Au Sub‐Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions

As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber–Bosch process (150–350 atm, 350–550 °C), wherei...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 17
Main Authors Shi, Miao‐Miao, Bao, Di, Wulan, Ba‐Ri, Li, Yong‐He, Zhang, Yue‐Fei, Yan, Jun‐Min, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 03.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber–Bosch process (150–350 atm, 350–550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub‐nanoclusters (≈0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3: 21.4 µg h−1 mg−1cat., Faradaic efficiency: 8.11%) and good selectivity is achieved at −0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well‐defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices. Using Au sub‐nanoclusters anchored on TiO2 substrate as a heterogeneous electrocatalyst, the special Au active sites lead to the effective and stable electrochemical N2 reduction reaction with high NH3 yield (21.4 µg h−1 mg−1cat.) and Faradaic efficiency (8.11%) as well as 100% NH3 selectivity at ambient conditions.
AbstractList As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber-Bosch process (150-350 atm, 350-550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub-nanoclusters (≈0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3 : 21.4 µg h-1 mg-1cat. , Faradaic efficiency: 8.11%) and good selectivity is achieved at -0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well-defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices.As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber-Bosch process (150-350 atm, 350-550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub-nanoclusters (≈0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3 : 21.4 µg h-1 mg-1cat. , Faradaic efficiency: 8.11%) and good selectivity is achieved at -0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well-defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices.
As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber-Bosch process (150-350 atm, 350-550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub-nanoclusters ([asymp]0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3: 21.4 µg h-1 mg-1cat., Faradaic efficiency: 8.11%) and good selectivity is achieved at -0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well-defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices.
As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber–Bosch process (150–350 atm, 350–550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub‐nanoclusters (≈0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3: 21.4 µg h−1 mg−1cat., Faradaic efficiency: 8.11%) and good selectivity is achieved at −0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well‐defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices. Using Au sub‐nanoclusters anchored on TiO2 substrate as a heterogeneous electrocatalyst, the special Au active sites lead to the effective and stable electrochemical N2 reduction reaction with high NH3 yield (21.4 µg h−1 mg−1cat.) and Faradaic efficiency (8.11%) as well as 100% NH3 selectivity at ambient conditions.
Author Zhang, Yue‐Fei
Shi, Miao‐Miao
Yan, Jun‐Min
Wulan, Ba‐Ri
Jiang, Qing
Bao, Di
Li, Yong‐He
Author_xml – sequence: 1
  givenname: Miao‐Miao
  surname: Shi
  fullname: Shi, Miao‐Miao
  organization: Jilin University
– sequence: 2
  givenname: Di
  surname: Bao
  fullname: Bao, Di
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Ba‐Ri
  surname: Wulan
  fullname: Wulan, Ba‐Ri
  organization: Jilin University
– sequence: 4
  givenname: Yong‐He
  surname: Li
  fullname: Li, Yong‐He
  organization: Beijing University of Technology
– sequence: 5
  givenname: Yue‐Fei
  surname: Zhang
  fullname: Zhang, Yue‐Fei
  organization: Beijing University of Technology
– sequence: 6
  givenname: Jun‐Min
  surname: Yan
  fullname: Yan, Jun‐Min
  email: junminyan@jlu.edu.cn
  organization: Jilin University
– sequence: 7
  givenname: Qing
  surname: Jiang
  fullname: Jiang, Qing
  organization: Jilin University
BookMark eNpdkbtOxDAQRS0EEsujpbZEQxPwIw-7jJaFRYKlAGpr4jhglLUhdkDbIb6Ab-RL8AKioJoZzdHRaO4O2nTeGYQOKDmmhLATaJdwzAgtSVkUZANNaMFolhNZbKIJkbzIZJmLbbQTwiMhRCZugt7rEd-MzefbxwKc1_0YohkC9g7f2muGo3-FocVze__Qr_Cs66y2xkUMrsU3pjc62heDZ-tm8Boi9KsQcecHvGB46t1Lktkkix4v5hxDxPWy-TakZWtj2oU9tNVBH8z-b91Fd2ez2-k8u7w-v5jWl9k9LyXJ8goE50ZqaBtuwGjZcsoE06Jsm451UDXEVGUjKIgqZ5BeIotGtloYYJIzvouOfrxPg38eTYhqaYM2fQ_O-DEoKipWCMILmdDDf-ijHweXrlNUMpJTTvMyUfKHerW9WamnwS5hWClK1DoPtc5D_eWh6tOr-m_iX_6fhAw
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201606550
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201606550
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2016M591498
– fundername: Natural Science Foundation of China
  funderid: 51522101; 51631004; 51471075; 51401084
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education of China
  funderid: 20110061120040
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-g3690-47a833e9cadb3eaec9d31282c86dbf2fa7b0e76b81a8742a00295b9dc8ea29323
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 04:54:47 EDT 2025
Fri Jul 25 04:47:07 EDT 2025
Wed Jan 22 16:43:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3690-47a833e9cadb3eaec9d31282c86dbf2fa7b0e76b81a8742a00295b9dc8ea29323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1920413146
PQPubID 2045203
PageCount 6
ParticipantIDs proquest_miscellaneous_1872580359
proquest_journals_1920413146
wiley_primary_10_1002_adma_201606550_ADMA201606550
PublicationCentury 2000
PublicationDate May 3, 2017
PublicationDateYYYYMMDD 2017-05-03
PublicationDate_xml – month: 05
  year: 2017
  text: May 3, 2017
  day: 03
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 6
2010; 329
2009; 180
2010; 328
2006; 38
2016; 10
2005; 40
1981; 68
2016; 52
2015; 528
2004
2017; 29
2002; 518
2000; 2000
2011; 3
2013; 5
1991; 9
2005; 44
2014; 43
2014; 20
2016; 55
2016; 4
2014; 4
2003; 107
2012; 134
1994; 367
2010; 638
2004; 16
2005; 30
1983; 87
2005; 307
2016; 352
2016; 138
2008; 86
2001; 218
2009; 109
2014; 345
2009; 16
2016; 196
References_xml – volume: 134
  start-page: 8968
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 14369
  year: 2016
  publication-title: Chem. Commun.
– volume: 367
  start-page: 183
  year: 1994
  publication-title: J. Electrochem. Soc.
– volume: 329
  start-page: 1633
  year: 2010
  publication-title: Science
– volume: 20
  start-page: 2138
  year: 2014
  publication-title: Chem. – Eur. J.
– volume: 44
  start-page: 1824
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  start-page: 3970
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 180
  start-page: 1332
  year: 2009
  publication-title: Solid State Ionics
– volume: 218
  start-page: 121
  year: 2001
  publication-title: Appl. Catal., A
– volume: 345
  start-page: 637
  year: 2014
  publication-title: Science
– volume: 86
  start-page: 53
  year: 2008
  publication-title: Chem. Eng. News
– volume: 2000
  start-page: 1673
  year: 2000
  publication-title: Chem. Commun.
– volume: 518
  start-page: 210
  year: 2002
  publication-title: Surf. Sci.
– volume: 6
  start-page: 3965
  year: 2015
  publication-title: Chem. Sci.
– volume: 352
  start-page: 448
  year: 2016
  publication-title: Science
– volume: 10
  start-page: 10507
  year: 2016
  publication-title: ACS Nano
– volume: 30
  start-page: 2487
  year: 2005
  publication-title: Energy
– volume: 4
  start-page: 3886
  year: 2014
  publication-title: ACS Catal.
– volume: 9
  start-page: 1410
  year: 1991
  publication-title: J. Vac. Sci. Technol., A
– volume: 29
  start-page: 1604799
  year: 2017
  publication-title: Adv. Mater.
– volume: 38
  start-page: 215
  year: 2006
  publication-title: Surf. Interface Anal.
– volume: 528
  start-page: 555
  year: 2015
  publication-title: Nature
– volume: 40
  start-page: 1294
  year: 2005
  publication-title: Mater. Res. Bull.
– year: 2004
– volume: 16
  start-page: 89
  year: 2009
  publication-title: ECS Trans.
– volume: 345
  start-page: 610
  year: 2014
  publication-title: Science
– volume: 307
  start-page: 555
  year: 2005
  publication-title: Science
– volume: 196
  start-page: 27
  year: 2016
  publication-title: Appl. Catal., B
– volume: 328
  start-page: 224
  year: 2010
  publication-title: Science
– volume: 4
  start-page: 5855
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 68
  start-page: 423
  year: 1981
  publication-title: J. Catal.
– volume: 638
  start-page: 119
  year: 2010
  publication-title: J. Electroanal. Chem.
– volume: 3
  start-page: 634
  year: 2011
  publication-title: Nat. Chem.
– volume: 109
  start-page: 2209
  year: 2009
  publication-title: Chem. Rev.
– volume: 43
  start-page: 5183
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 87
  start-page: 788
  year: 1983
  publication-title: J. Phys. Chem.
– volume: 16
  start-page: 3331
  year: 2004
  publication-title: Chem. Mater.
– volume: 55
  start-page: 3942
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 107
  start-page: 2865
  year: 2003
  publication-title: J. Phys. Chem. A
– volume: 5
  start-page: 559
  year: 2013
  publication-title: Nat. Chem.
SSID ssj0009606
Score 2.6830144
Snippet As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction...
As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Activation energy
Ammonia
Atomic structure
Au sub‐nanoclusters
Bonding strength
Carbon dioxide
Chemical bonds
Chemical reactions
Chemical synthesis
electrocatalyst
electrochemical N2 reduction
Fixation
Fossil fuels
Fuel cells
Materials science
Nanoclusters
nitrogen fixation
Reduction (metal working)
Selectivity
size‐effect
Titanium dioxide
Titanium oxides
Vanadium
Water splitting
Title Au Sub‐Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606550
https://www.proquest.com/docview/1920413146
https://www.proquest.com/docview/1872580359
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQEwx8I8qXDok1NLHjxB0jKKqQWiRoJbbonLgIASmiyQAT4hfwG_klnJ22FEYYI8dWovPdvbOfnxk7RqFDTWnJQyliL4wC5dnNHi8jaBGYwCiBtlDs9qLOILy4kTdzp_hrfYjZgpv1DBevrYOjHje_RUMxd7pBASFw6Yp2S9iyqOjqWz_KwnMntiek14pCNVVt9HnzZ_cf-HIepbo0c77KcPqBNbvk_qQq9Un2-ku78T9_sMZWJhgUknrSrLMFU2yw5Tllwk32nlRAMeXz7YPC7yh7qKyewhhGBfTvLjmUjmwLliTy8AJtJ0NB2QuwyOHa3axDQRTa9RU7boXoZVwC4WPocTi1RHe3SkfjQK8jAEtIHrUbgRrzmkW2xQbn7f5px5tc1-DdCqqxvTBGJYRpZZhrYdBkrVxQ9uOZinI95EOMtW_iSKsAFRXkaDcEpW7lmTJIoIOLbbZYjAqzwwDDaEi1OUpp_HAYC_QVRoYj1zkh2kA22P7UXOnE58YpYVWfUjKF_gY7mjWTt9gtECzMqKJ3VMylsrKFDcadbdKnWtUjrfWbeWqtks6skiZn3WT2tPuXTntsiVssYFmSYp8tls-VOSAkU-pDN1u_AMue7Dk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5QAc-EcNFBgkOLqNd_2zOXCwmlQpbYIEqdSbmbU3CFEcRGyhcEI8Aa_Cq_AIPAkz6yRtOSL1wNFae2Wt5-ebH38D8Iy0jSy7pYBinQZREppAij1BwdAidKEzmiRQHI2T4XH08iQ-2YCfq39hWn6IdcJNNMPba1FwSUjvnrGGUumJg0KG4Ayzl32Vh27xhaO2-YuDPn_i50rtDyZ7w2A5WCB4pzkaDKKUjNauV1BptSNX9ErNdloVJintVE0ptV2XJtaEZDh0JCldxbZXFsYRu0fhOmCrf0XGiAtdf__1GWOVBASe3k_HQS-JzIonsqt2L77vBUR7Hhd7x7Z_E36tjqTtZ_mw09R2p_j6F1vkf3Vmt-DGEmZj1urFbdhw1R24fo588S58zxpks_n72w_2MLPitBHKiDnOKpy8f6Ww9v3EKH0wpwsceKYNdtBIVYlv_PAg9hM4aKcI-STYYl4jhwA4Vrgnvfw-Ecn74HiokWrMPlq_Ay-WbaPcPTi-lEO4D5vVrHJbgBQl09QYimPXjaappq6hxClStmTQHsYd2F7JR740K_Oc4XiXUQd7tw48XS-zQZAqD1Vu1vA9JlWxEWbGDigvDPmnlrgkbymqVS5SkK-lIM_6o2x99eBfHnoCV4eT0VF-dDA-fAjXlEAfaQrV27BZf27cIwZutX3sVQXh7WXL2R9goUtB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRUJwKP9iocAgwTFtYufHOfQQdXe1pXRB0Eq9hXHioKpttmIToe0J8QQ8Cq_CK_AkjJ3dbcsRqQeOkRMrcubnG_vLNwCvSOpQc1ryKJKJF8aB8uxhj1cwtAhMYJQkWyjujePRQfjmMDpcgZ-Lf2E6fYjlhpv1DBevrYOfldXmhWgolU43KGAEzih7TqvcNbOvXLRNt3b6_IVfCzEc7G-PvHlfAe-z5GLQCxNSUpq0oFJLQ6ZIS8lhWhQqLnUlKkq0b5JYq4AUV45kT64inZaFMsTZ0UodcNC_EcZ-aptF9D9cCFbZesCp-8nIS-NQLWQifbF59X2vANrLsNjlteEd-LVYkY7OcrzRNnqjOP9LLPJ_WrK7sDYH2Zh1XnEPVkx9H25fkl58AN-zFjlo_v72g_PLpDhprWDEFCc17h-9E9g4NjFaFszJDAdOZ4PTM1Jd4kfXOoizBA66HkJuC2w2bZALABwL3LZMfrcNyfPgeCSRGsxOtZuBB8uOJvcQDq5lER7Baj2pzWNACuMqUYqiyPhhlUjyFcVGkNAlQ_Yg6sH6wjzyeVCZ5gzGfcYcnNt68HI5zOHAnvFQbSYt36MSESmry9gD4WwhP-tkS_JOoFrk1grypRXkWX8vW149-ZeHXsDN9_1h_nZnvPsUbgmLeywjVK7DavOlNc8YtTX6uXMUhE_XbWZ_ABcySfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Au+Sub-Nanoclusters+on+TiO2+toward+Highly+Efficient+and+Selective+Electrocatalyst+for+N2+Conversion+to+NH3+at+Ambient+Conditions&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Miao-Miao&rft.au=Bao%2C+Di&rft.au=Wulan%2C+Ba-Ri&rft.au=Li%2C+Yong-He&rft.date=2017-05-03&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=17&rft_id=info:doi/10.1002%2Fadma.201606550&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon