Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares

In confirmatory factor analysis (CFA), the use of maximum likelihood (ML) assumes that the observed indicators follow a continuous and multivariate normal distribution, which is not appropriate for ordinal observed variables. Robust ML (MLR) has been introduced into CFA models when this normality as...

Full description

Saved in:
Bibliographic Details
Published inBehavior research methods Vol. 48; no. 3; pp. 936 - 949
Main Author Li, Cheng-Hsien
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In confirmatory factor analysis (CFA), the use of maximum likelihood (ML) assumes that the observed indicators follow a continuous and multivariate normal distribution, which is not appropriate for ordinal observed variables. Robust ML (MLR) has been introduced into CFA models when this normality assumption is slightly or moderately violated. Diagonally weighted least squares (WLSMV), on the other hand, is specifically designed for ordinal data. Although WLSMV makes no distributional assumptions about the observed variables, a normal latent distribution underlying each observed categorical variable is instead assumed. A Monte Carlo simulation was carried out to compare the effects of different configurations of latent response distributions, numbers of categories, and sample sizes on model parameter estimates, standard errors, and chi-square test statistics in a correlated two-factor model. The results showed that WLSMV was less biased and more accurate than MLR in estimating the factor loadings across nearly every condition. However, WLSMV yielded moderate overestimation of the interfactor correlations when the sample size was small or/and when the latent distributions were moderately nonnormal. With respect to standard error estimates of the factor loadings and the interfactor correlations, MLR outperformed WLSMV when the latent distributions were nonnormal with a small sample size of N = 200. Finally, the proposed model tended to be over-rejected by chi-square test statistics under both MLR and WLSMV in the condition of small sample size N = 200.
AbstractList In confirmatory factor analysis (CFA), the use of maximum likelihood (ML) assumes that the observed indicators follow a continuous and multivariate normal distribution, which is not appropriate for ordinal observed variables. Robust ML (MLR) has been introduced into CFA models when this normality assumption is slightly or moderately violated. Diagonally weighted least squares (WLSMV), on the other hand, is specifically designed for ordinal data. Although WLSMV makes no distributional assumptions about the observed variables, a normal latent distribution underlying each observed categorical variable is instead assumed. A Monte Carlo simulation was carried out to compare the effects of different configurations of latent response distributions, numbers of categories, and sample sizes on model parameter estimates, standard errors, and chi-square test statistics in a correlated two-factor model. The results showed that WLSMV was less biased and more accurate than MLR in estimating the factor loadings across nearly every condition. However, WLSMV yielded moderate overestimation of the interfactor correlations when the sample size was small or/and when the latent distributions were moderately nonnormal. With respect to standard error estimates of the factor loadings and the interfactor correlations, MLR outperformed WLSMV when the latent distributions were nonnormal with a small sample size of N = 200. Finally, the proposed model tended to be over-rejected by chi-square test statistics under both MLR and WLSMV in the condition of small sample size N = 200.In confirmatory factor analysis (CFA), the use of maximum likelihood (ML) assumes that the observed indicators follow a continuous and multivariate normal distribution, which is not appropriate for ordinal observed variables. Robust ML (MLR) has been introduced into CFA models when this normality assumption is slightly or moderately violated. Diagonally weighted least squares (WLSMV), on the other hand, is specifically designed for ordinal data. Although WLSMV makes no distributional assumptions about the observed variables, a normal latent distribution underlying each observed categorical variable is instead assumed. A Monte Carlo simulation was carried out to compare the effects of different configurations of latent response distributions, numbers of categories, and sample sizes on model parameter estimates, standard errors, and chi-square test statistics in a correlated two-factor model. The results showed that WLSMV was less biased and more accurate than MLR in estimating the factor loadings across nearly every condition. However, WLSMV yielded moderate overestimation of the interfactor correlations when the sample size was small or/and when the latent distributions were moderately nonnormal. With respect to standard error estimates of the factor loadings and the interfactor correlations, MLR outperformed WLSMV when the latent distributions were nonnormal with a small sample size of N = 200. Finally, the proposed model tended to be over-rejected by chi-square test statistics under both MLR and WLSMV in the condition of small sample size N = 200.
In confirmatory factor analysis (CFA), the use of maximum likelihood (ML) assumes that the observed indicators follow a continuous and multivariate normal distribution, which is not appropriate for ordinal observed variables. Robust ML (MLR) has been introduced into CFA models when this normality assumption is slightly or moderately violated. Diagonally weighted least squares (WLSMV), on the other hand, is specifically designed for ordinal data. Although WLSMV makes no distributional assumptions about the observed variables, a normal latent distribution underlying each observed categorical variable is instead assumed. A Monte Carlo simulation was carried out to compare the effects of different configurations of latent response distributions, numbers of categories, and sample sizes on model parameter estimates, standard errors, and chi-square test statistics in a correlated two-factor model. The results showed that WLSMV was less biased and more accurate than MLR in estimating the factor loadings across nearly every condition. However, WLSMV yielded moderate overestimation of the interfactor correlations when the sample size was small or/and when the latent distributions were moderately nonnormal. With respect to standard error estimates of the factor loadings and the interfactor correlations, MLR outperformed WLSMV when the latent distributions were nonnormal with a small sample size of N = 200. Finally, the proposed model tended to be over-rejected by chi-square test statistics under both MLR and WLSMV in the condition of small sample size N = 200.
In confirmatory factor analysis (CFA), the use of maximum likelihood (ML) assumes that the observed indicators follow a continuous and multivariate normal distribution, which is not appropriate for ordinal observed variables. Robust ML (MLR) has been introduced into CFA models when this normality assumption is slightly or moderately violated. Diagonally weighted least squares (WLSMV), on the other hand, is specifically designed for ordinal data. Although WLSMV makes no distributional assumptions about the observed variables, a normal latent distribution underlying each observed categorical variable is instead assumed. A Monte Carlo simulation was carried out to compare the effects of different configurations of latent response distributions, numbers of categories, and sample sizes on model parameter estimates, standard errors, and chi-square test statistics in a correlated two-factor model. The results showed that WLSMV was less biased and more accurate than MLR in estimating the factor loadings across nearly every condition. However, WLSMV yielded moderate overestimation of the interfactor correlations when the sample size was small or/and when the latent distributions were moderately nonnormal. With respect to standard error estimates of the factor loadings and the interfactor correlations, MLR outperformed WLSMV when the latent distributions were nonnormal with a small sample size of N = 200. Finally, the proposed model tended to be over-rejected by chi-square test statistics under both MLR and WLSMV in the condition of small sample size N = 200.
Author Li, Cheng-Hsien
Author_xml – sequence: 1
  givenname: Cheng-Hsien
  surname: Li
  fullname: Li, Cheng-Hsien
  email: Cheng.Hsien.Li@uth.tmc.edu
  organization: Department of Pediatrics, Children’s Learning Institute, University of Texas Health Science Center at Houston
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26174714$$D View this record in MEDLINE/PubMed
BookMark eNpNUctOwzAQtBAISuEDuCAfuQT8ipNyQxUvqRIXOFvbetO6JHFrJyr5e1y1SJx2tZoZ7cxcktPWt0jIDWf3ssjLh8ilEmXGeJ4xzSdZcUJGPM9VJnNRnv7bL8hljGvGZCm4OicXQvNCFVyNyDD1beVCA50PA61gkSaFFuohukh3rltRH6xLB2qhg0c69c0GgmuXNPh5HzvawI9r-obW7htrt_LeJr6l1sHSJ1o90B265apDS2uERIjbHgLGK3JWQR3x-jjH5Ovl-XP6ls0-Xt-nT7NsKbXqMiVQqTnoZJLZilmxyBdMMMVtwbSuUGku7FwCclGggGQwl6AmsuJqYjlDOSZ3B91N8NseY2caFxdY19Ci76PhJc91yQqtE_T2CO3nDVqzCa6BMJi_uBJAHABxs48Ag1n7PiSXSYaZfSfm0IlJ75p9J6aQv9OWgDo
Cites_doi 10.1037/a0029315
10.1037/1082-989X.9.4.466
10.1037/a0015825
10.1080/10705510701301602
10.1016/S0167-9473(97)00025-X
10.1017/S0266466600011476
10.4135/9781452226576
10.1207/s15327906mbr3302_1
10.1037/a0020143
10.1007/BF02296207
10.1207/S15328007SEM0802_7
10.1080/10705510903203573
10.1111/j.2044-8317.1992.tb00975.x
10.1111/j.2044-8317.1984.tb00789.x
10.1080/10705519709540077
10.1007/BF02294210
10.1207/s15328007sem1302_2
10.2307/2095231
10.1007/s11135-007-9133-z
10.1207/s15328007sem1104_2
10.1007/BF00152011
10.1037/a0014694
10.1002/9781118619179
10.1207/S15328007SEM0903_2
10.1111/j.2044-8317.1998.tb00682.x
10.1037/0033-2909.105.1.156
10.1111/j.2044-8317.1985.tb00832.x
10.1037/1082-989X.1.1.16
10.1080/10705511.2010.489003
10.1007/BF02289343
10.1207/S15328007SEM0904_8
10.1037/a0026612
10.1177/0049124198026003003
ContentType Journal Article
Copyright Psychonomic Society, Inc. 2015
Copyright_xml – notice: Psychonomic Society, Inc. 2015
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.3758/s13428-015-0619-7
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1554-3528
EndPage 949
ExternalDocumentID 26174714
10_3758_s13428_015_0619_7
Genre Journal Article
Comparative Study
GroupedDBID ---
-55
-5G
-BR
-DZ
-EM
-ET
-~C
-~X
0-V
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7X7
875
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJNI
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BAWUL
BENPR
BGNMA
BPHCQ
BVXVI
C1A
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GUQSH
H13
HF~
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
H~9
IAO
IHR
IKXTQ
INH
IPY
IRVIT
ITC
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M2O
M2R
M4Y
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OHT
OK1
P2P
P9L
PADUT
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
R9I
RIG
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SBU
SCLPG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TR2
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UPT
UTJUX
UZXMN
VFIZW
VXZ
W48
WH7
WK8
XJT
XOL
XSW
Z7R
Z7S
Z7W
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZOVNA
ZUP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
ID FETCH-LOGICAL-g364t-42e44ba60150df0d2c5c02041d7066fe4612db3ae127e2a82153a493f149d10e3
IEDL.DBID U2A
ISSN 1554-3528
IngestDate Mon Jul 21 10:59:34 EDT 2025
Wed Feb 19 02:34:10 EST 2025
Fri Feb 21 02:37:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Confirmatory factor analysis
Robust estimation
Monte Carlo Simulation
Ordinal data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g364t-42e44ba60150df0d2c5c02041d7066fe4612db3ae127e2a82153a493f149d10e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.3758/s13428-015-0619-7.pdf
PMID 26174714
PQID 1815680766
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1815680766
pubmed_primary_26174714
springer_journals_10_3758_s13428_015_0619_7
PublicationCentury 2000
PublicationDate 20160900
2016-Sep
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 9
  year: 2016
  text: 20160900
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Behavior research methods
PublicationTitleAbbrev Behav Res
PublicationTitleAlternate Behav Res Methods
PublicationYear 2016
Publisher Springer US
Publisher_xml – name: Springer US
References Magnus, Neudecker (CR24) 1986; 2
Rigdon, Marcoulides (CR42) 1998
Li (CR22) 2012; 24
Muthén, Kaplan (CR31) 1985; 38
Lubke, Muthén (CR23) 2004; 11
Kaplan (CR19) 2009
CR17
Jöreskog, Sörbom (CR18) 1996
CR38
Jöreskog (CR16) 1969; 34
CR36
Paxton, Curran, Bollen, Kirby, Chen (CR37) 2001; 8
Yuan, Bentler (CR48) 1998; 51
CR30
Jackson, Gillaspy, Purc-Stephenson (CR14) 2009; 14
Savalei (CR45) 2010; 15
Yuan, Bentler (CR47) 1997; 26
Satorra, Bentler, von Eye, Clogg (CR44) 1994
Raykov, Hoyle (CR39) 2012
Bentler (CR2) 2006
Browne (CR5) 1984; 37
Johnson, Creech (CR15) 1983; 48
Hoogland, Boomsma (CR13) 1998; 26
Curran, West, Finch (CR7) 1996; 1
Coenders, Satorra, Saris (CR6) 1997; 4
Herzog, Boomsma, Reinecke (CR12) 2007; 14
DiStefano (CR8) 2002; 9
Rhemtulla, Brosseau-Liard, Savalei (CR41) 2012; 17
Satorra (CR43) 1990; 24
Lei (CR21) 2009; 43
Muthén (CR27) 1984; 49
Olsson (CR35) 1979; 44
CR29
Marsh, Hau, Balla, Grayson (CR25) 1998; 33
Flora, Curran (CR9) 2004; 9
Muthén, Bollen, Long (CR28) 1993
Yang-Wallentin, Jöreskog, Luo (CR46) 2010; 17
Muthén, Muthén (CR33) 2002; 9
Muthén, Muthén (CR34) 2007
Forero, Maydeu-Olivares, Gallardo-Pujol (CR11) 2009; 16
Muthén, Kaplan (CR32) 1992; 45
Micceri (CR26) 1989; 105
Bradley (CR4) 1978; 58
Beauducel, Herzberg (CR1) 2006; 13
Raykov, Marcoulides (CR40) 2006
Bollen (CR3) 1989
Forero, Maydeu-Olivares (CR10) 2009; 14
Kline (CR20) 2011
References_xml – volume: 17
  start-page: 354
  year: 2012
  end-page: 373
  ident: CR41
  article-title: When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions
  publication-title: Psychological Methods
  doi: 10.1037/a0029315
– volume: 9
  start-page: 466
  year: 2004
  end-page: 491
  ident: CR9
  article-title: An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data
  publication-title: Psychological Methods
  doi: 10.1037/1082-989X.9.4.466
– volume: 14
  start-page: 275
  year: 2009
  end-page: 299
  ident: CR10
  article-title: Estimation of IRT graded response models: Limited versus full information methods
  publication-title: Psychological Methods
  doi: 10.1037/a0015825
– volume: 14
  start-page: 361
  year: 2007
  end-page: 390
  ident: CR12
  article-title: The model-size effect on traditional and modified tests of covariance structures
  publication-title: Structural Equation Modeling
  doi: 10.1080/10705510701301602
– volume: 26
  start-page: 177
  year: 1997
  end-page: 198
  ident: CR47
  article-title: Improving parameter tests in covariance structure analysis
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/S0167-9473(97)00025-X
– volume: 2
  start-page: 157
  year: 1986
  end-page: 190
  ident: CR24
  article-title: Symmetry, 0–1 matrices and Jacobians: A review
  publication-title: Econometric Theory
  doi: 10.1017/S0266466600011476
– year: 2009
  ident: CR19
  publication-title: Structural equation modeling: Foundations and extensions
  doi: 10.4135/9781452226576
– volume: 33
  start-page: 181
  year: 1998
  end-page: 220
  ident: CR25
  article-title: Is more ever too much? The number of indicators per factor in confirmatory factor analysis
  publication-title: Multivariate Behavioral Research
  doi: 10.1207/s15327906mbr3302_1
– volume: 15
  start-page: 352
  year: 2010
  end-page: 367
  ident: CR45
  article-title: Expected versus observed information in SEM with incomplete normal and nonnormal data
  publication-title: Psychological Methods
  doi: 10.1037/a0020143
– volume: 44
  start-page: 443
  year: 1979
  end-page: 460
  ident: CR35
  article-title: Maximum likelihood estimation of the polychoric correlation coefficient
  publication-title: Psychometrika
  doi: 10.1007/BF02296207
– ident: CR30
– volume: 8
  start-page: 287
  year: 2001
  end-page: 312
  ident: CR37
  article-title: Monte Carlo experiments: Design and implementation
  publication-title: Structural Equation Modeling
  doi: 10.1207/S15328007SEM0802_7
– volume: 16
  start-page: 625
  year: 2009
  end-page: 641
  ident: CR11
  article-title: Factor analysis with ordinal indicator: A Monte Carlo Study Comparing DWLS and ULS Estimation
  publication-title: Structural Equation Modeling
  doi: 10.1080/10705510903203573
– volume: 45
  start-page: 19
  year: 1992
  end-page: 30
  ident: CR32
  article-title: A comparison of some methodologies for the factor-analysis of non-normal Likert variables: A note on the size of the model
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1111/j.2044-8317.1992.tb00975.x
– ident: CR29
– start-page: 205
  year: 1993
  end-page: 243
  ident: CR28
  article-title: Goodness of fit with categorical and other non-normal variables
  publication-title: Testing structural equation models
– volume: 37
  start-page: 62
  year: 1984
  end-page: 83
  ident: CR5
  article-title: Asymptotically distribution-free methods for the analysis of covariance structures
  publication-title: British Journal of Mathematics and Statistical Psychology
  doi: 10.1111/j.2044-8317.1984.tb00789.x
– volume: 4
  start-page: 261
  year: 1997
  end-page: 282
  ident: CR6
  article-title: Alternative approaches to structural modeling of ordinal data: A Monte Carlo study
  publication-title: Structural Equation Modeling
  doi: 10.1080/10705519709540077
– volume: 49
  start-page: 115
  year: 1984
  end-page: 132
  ident: CR27
  article-title: A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators
  publication-title: Psychometrika
  doi: 10.1007/BF02294210
– volume: 13
  start-page: 186
  year: 2006
  end-page: 203
  ident: CR1
  article-title: On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA
  publication-title: Structural Equation Modeling
  doi: 10.1207/s15328007sem1302_2
– year: 1996
  ident: CR18
  publication-title: Prelis 2: User’s reference guide: A program for multivariate data screening and data summarization
– volume: 48
  start-page: 398
  year: 1983
  end-page: 407
  ident: CR15
  article-title: Ordinal measures in multiple indicator models: A simulation study of categorization error
  publication-title: American Sociological Review
  doi: 10.2307/2095231
– volume: 58
  start-page: 430
  year: 1978
  end-page: 450
  ident: CR4
  article-title: Robustness?
  publication-title: British Journal of Mathematical and Statistical Psychology
– start-page: 251
  year: 1998
  end-page: 294
  ident: CR42
  article-title: Structural equation modeling
  publication-title: Modern methods for business research
– volume: 43
  start-page: 495
  year: 2009
  end-page: 507
  ident: CR21
  article-title: Evaluating estimation methods for ordinal data in structural equation modeling
  publication-title: Quality and Quantity
  doi: 10.1007/s11135-007-9133-z
– volume: 11
  start-page: 514
  year: 2004
  end-page: 534
  ident: CR23
  article-title: Applying multigroup confirmatory factor models for continuous outcomes to Likert scale data complicates meaningful group comparisons
  publication-title: Structural Equation Modeling
  doi: 10.1207/s15328007sem1104_2
– start-page: 472
  year: 2012
  end-page: 492
  ident: CR39
  article-title: Scale construction and development using structural equation modeling
  publication-title: Handbook of structural equation modeling
– ident: CR38
– volume: 24
  start-page: 367
  year: 1990
  end-page: 386
  ident: CR43
  article-title: Robustness issues in structural equation modeling: A review of recent developments
  publication-title: Quality and Quantity
  doi: 10.1007/BF00152011
– volume: 14
  start-page: 6
  year: 2009
  end-page: 23
  ident: CR14
  article-title: Reporting practices in confirmatory factor analysis: An overview and some recommendations
  publication-title: Psychological Methods
  doi: 10.1037/a0014694
– ident: CR17
– year: 2011
  ident: CR20
  publication-title: Principles and practice of structural equation modeling
– year: 1989
  ident: CR3
  publication-title: Structural equations with latent variables
  doi: 10.1002/9781118619179
– volume: 9
  start-page: 327
  year: 2002
  end-page: 346
  ident: CR8
  article-title: The impact of categorization with confirmatory factor analysis
  publication-title: Structural Equation Modeling
  doi: 10.1207/S15328007SEM0903_2
– ident: CR36
– volume: 51
  start-page: 289
  year: 1998
  end-page: 309
  ident: CR48
  article-title: Normal theory based test statistics in structural equation modeling
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1111/j.2044-8317.1998.tb00682.x
– volume: 105
  start-page: 156
  year: 1989
  end-page: 166
  ident: CR26
  article-title: The unicorn, the normal curve, than other improbable creatures
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.105.1.156
– volume: 38
  start-page: 171
  year: 1985
  end-page: 180
  ident: CR31
  article-title: A comparison of some methodologies for the factor-analysis of non-normal Likert variables
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1111/j.2044-8317.1985.tb00832.x
– volume: 1
  start-page: 16
  year: 1996
  end-page: 29
  ident: CR7
  article-title: The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis
  publication-title: Psychological Methods
  doi: 10.1037/1082-989X.1.1.16
– volume: 17
  start-page: 392
  year: 2010
  end-page: 423
  ident: CR46
  article-title: Confirmatory factor analysis of ordinal variables with misspecified models
  publication-title: Structural Equation Modeling
  doi: 10.1080/10705511.2010.489003
– year: 2006
  ident: CR2
  publication-title: EQS 6 structural equations program manual
– start-page: 399
  year: 1994
  end-page: 419
  ident: CR44
  article-title: Corrections to test statistics and standard errors in covariance structure analysis
  publication-title: Latent variable analysis: Applications for developmental research
– volume: 34
  start-page: 183
  year: 1969
  end-page: 202
  ident: CR16
  article-title: A general approach to confirmatory maximum likelihood factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289343
– volume: 9
  start-page: 599
  year: 2002
  end-page: 620
  ident: CR33
  article-title: How to use a Monte Carlo study to decide on sample size and determine power
  publication-title: Structural Equation Modeling
  doi: 10.1207/S15328007SEM0904_8
– volume: 24
  start-page: 770
  year: 2012
  end-page: 776
  ident: CR22
  article-title: Validation of the Chinese version of the Life Orientation Test with a robust weighted least squares approach
  publication-title: Psychological Assessment
  doi: 10.1037/a0026612
– volume: 26
  start-page: 329
  year: 1998
  end-page: 367
  ident: CR13
  article-title: Robustness studies in covariance structure modeling: An overview and meta-analysis
  publication-title: Sociological Methods & Research
  doi: 10.1177/0049124198026003003
– year: 2007
  ident: CR34
  publication-title: Mplus user’s guide
– year: 2006
  ident: CR40
  publication-title: A first course in structural equation modeling
SSID ssj0038214
Score 2.6729712
Snippet In confirmatory factor analysis (CFA), the use of maximum likelihood (ML) assumes that the observed indicators follow a continuous and multivariate normal...
SourceID proquest
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 936
SubjectTerms Behavioral Science and Psychology
Chi-Square Distribution
Cognitive Psychology
Data Interpretation, Statistical
Factor Analysis, Statistical
Humans
Least-Squares Analysis
Likelihood Functions
Models, Statistical
Monte Carlo Method
Psychology
Sample Size
Title Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares
URI https://link.springer.com/article/10.3758/s13428-015-0619-7
https://www.ncbi.nlm.nih.gov/pubmed/26174714
https://www.proquest.com/docview/1815680766
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LF0Qb8qjMhIbikhix27YKtSCQDBRqUyWHTtVRZtC0wj677nLg4UubBnsIXdn-7vnR8hVIpMInlXpxUakHo_TGL6s78lQpyZgToiSpvP5RTwM-eMoGtV93HlT7d6kJMubGv1KALU3ecA4TlMOImQjiD25SbYjcN2xjmsY9prrl3XDgFfpy_Xb1kHJP2nQ8nUZ7JKdGhbSXqXHPbLhsn3S-r2dVgdkhb15EwSY88WKVjQ5VNcjRSiGUyn4kchxRbHq85beVQyD2Zgu5qbIl3SmvyezYkank3c3neA4Y9hvKRjIGOH4dEW_yjips3SKjD40_yywO-mQDAf917sHr-ZN8MZM8KXHQ8e50QKDGTb1bZhECfbABlYCwEgdB1RjDdMuCKULNQgsYprHLAVvyQa-Y0dkK5tn7oRQw1IrDe8mLBE8ccIk2hiAbH7cNaFxok0uG2EqsEtMNujMzYtcBTiGputLAWuOKymrj2qAhsIp8PAo8ja5bsSu6qMDG32FilOV4hT8hELFKXn6r9VnpAXYRlTlYOdka7ko3AXgh6XpkO3e_dtTv1PazQ-FvsPR
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615dBeEM9SKGAkOKGIxPbaCVIPVWm1pY9TV-rN2LGzWrGbhc1GJb-HP8pMHlzaSw-95WBHyTw833heAB9znY_QrOooc6qIZFZk-OTjSHNbuEQEpdoxnReXajyR369H1xvwd6iFabPdh5Bke1KTX4mg9kuVCEndlJMRTSPIIt1nUp6F5gb9tOrg9Bsy9RPnJ8dXR-OoHyUQTYWS60jyIKWzivx7X8Se56OcykITr9HmFkGiofdO2JBwHbhN0RAKKzNRoAPhkzgIfO8mPELskZLqTPjhcNwLXCu7cOndn3kXdL0Vdm2t2ckTeNzDUHbYyc1T2AjlM9j5fxo2z6GhWsAZAdrlqmHdWB5m-xYmjK5vGdKDZmoxyjL9yo66iYbllK2Wrq7WbGH_zBb1gs1nP8N8Ru2Tcb9nKJBTgv_zht2097LBszlNEGLV75qqoV7A5EGI-xK2ymUZXgFzovDayTQXuZJ5UC63ziFEjLPUcRfUHnwYiGlQDyi4YcuwrCuTUNubNNYK1-x2VDa_uoYdhrrOoxGWe_B5ILvpVRU3xoYYZzrGGfwJQ4wz-vW9Vr-H7fHVxbk5P708ewM7iKtUl4q2D1vrVR3eInZZu3et7DD48dDC-g8ueP2U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoSBUXRJ88-nAleqoiEttrb5B6QNAVb3HoStxcO3ZWK3azsEkE-VX9i52Jk17KpQduOdhRMg_PjOfxEbKXqWwAZlVFqZV5JNI8hScXR4qZ3CbcS9nCdF5eyZOxOLsZ3KyQ330vTFvt3qckQ08DTmkqqv07l6OKc3Bw98uEC5ysnAwQmSCNVFdVee6bB4jZyu-nx8Dgr4yNfvw8Ook6WIFowqWoIsG8ENZIjPVdHjuWDTJsEU2cAvubewFG31lufMKUZ2YIRpEbkfIcggmXxJ7De1-QNYHNx6BAY3bYH_0c1oqQOn36M59yY_9JwbaWbbRJNjqXlB4GGXpFVnzxmqz_PRmbN6TBvsApOreLZUMDRA813TgTile5FOiB-FoUK04P6FFANywmdLmwdVnRuXmczus5nU1v_WyKo5Rhv6MgnBMMBWYNfWjvaL2jM0QTouV9jZ1Rb8n4WYj7jqwWi8JvEWp57pQVw4xnUmRe2sxYC-5inA4ts15uky89MTXoBCY6TOEXdakTHIEzjJWENe8DlfVdGN6hcQI9GGSxTb71ZNed2sLGWCPjdGCchp_QyDitdv5r9Wfy8vp4pC9Or853yTq4WDJUpX0gq9Wy9h_Bjansp1Z0KPn13LL6B_qqAdY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confirmatory+factor+analysis+with+ordinal+data%3A+Comparing+robust+maximum+likelihood+and+diagonally+weighted+least+squares&rft.jtitle=Behavior+research+methods&rft.au=Li%2C+Cheng-Hsien&rft.date=2016-09-01&rft.eissn=1554-3528&rft.volume=48&rft.issue=3&rft.spage=936&rft_id=info:doi/10.3758%2Fs13428-015-0619-7&rft_id=info%3Apmid%2F26174714&rft.externalDocID=26174714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon