Physiological Indicators for User Trust in Machine Learning with Influence Enhanced Fact-Checking

Trustworthy Machine Learning (ML) is one of significant challenges of “black-box” ML for its wide impact on practical applications. This paper investigates the effects of presentation of influence of training data points on machine learning predictions to boost user trust. A framework of fact-checki...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Extraction Vol. 11713; pp. 94 - 113
Main Authors Zhou, Jianlong, Hu, Huaiwen, Li, Zhidong, Yu, Kun, Chen, Fang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030297251
303029725X
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-29726-8_7

Cover

Loading…
Abstract Trustworthy Machine Learning (ML) is one of significant challenges of “black-box” ML for its wide impact on practical applications. This paper investigates the effects of presentation of influence of training data points on machine learning predictions to boost user trust. A framework of fact-checking for boosting user trust is proposed in a predictive decision making scenario to allow users to interactively check the training data points with different influences on the prediction by using parallel coordinates based visualization. This work also investigates the feasibility of physiological signals such as Galvanic Skin Response (GSR) and Blood Volume Pulse (BVP) as indicators for user trust in predictive decision making. A user study found that the presentation of influences of training data points significantly increases the user trust in predictions, but only for training data points with higher influence values under the high model performance condition, where users can justify their actions with more similar facts to the testing data point. The physiological signal analysis showed that GSR and BVP features correlate to user trust under different influence and model performance conditions. These findings suggest that physiological indicators can be integrated into the user interface of AI applications to automatically communicate user trust variations in predictive decision making.
AbstractList Trustworthy Machine Learning (ML) is one of significant challenges of “black-box” ML for its wide impact on practical applications. This paper investigates the effects of presentation of influence of training data points on machine learning predictions to boost user trust. A framework of fact-checking for boosting user trust is proposed in a predictive decision making scenario to allow users to interactively check the training data points with different influences on the prediction by using parallel coordinates based visualization. This work also investigates the feasibility of physiological signals such as Galvanic Skin Response (GSR) and Blood Volume Pulse (BVP) as indicators for user trust in predictive decision making. A user study found that the presentation of influences of training data points significantly increases the user trust in predictions, but only for training data points with higher influence values under the high model performance condition, where users can justify their actions with more similar facts to the testing data point. The physiological signal analysis showed that GSR and BVP features correlate to user trust under different influence and model performance conditions. These findings suggest that physiological indicators can be integrated into the user interface of AI applications to automatically communicate user trust variations in predictive decision making.
Author Hu, Huaiwen
Zhou, Jianlong
Yu, Kun
Li, Zhidong
Chen, Fang
Author_xml – sequence: 1
  givenname: Jianlong
  surname: Zhou
  fullname: Zhou, Jianlong
  email: jianlong.zhou@uts.edu.au
– sequence: 2
  givenname: Huaiwen
  surname: Hu
  fullname: Hu, Huaiwen
– sequence: 3
  givenname: Zhidong
  surname: Li
  fullname: Li, Zhidong
– sequence: 4
  givenname: Kun
  surname: Yu
  fullname: Yu, Kun
– sequence: 5
  givenname: Fang
  surname: Chen
  fullname: Chen, Fang
BookMark eNpVkEFP3DAQhU2hFQvdX9CL_4DpjJ3EmWO1ghZpUXuAs-U4s5uUyNnaWVX993ihF07Pevb3ZvyuxEWcIwvxBeEGAexXsq0yCgwoTVY3qnX2TKyLa4r3arUfxAobRGVMRefv7mq8EKvTWZGtzCdxhYhkWm0qcynWOf8GAK2BEJuV8L-Gf3mcp3k_Bj_J-9gXXeaU5W5O8ilzko_pmBc5RvngwzBGllv2KY5xL_-Oy1CQ3XTkGFjexsEX7eWdD4vaDByey6vP4uPOT5nX__VaPN3dPm5-qO3P7_ebb1u1N027KOx7qC3omgkqr3tdN2VDIA5dR5rAB2JoQsflZx2FYKtApL3dtY3pwXpzLfAtNx9SGcvJdfP8nB2CO3XqSkPOuEK71wJd6bQw5o05pPnPkfPi-AQFjkvyUxj8YeGUXU1IFslZLFHWvAAn2XZT
ContentType Book Chapter
Copyright IFIP International Federation for Information Processing 2019
Copyright_xml – notice: IFIP International Federation for Information Processing 2019
DBID FFUUA
DEWEY 4
DOI 10.1007/978-3-030-29726-8_7
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030297268
3030297268
EISSN 1611-3349
Editor Weippl, Edgar
Holzinger, Andreas
Tjoa, A. Min
Kieseberg, Peter
Editor_xml – sequence: 1
  fullname: Weippl, Edgar
– sequence: 2
  fullname: Holzinger, Andreas
– sequence: 3
  fullname: Tjoa, A. Min
– sequence: 4
  fullname: Kieseberg, Peter
EndPage 113
ExternalDocumentID EBC5919719_71_107
GroupedDBID 38.
AABBV
AEDXK
AEJLV
AEKFX
AIFIR
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-g368t-1dd057025e904a2d25691109ecbb9290ac9e06cbe030b9cc74c992a7f863d07a3
ISBN 9783030297251
303029725X
ISSN 0302-9743
IngestDate Tue Jul 29 20:15:31 EDT 2025
Thu May 29 16:21:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g368t-1dd057025e904a2d25691109ecbb9290ac9e06cbe030b9cc74c992a7f863d07a3
OCLC 1119382343
OpenAccessLink https://inria.hal.science/hal-02520035
PQID EBC5919719_71_107
PageCount 20
ParticipantIDs springer_books_10_1007_978_3_030_29726_8_7
proquest_ebookcentralchapters_5919719_71_107
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Information Systems and Applications, incl. Internet/Web, and HCI
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle Third IFIP TC 5, TC 12, WG 8. 4, WG 8. 9, WG 12. 9 International Cross-Domain Conference, CD-MAKE 2019, Canterbury, UK, August 26-29, 2019, Proceedings
PublicationTitle Machine Learning and Knowledge Extraction
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002209116
ssj0002792
Score 2.310925
Snippet Trustworthy Machine Learning (ML) is one of significant challenges of “black-box” ML for its wide impact on practical applications. This paper investigates the...
SourceID springer
proquest
SourceType Publisher
StartPage 94
SubjectTerms Influence
Machine Learning
Physiological features
Trust
Title Physiological Indicators for User Trust in Machine Learning with Influence Enhanced Fact-Checking
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5919719&ppg=107
http://link.springer.com/10.1007/978-3-030-29726-8_7
Volume 11713
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9oI4AC2I0oJ86IltUJx47fhYVin9AE67qDfLdhxaVUqlNkiIX8_YsZNNyqW9WKto4531s-zx87wZhA55wYTgFZxNNIemNjopqpokqiK54QvFU5-78_sPdrqm55eLy6Hwn1eXtPqz-ftfXclTUIVngKtTyT4C2b5TeACfAV9oAWFoJ87vmGYNFYZcGKSNGVI7qeFFpMjm5Z_2rhMtbM4KH_DZr3dnjbul8fV2XLThGoyer5wIw7EgD_r3lO1ZLGoyL5urLnrgBH4mWV5ZcxO3wcAiOOHSiEWILOKEh9ygwo6_jk6esPO5sldZyBYbl1LCO2Xpg4V5MxYDXk3cuywpJB_2oXj3HsrgTtJgl1-WC0EEJ0JyIolLIPCMF4sZ2j4uz7_97Hm1LAMPiDAn44kmhkRLg8l99qkuwfDEotFZY3I97r2O1Sv0wilRsJOIgI2v0ZZtdtDLWIcDh2V5F6kRqnhAFQOq2KGKPar4usEBVRxRxQ5V3KOKI6p4hOobtD4pV8vTJJTOSH7lrGgTUlXgiIM_a0VKVVaBYytcbllrtAaHOFVG2JQZbeGfa2EMp0aITPG6YHmVcpW_RbPmtrHvEKZVWmtF4RhvDc0oU3VdUw6Oq6kps1rtoaM4XNJf8IeoYtMNzr0cw7aHPsUhle7b9zImzgYoZC7BIOmhkADF-8f1vY-eD3P7AM3au9_2A_iMrf4Ypsk_04tqpw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Extraction&rft.atitle=Physiological+Indicators+for+User+Trust+in+Machine+Learning+with+Influence+Enhanced+Fact-Checking&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030297251&rft.volume=11713&rft_id=info:doi/10.1007%2F978-3-030-29726-8_7&rft.externalDBID=107&rft.externalDocID=EBC5919719_71_107
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5919719-l.jpg