Au Sub‐Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions
As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber–Bosch process (150–350 atm, 350–550 °C), wherei...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 17 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
03.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber–Bosch process (150–350 atm, 350–550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub‐nanoclusters (≈0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3: 21.4 µg h−1 mg−1cat., Faradaic efficiency: 8.11%) and good selectivity is achieved at −0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well‐defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices.
Using Au sub‐nanoclusters anchored on TiO2 substrate as a heterogeneous electrocatalyst, the special Au active sites lead to the effective and stable electrochemical N2 reduction reaction with high NH3 yield (21.4 µg h−1 mg−1cat.) and Faradaic efficiency (8.11%) as well as 100% NH3 selectivity at ambient conditions. |
---|---|
AbstractList | As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber-Bosch process (150-350 atm, 350-550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub-nanoclusters (≈0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3 : 21.4 µg h-1 mg-1cat. , Faradaic efficiency: 8.11%) and good selectivity is achieved at -0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well-defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices.As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber-Bosch process (150-350 atm, 350-550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub-nanoclusters (≈0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3 : 21.4 µg h-1 mg-1cat. , Faradaic efficiency: 8.11%) and good selectivity is achieved at -0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well-defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices. As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber-Bosch process (150-350 atm, 350-550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub-nanoclusters ([asymp]0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3: 21.4 µg h-1 mg-1cat., Faradaic efficiency: 8.11%) and good selectivity is achieved at -0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well-defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices. As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber–Bosch process (150–350 atm, 350–550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub‐nanoclusters (≈0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3: 21.4 µg h−1 mg−1cat., Faradaic efficiency: 8.11%) and good selectivity is achieved at −0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well‐defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices. Using Au sub‐nanoclusters anchored on TiO2 substrate as a heterogeneous electrocatalyst, the special Au active sites lead to the effective and stable electrochemical N2 reduction reaction with high NH3 yield (21.4 µg h−1 mg−1cat.) and Faradaic efficiency (8.11%) as well as 100% NH3 selectivity at ambient conditions. |
Author | Zhang, Yue‐Fei Shi, Miao‐Miao Yan, Jun‐Min Wulan, Ba‐Ri Jiang, Qing Bao, Di Li, Yong‐He |
Author_xml | – sequence: 1 givenname: Miao‐Miao surname: Shi fullname: Shi, Miao‐Miao organization: Jilin University – sequence: 2 givenname: Di surname: Bao fullname: Bao, Di organization: Chinese Academy of Sciences – sequence: 3 givenname: Ba‐Ri surname: Wulan fullname: Wulan, Ba‐Ri organization: Jilin University – sequence: 4 givenname: Yong‐He surname: Li fullname: Li, Yong‐He organization: Beijing University of Technology – sequence: 5 givenname: Yue‐Fei surname: Zhang fullname: Zhang, Yue‐Fei organization: Beijing University of Technology – sequence: 6 givenname: Jun‐Min surname: Yan fullname: Yan, Jun‐Min email: junminyan@jlu.edu.cn organization: Jilin University – sequence: 7 givenname: Qing surname: Jiang fullname: Jiang, Qing organization: Jilin University |
BookMark | eNpdkbtOxDAQRS0EEsujpbZEQxPwIw-7jJaFRYKlAGpr4jhglLUhdkDbIb6Ab-RL8AKioJoZzdHRaO4O2nTeGYQOKDmmhLATaJdwzAgtSVkUZANNaMFolhNZbKIJkbzIZJmLbbQTwiMhRCZugt7rEd-MzefbxwKc1_0YohkC9g7f2muGo3-FocVze__Qr_Cs66y2xkUMrsU3pjc62heDZ-tm8Boi9KsQcecHvGB46t1Lktkkix4v5hxDxPWy-TakZWtj2oU9tNVBH8z-b91Fd2ez2-k8u7w-v5jWl9k9LyXJ8goE50ZqaBtuwGjZcsoE06Jsm451UDXEVGUjKIgqZ5BeIotGtloYYJIzvouOfrxPg38eTYhqaYM2fQ_O-DEoKipWCMILmdDDf-ijHweXrlNUMpJTTvMyUfKHerW9WamnwS5hWClK1DoPtc5D_eWh6tOr-m_iX_6fhAw |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201606550 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201606550 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2016M591498 – fundername: Natural Science Foundation of China funderid: 51522101; 51631004; 51471075; 51401084 – fundername: Specialized Research Fund for the Doctoral Program of Higher Education of China funderid: 20110061120040 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-g3690-47a833e9cadb3eaec9d31282c86dbf2fa7b0e76b81a8742a00295b9dc8ea29323 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 04:54:47 EDT 2025 Fri Jul 25 04:47:07 EDT 2025 Wed Jan 22 16:43:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3690-47a833e9cadb3eaec9d31282c86dbf2fa7b0e76b81a8742a00295b9dc8ea29323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1920413146 |
PQPubID | 2045203 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1872580359 proquest_journals_1920413146 wiley_primary_10_1002_adma_201606550_ADMA201606550 |
PublicationCentury | 2000 |
PublicationDate | May 3, 2017 |
PublicationDateYYYYMMDD | 2017-05-03 |
PublicationDate_xml | – month: 05 year: 2017 text: May 3, 2017 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 6 2010; 329 2009; 180 2010; 328 2006; 38 2016; 10 2005; 40 1981; 68 2016; 52 2015; 528 2004 2017; 29 2002; 518 2000; 2000 2011; 3 2013; 5 1991; 9 2005; 44 2014; 43 2014; 20 2016; 55 2016; 4 2014; 4 2003; 107 2012; 134 1994; 367 2010; 638 2004; 16 2005; 30 1983; 87 2005; 307 2016; 352 2016; 138 2008; 86 2001; 218 2009; 109 2014; 345 2009; 16 2016; 196 |
References_xml | – volume: 134 start-page: 8968 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 14369 year: 2016 publication-title: Chem. Commun. – volume: 367 start-page: 183 year: 1994 publication-title: J. Electrochem. Soc. – volume: 329 start-page: 1633 year: 2010 publication-title: Science – volume: 20 start-page: 2138 year: 2014 publication-title: Chem. – Eur. J. – volume: 44 start-page: 1824 year: 2005 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 3970 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 180 start-page: 1332 year: 2009 publication-title: Solid State Ionics – volume: 218 start-page: 121 year: 2001 publication-title: Appl. Catal., A – volume: 345 start-page: 637 year: 2014 publication-title: Science – volume: 86 start-page: 53 year: 2008 publication-title: Chem. Eng. News – volume: 2000 start-page: 1673 year: 2000 publication-title: Chem. Commun. – volume: 518 start-page: 210 year: 2002 publication-title: Surf. Sci. – volume: 6 start-page: 3965 year: 2015 publication-title: Chem. Sci. – volume: 352 start-page: 448 year: 2016 publication-title: Science – volume: 10 start-page: 10507 year: 2016 publication-title: ACS Nano – volume: 30 start-page: 2487 year: 2005 publication-title: Energy – volume: 4 start-page: 3886 year: 2014 publication-title: ACS Catal. – volume: 9 start-page: 1410 year: 1991 publication-title: J. Vac. Sci. Technol., A – volume: 29 start-page: 1604799 year: 2017 publication-title: Adv. Mater. – volume: 38 start-page: 215 year: 2006 publication-title: Surf. Interface Anal. – volume: 528 start-page: 555 year: 2015 publication-title: Nature – volume: 40 start-page: 1294 year: 2005 publication-title: Mater. Res. Bull. – year: 2004 – volume: 16 start-page: 89 year: 2009 publication-title: ECS Trans. – volume: 345 start-page: 610 year: 2014 publication-title: Science – volume: 307 start-page: 555 year: 2005 publication-title: Science – volume: 196 start-page: 27 year: 2016 publication-title: Appl. Catal., B – volume: 328 start-page: 224 year: 2010 publication-title: Science – volume: 4 start-page: 5855 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 68 start-page: 423 year: 1981 publication-title: J. Catal. – volume: 638 start-page: 119 year: 2010 publication-title: J. Electroanal. Chem. – volume: 3 start-page: 634 year: 2011 publication-title: Nat. Chem. – volume: 109 start-page: 2209 year: 2009 publication-title: Chem. Rev. – volume: 43 start-page: 5183 year: 2014 publication-title: Chem. Soc. Rev. – volume: 87 start-page: 788 year: 1983 publication-title: J. Phys. Chem. – volume: 16 start-page: 3331 year: 2004 publication-title: Chem. Mater. – volume: 55 start-page: 3942 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 107 start-page: 2865 year: 2003 publication-title: J. Phys. Chem. A – volume: 5 start-page: 559 year: 2013 publication-title: Nat. Chem. |
SSID | ssj0009606 |
Score | 2.6830144 |
Snippet | As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction... As the NN bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Activation energy Ammonia Atomic structure Au sub‐nanoclusters Bonding strength Carbon dioxide Chemical bonds Chemical reactions Chemical synthesis electrocatalyst electrochemical N2 reduction Fixation Fossil fuels Fuel cells Materials science Nanoclusters nitrogen fixation Reduction (metal working) Selectivity size‐effect Titanium dioxide Titanium oxides Vanadium Water splitting |
Title | Au Sub‐Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606550 https://www.proquest.com/docview/1920413146 https://www.proquest.com/docview/1872580359 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQEwx8I8qXDok1NLHjxB0jKKqQWiRoJbbonLgIASmiyQAT4hfwG_klnJ22FEYYI8dWovPdvbOfnxk7RqFDTWnJQyliL4wC5dnNHi8jaBGYwCiBtlDs9qLOILy4kTdzp_hrfYjZgpv1DBevrYOjHje_RUMxd7pBASFw6Yp2S9iyqOjqWz_KwnMntiek14pCNVVt9HnzZ_cf-HIepbo0c77KcPqBNbvk_qQq9Un2-ku78T9_sMZWJhgUknrSrLMFU2yw5Tllwk32nlRAMeXz7YPC7yh7qKyewhhGBfTvLjmUjmwLliTy8AJtJ0NB2QuwyOHa3axDQRTa9RU7boXoZVwC4WPocTi1RHe3SkfjQK8jAEtIHrUbgRrzmkW2xQbn7f5px5tc1-DdCqqxvTBGJYRpZZhrYdBkrVxQ9uOZinI95EOMtW_iSKsAFRXkaDcEpW7lmTJIoIOLbbZYjAqzwwDDaEi1OUpp_HAYC_QVRoYj1zkh2kA22P7UXOnE58YpYVWfUjKF_gY7mjWTt9gtECzMqKJ3VMylsrKFDcadbdKnWtUjrfWbeWqtks6skiZn3WT2tPuXTntsiVssYFmSYp8tls-VOSAkU-pDN1u_AMue7Dk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5QAc-EcNFBgkOLqNd_2zOXCwmlQpbYIEqdSbmbU3CFEcRGyhcEI8Aa_Cq_AIPAkz6yRtOSL1wNFae2Wt5-ebH38D8Iy0jSy7pYBinQZREppAij1BwdAidKEzmiRQHI2T4XH08iQ-2YCfq39hWn6IdcJNNMPba1FwSUjvnrGGUumJg0KG4Ayzl32Vh27xhaO2-YuDPn_i50rtDyZ7w2A5WCB4pzkaDKKUjNauV1BptSNX9ErNdloVJintVE0ptV2XJtaEZDh0JCldxbZXFsYRu0fhOmCrf0XGiAtdf__1GWOVBASe3k_HQS-JzIonsqt2L77vBUR7Hhd7x7Z_E36tjqTtZ_mw09R2p_j6F1vkf3Vmt-DGEmZj1urFbdhw1R24fo588S58zxpks_n72w_2MLPitBHKiDnOKpy8f6Ww9v3EKH0wpwsceKYNdtBIVYlv_PAg9hM4aKcI-STYYl4jhwA4Vrgnvfw-Ecn74HiokWrMPlq_Ay-WbaPcPTi-lEO4D5vVrHJbgBQl09QYimPXjaappq6hxClStmTQHsYd2F7JR740K_Oc4XiXUQd7tw48XS-zQZAqD1Vu1vA9JlWxEWbGDigvDPmnlrgkbymqVS5SkK-lIM_6o2x99eBfHnoCV4eT0VF-dDA-fAjXlEAfaQrV27BZf27cIwZutX3sVQXh7WXL2R9goUtB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRUJwKP9iocAgwTFtYufHOfQQdXe1pXRB0Eq9hXHioKpttmIToe0J8QQ8Cq_CK_AkjJ3dbcsRqQeOkRMrcubnG_vLNwCvSOpQc1ryKJKJF8aB8uxhj1cwtAhMYJQkWyjujePRQfjmMDpcgZ-Lf2E6fYjlhpv1DBevrYOfldXmhWgolU43KGAEzih7TqvcNbOvXLRNt3b6_IVfCzEc7G-PvHlfAe-z5GLQCxNSUpq0oFJLQ6ZIS8lhWhQqLnUlKkq0b5JYq4AUV45kT64inZaFMsTZ0UodcNC_EcZ-aptF9D9cCFbZesCp-8nIS-NQLWQifbF59X2vANrLsNjlteEd-LVYkY7OcrzRNnqjOP9LLPJ_WrK7sDYH2Zh1XnEPVkx9H25fkl58AN-zFjlo_v72g_PLpDhprWDEFCc17h-9E9g4NjFaFszJDAdOZ4PTM1Jd4kfXOoizBA66HkJuC2w2bZALABwL3LZMfrcNyfPgeCSRGsxOtZuBB8uOJvcQDq5lER7Baj2pzWNACuMqUYqiyPhhlUjyFcVGkNAlQ_Yg6sH6wjzyeVCZ5gzGfcYcnNt68HI5zOHAnvFQbSYt36MSESmry9gD4WwhP-tkS_JOoFrk1grypRXkWX8vW149-ZeHXsDN9_1h_nZnvPsUbgmLeywjVK7DavOlNc8YtTX6uXMUhE_XbWZ_ABcySfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Au+Sub-Nanoclusters+on+TiO2+toward+Highly+Efficient+and+Selective+Electrocatalyst+for+N2+Conversion+to+NH3+at+Ambient+Conditions&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Miao-Miao&rft.au=Bao%2C+Di&rft.au=Wulan%2C+Ba-Ri&rft.au=Li%2C+Yong-He&rft.date=2017-05-03&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=17&rft_id=info:doi/10.1002%2Fadma.201606550&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |