDateYYYYMMDD | 2018-08-29 |
PublicationDate_xml | – month: 08 year: 2018 text: August 29, 2018 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2013; 3 2010; 16 2013; 1 2016; 307 2014; 26 2016; 2016 2013; 5 2014; 136 2014; 20 2017; 209 2010; 20 1979; 277 2012; 134 2015; 137 2000; 406 2013; 52 2010; 110 2014; 16 2013; 113 2017; 200 2012; 22 2014; 10 2016; 45 2004; 43 2015; 51 2015; 54 1978; 275 2013; 341 2011; 4 2016; 18 2011; 3 2016; 16 1996; 98 2007; 13 2011; 133 2014; 43 2017; 139 2016; 4 2016; 6 2012; 413–414 2016; 1 2012; 112 2010; 46 2015; 115 2013; 78 2014; 39 2012; 48 2016; 28 2012; 116 2016; 296 2008; 130 2016; 9 2012; 41 2017; 5 2017; 7 2017; 2 2017; 4 2009; 42 2013; 23 2017; 46 2011; 11 2007; 35 2017; 9 2012; 51 2016; 183 2013; 19 2014; 5 2014; 4 2014; 2 2016; 118 2017; 33 2015; 41 2017; 35 2014; 57 2003; 0 2014; 8 2014; 7 2014; 50 2014; 6 2009; 325 2012; 63 2014; 53 2014; 118 2015; 162 2001; 123 2015; 17 2015; 6 2015; 3 2013; 49 2015; 287 2011; 40 2015; 11 2017; 23 2016; 52 2017; 29 2009; 131 2017; 210 2015; 8 2014; 114 2005; 44 2016; 55 2015; 25 2012; 2 2015; 27 2012; 3 2016; 539 2013; 135 2017; 19 2011; 47 2015; 1083 2009; 38 |
References_xml | – volume: 19 start-page: 14279 year: 2013 publication-title: Chem. Eur. J. – volume: 6 start-page: 7485 year: 2016 publication-title: ACS Catal. – volume: 5 start-page: 5612 year: 2017 publication-title: J. Mater. Chem. A – volume: 136 start-page: 8839 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 106 year: 2015 publication-title: J. Photochem. Photobiol. C – volume: 46 start-page: 2799 year: 2017 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 19615 year: 2015 publication-title: J. Mater. Chem. A – volume: 115 start-page: 12888 year: 2015 publication-title: Chem. Rev. – volume: 63 start-page: 541 year: 2012 publication-title: Annu. Rev. Phys. Chem. – volume: 136 start-page: 16978 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 3594 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 296 start-page: 386 year: 2016 publication-title: Chem. Eng. J. – volume: 277 start-page: 637 year: 1979 publication-title: Nature – volume: 539 start-page: 76 year: 2016 publication-title: Nature – volume: 52 start-page: 12878 year: 2013 publication-title: Inorg. Chem. – volume: 38 start-page: 1477 year: 2009 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 5815 year: 2014 publication-title: Chem. Soc. Rev. – volume: 112 start-page: 673 year: 2012 publication-title: Chem. Rev. – volume: 8 start-page: 603 year: 2015 publication-title: ChemSusChem – volume: 4 start-page: 4254 year: 2014 publication-title: ACS Catal. – volume: 137 start-page: 13440 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 6761 year: 2013 publication-title: Chem. Commun. – volume: 5 start-page: 3808 year: 2014 publication-title: Chem. Sci. – volume: 8 start-page: 364 year: 2015 publication-title: Energy Environ. Sci. – volume: 43 start-page: 5561 year: 2014 publication-title: Chem. Soc. Rev. – volume: 41 start-page: 2308 year: 2012 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 5106 year: 2007 publication-title: Chem. Eur. J. – volume: 55 start-page: 9389 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 33 start-page: 1737 year: 2017 publication-title: Mater. Sci. Technol. – volume: 123 start-page: 8239 year: 2001 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 724 year: 2012 publication-title: Chem. Rev. – volume: 287 start-page: 364 year: 2015 publication-title: J. Hazard. Mater. – volume: 1 start-page: 11126 year: 2013 publication-title: J. Mater. Chem. A – volume: 341 start-page: 974 year: 2013 publication-title: Science – volume: 131 start-page: 10857 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 345 year: 2017 publication-title: Mater. Horiz. – volume: 4 start-page: 2177 year: 2011 publication-title: Energy Environ. Sci. – volume: 27 start-page: 3038 year: 2015 publication-title: Adv. Mater. – volume: 116 start-page: 20848 year: 2012 publication-title: J. Phys. Chem. C – volume: 10 start-page: 2839 year: 2010 publication-title: Cryst. Growth Des. – volume: 50 start-page: 7063 year: 2014 publication-title: Chem. Commun. – volume: 325 start-page: 1652 year: 2009 publication-title: Science – volume: 41 start-page: 7909 year: 2012 publication-title: Chem. Soc. Rev. – volume: 23 start-page: 1612 year: 2013 publication-title: Adv. Funct. Mater. – volume: 35 start-page: 5938 year: 2007 publication-title: Energy Policy – volume: 7 start-page: 3478 year: 2014 publication-title: Energy Environ. Sci. – volume: 5 start-page: 9374 year: 2013 publication-title: Nanoscale – volume: 11 start-page: 1111 year: 2011 publication-title: Nano Lett. – volume: 16 start-page: 11133 year: 2010 publication-title: Chem. Eur. J. – volume: 118 start-page: 204 year: 2016 publication-title: Energy Convers. Manage. – volume: 110 start-page: 4606 year: 2010 publication-title: Chem. Rev. – volume: 9 start-page: 9688 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 7935 year: 2016 publication-title: ACS Catal. – volume: 20 start-page: 3141 year: 2010 publication-title: J. Mater. Chem. – volume: 1 start-page: 16034 year: 2016 publication-title: Nat. Energy – volume: 51 start-page: 3364 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 6297 year: 2014 publication-title: ACS Nano – volume: 35 start-page: 135 year: 2017 publication-title: Chin. J. Chem. – volume: 20 start-page: 4780 year: 2014 publication-title: Chem. Eur. J. – volume: 4 start-page: 2657 year: 2016 publication-title: J. Mater. Chem. A – volume: 43 start-page: 5415 year: 2014 publication-title: Chem. Soc. Rev. – volume: 18 start-page: 32319 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 307 start-page: 106 year: 2016 publication-title: Coord. Chem. Rev. – volume: 26 start-page: 4607 year: 2014 publication-title: Adv. Mater. – volume: 2 start-page: 16250 year: 2014 publication-title: J. Mater. Chem. A – volume: 3 start-page: 2114 year: 2012 publication-title: Chem. Sci. – volume: 3 start-page: 1435 year: 2013 publication-title: Catal. Sci. Technol. – volume: 134 start-page: 18082 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 10942 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 209 start-page: 476 year: 2017 publication-title: Appl. Catal. B – volume: 133 start-page: 13445 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 17045 year: 2017 publication-title: Nat. Rev. Mater. – volume: 46 start-page: 3431 year: 2017 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 2395 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 16 start-page: 14656 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 9767 year: 2014 publication-title: Nanoscale – volume: 5 start-page: 11854 year: 2017 publication-title: J. Mater. Chem. A – volume: 17 start-page: 247 year: 2015 publication-title: CrystEngComm – volume: 51 start-page: 5735 year: 2015 publication-title: Chem. Commun. – volume: 22 start-page: 6746 year: 2012 publication-title: J. Mater. Chem. – volume: 118 start-page: 4567 year: 2014 publication-title: J. Phys. Chem. C – volume: 43 start-page: 6286 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 11894 year: 2017 publication-title: J. Mater. Chem. A – volume: 275 start-page: 115 year: 1978 publication-title: Nature – volume: 29 start-page: 1703663 year: 2017 publication-title: Adv. Mater. – volume: 183 start-page: 47 year: 2016 publication-title: Appl. Catal. B – volume: 135 start-page: 14488 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 9987 year: 2014 publication-title: Chem. Rev. – volume: 16 start-page: 4919 year: 2014 publication-title: CrystEngComm – volume: 2016 start-page: 4310 year: 2016 publication-title: Eur. J. Inorg. Chem. – volume: 53 start-page: 1034 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 38 start-page: 1450 year: 2009 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 5359 year: 2016 publication-title: ACS Catal. – volume: 11 start-page: 3097 year: 2015 publication-title: Small – volume: 19 start-page: 4118 year: 2017 publication-title: CrystEngComm – volume: 1 start-page: 11563 year: 2013 publication-title: J. Mater. Chem. A – volume: 52 start-page: 7372 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 113 start-page: 6621 year: 2013 publication-title: Chem. Rev. – volume: 44 start-page: 6900 year: 2005 publication-title: Inorg. Chem. – volume: 48 start-page: 10286 year: 2012 publication-title: Chem. Commun. – volume: 8 start-page: 1923 year: 2015 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1097 year: 2016 publication-title: ACS Catal. – volume: 9 start-page: 2177 year: 2016 publication-title: Energy Environ. Sci. – volume: 54 start-page: 6821 year: 2015 publication-title: Inorg. Chem. – volume: 43 start-page: 6097 year: 2014 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 6847 year: 2015 publication-title: Chem. Sci. – volume: 46 start-page: 7700 year: 2010 publication-title: Chem. Commun. – volume: 51 start-page: 16549 year: 2015 publication-title: Chem. Commun. – volume: 55 start-page: 2308 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 3430 year: 2015 publication-title: Chem. Commun. – volume: 54 start-page: 8375 year: 2015 publication-title: Inorg. Chem. – volume: 41 start-page: 1049 year: 2015 publication-title: Ceram. Int. – volume: 413–414 start-page: 103 year: 2012 publication-title: Appl. Catal. A – volume: 18 start-page: 7563 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 51 start-page: 2645 year: 2015 publication-title: Chem. Commun. – volume: 98 start-page: 87 year: 1996 publication-title: J. Photochem. Photobiol. A – volume: 40 start-page: 3703 year: 2011 publication-title: Chem. Soc. Rev. – volume: 210 start-page: 131 year: 2017 publication-title: Appl. Catal. B – volume: 45 start-page: 8753 year: 2016 publication-title: Dalton Trans. – volume: 54 start-page: 3259 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 131 start-page: 18198 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 426 year: 2014 publication-title: Chem. Eur. J. – volume: 26 start-page: 4783 year: 2014 publication-title: Adv. Mater. – volume: 55 start-page: 5414 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 47 start-page: 5632 year: 2011 publication-title: Chem. Commun. – volume: 51 start-page: 2056 year: 2015 publication-title: Chem. Commun. – volume: 406 start-page: 695 year: 2000 publication-title: Nature – volume: 23 start-page: 3931 year: 2017 publication-title: Chem. Eur. J. – volume: 135 start-page: 12886 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 765 year: 2014 publication-title: Renewable Sustainable Energy Rev. – volume: 112 start-page: 1105 year: 2012 publication-title: Chem. Rev. – volume: 4 start-page: 15126 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 start-page: 23676 year: 2016 publication-title: Sci. Rep. – volume: 7 start-page: 338 year: 2017 publication-title: ACS Catal. – volume: 2 start-page: 52 year: 2017 publication-title: Chem – volume: 46 start-page: 126 year: 2017 publication-title: Chem. Soc. Rev. – volume: 52 start-page: 35 year: 2016 publication-title: Chem. Commun. – volume: 22 start-page: 21849 year: 2012 publication-title: J. Mater. Chem. – volume: 42 start-page: 1983 year: 2009 publication-title: Acc. Chem. Res. – volume: 50 start-page: 8944 year: 2014 publication-title: Chem. Commun. – volume: 78 start-page: 274 year: 2013 publication-title: ChemPlusChem – volume: 3 start-page: 104416 year: 2015 publication-title: APL Mater. – volume: 50 start-page: 6923 year: 2014 publication-title: Chem. Commun. – volume: 200 start-page: 48 year: 2017 publication-title: Appl. Catal. B – volume: 57 start-page: 70 year: 2014 publication-title: Sci. China Mater. – volume: 1083 start-page: 127 year: 2015 publication-title: J. Mol. Struct. – volume: 131 start-page: 3814 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 8819 year: 2016 publication-title: Adv. Mater. – volume: 2016 start-page: 4358 year: 2016 publication-title: Eur. J. Inorg. Chem. – volume: 16 start-page: 450 year: 2016 publication-title: J. CO2 Util. – volume: 162 start-page: 494 year: 2015 publication-title: Appl. Catal. B – volume: 44 start-page: 2326 year: 2005 publication-title: Inorg. Chem. – volume: 136 start-page: 2703 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 5360 year: 2015 publication-title: Adv. Funct. Mater. – volume: 130 start-page: 2023 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 3634 year: 2013 publication-title: Chem. Commun. – volume: 55 start-page: 14310 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 10575 year: 2013 publication-title: Chem. Commun. – volume: 6 start-page: 2011 year: 2016 publication-title: RSC Adv. – volume: 43 start-page: 7520 year: 2014 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 6011 year: 2014 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 7681 year: 2014 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 3109 year: 2015 publication-title: Chem. Commun. – volume: 3 start-page: 15764 year: 2015 publication-title: J. Mater. Chem. A – volume: 130 start-page: 13850 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1817 year: 2012 publication-title: ACS Catal. – volume: 10 start-page: 1932 year: 2014 publication-title: Small – volume: 5 start-page: 12498 year: 2017 publication-title: J. Mater. Chem. A – volume: 2 start-page: 2630 year: 2012 publication-title: ACS Catal. – volume: 7 start-page: 612 year: 2017 publication-title: Sci. Rep. – volume: 200 start-page: 386 year: 2017 publication-title: Appl. Catal. B – volume: 139 start-page: 356 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 0 start-page: 2781 year: 2003 publication-title: Dalton Trans. – volume: 5 start-page: 7654 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 2334 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 43 start-page: 5982 year: 2014 publication-title: Chem. Soc. Rev. – volume: 134 start-page: 7211 year: 2012 publication-title: J. Am. Chem. Soc. |
SSID | ssj0009606 |
Score | 2.6863034 |
SecondaryResourceType | review_article |
Snippet | Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e1705512 |
SubjectTerms | Absorption Adsorption Carbon dioxide Catalysis Catalysts CO2 reduction Composite materials Emissions control energy conversion Fossil fuels Iron Metal clusters Metal-organic frameworks Metallurgical constituents metal–organic‐framework‐based composites Photocatalysis Photocatalysts Photochemistry Titanium Zirconium |
Title | Metal–Organic‐Framework‐Based Catalysts for Photoreduction of CO2 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705512 https://www.proquest.com/docview/2093134540 https://www.proquest.com/docview/2054922142 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsNAFIYHcaUL72K1SgS3aXOZTJJlrdYiVEUsdBfmqiAkYtKFrvoIgm_YJ_GcpOnFpe4mJAOZM3Nm_rmcbwi5EAqxT8q1A9CuNqWK27GvKKSkBgfRoXYwGnlwx_pDejsKRktR_BUfYr7ghp5R9tfo4Fzk7QU0lKuSG1TiYMprhvHAFqqixwU_CuV5CdvzAztmNKqpjY7XXs2-oi-XVWo5zPS2Ca9_sDpd8toaF6IlP3-xG_9Tgh2yNdOgVqdqNLtkTad7ZHOJTLhPbgYaVPl08l3Fasrp5KtXH-OC9CWMfcrq4tLPR17kFihf6-Elg_k7kmCxrq3MWN1774AMe9dP3b49u3PBfvZZDJ1j4DJhuMsklwHXMN0AG4bC-EwLSQMdOiakgrLIxDIySvIwUo4fitCELKZG-4dkPc1SfUQsEDdM-QGH4kHPoGMhTBAxzbTyEAmqG6RZ2zyZOU6eeFBXro9YwAY5n7-GJo_7GDzV2Ri_QawcsuIaxCsNnLxVaI6kgjB7CZo2mZs26VwNOvOn479kOiEbkEaYt-3FTbJevI_1KciRQpyVTe4HY4bZ0w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LTtwwFIaPKF20LKClRUyBNkh0GZg4jpMsWExnmA6XoVUFErsQx8cgIU0qJiMEKx4BiSfhVXgEnqTnJJMBuqzEorvclfhc_NuxPwOsacPYJ-O5AWlXV0qTurFvJG1lSAGCITZ5NnJ_X_UO5c5RcDQFd_VcmIoPMelw48go8zUHOHdIbzxSQ1NTgoNKHownxuMqd_Hyglptw83tDpn4qxDdrYN2zx0vLOCe-CqmDBB4StvUU1maBSmSpiYdH2rrK9SZDDBs2lBqqSIbZ5E1WRpGpumHOrShiqVFn577Cl7zMuKM6-_8eiRWcYOgxPv5gRsrGdWcyKbYeP6-zxTtU11cVmzdObivi6Qaz3K2Pir0enb1Fy3yvyqzdzA7ltlOq4qL9zCFg3mYeQJf_ADf-0gNj4fr22o6avZwfdOtR6rR9jeq3o3T5t6ty2ExdEjcOz9P8yI_Z9gtu7OTW6f9Q3yEwxf5kgWYHuQDXASH9JsyfpBScVLyw1hrG0QKFRrB1FNswHJt5GScG4aJIOfwfCYfNmB1cpqimn_VpAPMR3wNk_MYh9cAUVo0-V3RR5KKMy0SNmUyMWXS6vRbk71P_3LTF3jTO-jvJXvb-7tL8JaOM7vcFfEyTBfnI1wh9VXoz6W_O3D80s7yBy1wOWU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LTtwwFIaPuEhVWQC9iaHQplK7DCSO4yQLFsNMp1A6FFVFYhfi-LhISBPEZIRgxSNU4kV4FV6BJ-GcZDJAl5VYsMtdic_Fvx37M8BnbRj7ZHw3JO3qSmkyNwmMpK0cKUAwQo9nI_d31da-_H4QHkzBdTMXpuZDTDrcODKqfM0BfmLs-j00NDMVN6jCwfhiPKxyB8_PqNE23NjukoW_CNH7-ruz5Y7XFXD_BCqhBBD6StvMV3mWhxmSpCYZH2kbKNS5DDHybCS1VLFN8tiaPIti4wWRjmykEmkxoOdOw6xUXsKLRXR_3QOruD1Q0f2C0E2UjBtMpCfWH7_vI0H7UBZX9VpvAW6aEqmHsxyvjUq9ll_8A4t8TkW2CPNjke2066h4BVM4eA1zD9CLb-BbH6nZcXt5VU9GzW8v__aacWq0vUmVu3E63Ld1PiyHDkl7Z--oKItTRt2yMzuFdTo_xVvYf5IveQczg2KAS-CQelMmCDMqTkp9mGhtw1ihQiOYeYotWGlsnI4zwzAV5Bt-wNzDFnyanKaY5h812QCLEV_D3DyG4bVAVAZNT2r2SFpTpkXKpkwnpkzb3X57srf8Pzd9hBd73V76Y3t35z28pMMMLndFsgIz5ekIV0l6lfpD5e0OHD61r9wBLS44FA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic%E2%80%90Framework%E2%80%90Based+Catalysts+for+Photoreduction+of+CO2&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Rui&rft.au=Zhang%2C+Wang&rft.au=Zhou%2C+Kun&rft.date=2018-08-29&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201705512&rft.externalDBID=10.1002%252Fadma.201705512&rft.externalDocID=ADMA201705512 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |