Enhanced Water-Splitting Performance of Perovskite SrTaO2N Photoanode Film through Ameliorating Interparticle Charge Transport

Here SrTaO2N has been found to exhibit photoelectrochemical water splitting, with a theoretical solar‐to‐hydrogen efficiency of 14.4%. Ameliorating the interparticle charge transport by H2 annealing, the solar photocurrent of the SrTaO2N(H) granular film at 1.23 V versus reversible hydrogen electrod...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 26; no. 39; pp. 7156 - 7163
Main Authors Zhong, Yujiao, Li, Zhaosheng, Zhao, Xin, Fang, Tao, Huang, Huiting, Qian, Qinfeng, Chang, Xiaofeng, Wang, Peng, Yan, Shicheng, Yu, Zhentao, Zou, Zhigang
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 18.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here SrTaO2N has been found to exhibit photoelectrochemical water splitting, with a theoretical solar‐to‐hydrogen efficiency of 14.4%. Ameliorating the interparticle charge transport by H2 annealing, the solar photocurrent of the SrTaO2N(H) granular film at 1.23 V versus reversible hydrogen electrode (RHE) is increased by ≈250% in comparison with the SrTaO2N film. Using an aberration corrected scanning transmission electron microscope and super‐X energy dispersive spectroscopy, the atomic scale observation has proved a decrease of oxygen concentrations in the surface of SrTaO2N(H) particle, which may allow its electrical conductivity to be increased from 0.77 × 10−6 to 2.65 × 10−6 S cm−1 and therefore the charge separation efficiency has been greatly increased by ≈330%. After being modified by Co–Pi water oxidation catalyst, the SrTaO2N(H) photoanode shows a solar photocurrent of 1.1 mA cm−2 and an incident photo‐to‐current efficiency value of ≈20% at 400–460 nm and 1.23 V versus RHE, which suggests that it is a new promising photoanode material for solar water splitting. SrTaO2N is found to be a new promising photoanode for photoelectrochemical water splitting. The atomic scale observation proves a decrease of oxygen concentrations in the surface of SrTaO2N(H) particle after H2 annealing, which may improve its bulk electrical conductivity and the charge separation efficiency. Consequently, the photoelectrochemical performance of SrTaO2N(H) granular film is enhanced remarkably.
AbstractList Here SrTaO2N has been found to exhibit photoelectrochemical water splitting, with a theoretical solar‐to‐hydrogen efficiency of 14.4%. Ameliorating the interparticle charge transport by H2 annealing, the solar photocurrent of the SrTaO2N(H) granular film at 1.23 V versus reversible hydrogen electrode (RHE) is increased by ≈250% in comparison with the SrTaO2N film. Using an aberration corrected scanning transmission electron microscope and super‐X energy dispersive spectroscopy, the atomic scale observation has proved a decrease of oxygen concentrations in the surface of SrTaO2N(H) particle, which may allow its electrical conductivity to be increased from 0.77 × 10−6 to 2.65 × 10−6 S cm−1 and therefore the charge separation efficiency has been greatly increased by ≈330%. After being modified by Co–Pi water oxidation catalyst, the SrTaO2N(H) photoanode shows a solar photocurrent of 1.1 mA cm−2 and an incident photo‐to‐current efficiency value of ≈20% at 400–460 nm and 1.23 V versus RHE, which suggests that it is a new promising photoanode material for solar water splitting. SrTaO2N is found to be a new promising photoanode for photoelectrochemical water splitting. The atomic scale observation proves a decrease of oxygen concentrations in the surface of SrTaO2N(H) particle after H2 annealing, which may improve its bulk electrical conductivity and the charge separation efficiency. Consequently, the photoelectrochemical performance of SrTaO2N(H) granular film is enhanced remarkably.
Author Qian, Qinfeng
Wang, Peng
Zhao, Xin
Yan, Shicheng
Li, Zhaosheng
Huang, Huiting
Chang, Xiaofeng
Yu, Zhentao
Zou, Zhigang
Zhong, Yujiao
Fang, Tao
Author_xml – sequence: 1
  givenname: Yujiao
  surname: Zhong
  fullname: Zhong, Yujiao
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, 210093, Nanjing, P. R. China
– sequence: 2
  givenname: Zhaosheng
  surname: Li
  fullname: Li, Zhaosheng
  email: zsli@nju.edu.cn, zsli@nju.edu.cn
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, 210093, Nanjing, P. R. China
– sequence: 3
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, 210093, Nanjing, P. R. China
– sequence: 4
  givenname: Tao
  surname: Fang
  fullname: Fang, Tao
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, 210093, Nanjing, P. R. China
– sequence: 5
  givenname: Huiting
  surname: Huang
  fullname: Huang, Huiting
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, 210093, Nanjing, P. R. China
– sequence: 6
  givenname: Qinfeng
  surname: Qian
  fullname: Qian, Qinfeng
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, 210093, Nanjing, P. R. China
– sequence: 7
  givenname: Xiaofeng
  surname: Chang
  fullname: Chang, Xiaofeng
  organization: College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, 210093, Nanjing, P. R. China
– sequence: 8
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  email: wangpeng@nju.edu.cn, zsli@nju.edu.cn
  organization: College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, 210093, Nanjing, P. R. China
– sequence: 9
  givenname: Shicheng
  surname: Yan
  fullname: Yan, Shicheng
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, 210093, Nanjing, P. R. China
– sequence: 10
  givenname: Zhentao
  surname: Yu
  fullname: Yu, Zhentao
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, 210093, Nanjing, P. R. China
– sequence: 11
  givenname: Zhigang
  surname: Zou
  fullname: Zou, Zhigang
  organization: Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, 210093, Nanjing, P. R. China
BookMark eNo9kEtPwkAUhSdGE_GxdT1_oHinQ6ewJMgrQdCIwd3ktr2lI22HTMcHG3-7IIbVPSc351t8V-y8tjUxdiegLQDCe8zyqh2CUCAhFGesJZRQwT53z09ZvF2yq6Z5BxBxLDst9jOsC6xTyvgKPbngZVsa70295k_kcuuqw5Pb_FDtZ7MxnviLW-IinPOnwnqLtc2Ij0xZcV84-7EueL-i0liHf5hpvcdu0XmTlsQHBbo18aXDutla52_YRY5lQ7f_95q9jobLwSSYLcbTQX8WrGUEIohC2ck7iUjSFClLlCBI4yQWGCqgbkQo4wwAc0rTUKgEwwRi7ORZT3R7oLogr1nvyP0yJe301pkK3U4L0Ad1-qBOn9Tp_sPo8dT22-C4NY2n79MW3UarWMaRXs3H-lFNoufxUuqV_AU-SXj8
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
DOI 10.1002/adfm.201603021
DatabaseName Istex
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 7163
ExternalDocumentID ADFM201603021
ark_67375_WNG_M6H5QGT3_W
Genre article
GrantInformation_xml – fundername: 973 Program
  funderid: 2013CB632404
– fundername: International Science & Technology Cooperation Program of China
  funderid: 2014DFE00200
– fundername: National Natural Science Foundation of China
  funderid: 51272102; 21473090
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20151383
– fundername: National Natural Science Foundation of China
  funderid: 11474147
– fundername: 973 Program
  funderid: 2015CB654900
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
ID FETCH-LOGICAL-g3501-5234f4b1bccaedb61e0c7b71a260e85ea37d00afecc216ba2b07a4fd918906803
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Jan 22 16:37:52 EST 2025
Wed Oct 30 09:51:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3501-5234f4b1bccaedb61e0c7b71a260e85ea37d00afecc216ba2b07a4fd918906803
Notes ArticleID:ADFM201603021
istex:33DB1CBB8FB6F41861480A24BF8E80390DE308AB
ark:/67375/WNG-M6H5QGT3-W
International Science & Technology Cooperation Program of China - No. 2014DFE00200
National Natural Science Foundation of China - No. 51272102; No. 21473090
National Natural Science Foundation of China - No. 11474147
973 Program - No. 2015CB654900
973 Program - No. 2013CB632404
Natural Science Foundation of Jiangsu Province - No. BK20151383
PageCount 8
ParticipantIDs wiley_primary_10_1002_adfm_201603021_ADFM201603021
istex_primary_ark_67375_WNG_M6H5QGT3_W
PublicationCentury 2000
PublicationDate October 18, 2016
PublicationDateYYYYMMDD 2016-10-18
PublicationDate_xml – month: 10
  year: 2016
  text: October 18, 2016
  day: 18
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References S. C. Warren, K. Voïtchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild, M. Grätzel, Nat. Mater. 2013, 12, 842.
M. Barroso, A. J. Cowan, S. R. Pendlebury, M. Grätzel, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc. 2011, 133, 14868.
M. Higashi, K. Domen, R. Abe, Energy Environ. Sci. 2011, 4, 4138.
H. Dotan, K. Sivula, M. Gratzel, A. Rothschildand, S. C. Warren, Energy Environ. Sci. 2011, 4, 958.
Z. S. Li, J. Y. Feng, S. C. Yan, Z. G. Zou, Nano Today 2015, 10, 468.
M. J. Liao, J. Y. Feng, W. J. Luo, Z. Q. Wang, J. Y. Zhang, Z. S. Li, T. Yu, Z. G. Zou, Adv. Funct. Mater. 2012, 22, 3066.
A. J. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141.
J. C. Bian, Q. Li, C. Huang, J. F. Li, Y. Guo, M. Zaw, R.-Q. Zhang, Nano Energy 2015, 15, 353.
M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
A. Fujishima, K. Honda, Nature 1972, 238, 37.
D. R. Gamelin, Nat. Chem. 2012, 4, 965.
M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani, K. Domen, Chem. Phys. Lett. 2008, 452, 120.
G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 3026.
M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, Z. Mi, Nat. Commun. 2014, 5, 3825.
J. Brillet, M. Grätzel, K. Sivula, Nano Lett. 2010, 10, 4155.
L. Wang, X. Zhou, N. T. Nguyen, I. Hwang, P. Schmuki, Adv. Mater. 2016, 28, 2432.
C. Zhou, G. Chen, Y. Li, H. Zhang, J. A. Pei, Int. J. Hydrogen Energy 2009, 34, 2113.
J. G. Hou, C. Yang, H. J. Cheng, S. Q. Jiao, O. Takeda, H. M. Zhu, Energy Environ. Sci. 2014, 7, 3758.
D. K. Zhong, J. Sun, H. Inumaru, D. R. Gamelin, J. Am. Chem. Soc. 2009, 131, 6086.
D. K. Zhong, D. R. Gamelin, J. Am. Chem. Soc. 2010, 132, 4202.
F. F. Abdi, R. van de Krol, J. Phys. Chem. C 2012, 116, 9398.
S.-K. Sun, Y.-R. Zhang, Y. Masubuchi, T. Motohashi, S. Kikkawa, J. Am. Ceram. Soc. 2014, 97, 1023.
Y. Mizuno, H. Wagata, K. Yubuta, N. Zettsu, S. Oishi, K. Teshima, CrystEngComm 2013, 15, 8133.
B. A. Pinaud, P. C. K. Vesborg, T. F. Jaramillo, J. Phys. Chem. C 2012, 116, 15918.
L. Zhang, Y. Song, J. Y. Feng, T. Fang, Y. J. Zhong, Z. S. Li, Z. G. Zou, Int. J. Hydrogen Energy 2014, 39, 7697.
M. Zhang, W. Luo, Z. Li, T. Yu, Z. G. Zou, Appl. Phys. Lett. 2010, 97, 042105.
F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, R. van de Krol, Nat. Commun. 2013, 4, 2195.
Y. Kim, Ceram. Int. 2014, 40, 5275.
Y. Park, D. Kang, K.-S. Choi, Phys. Chem. Chem. Phys. 2014, 16, 1238.
H. Ye, H. S. Park, A. J. Bard, J. Phys. Chem. C 2011, 115, 12464.
Z. S. Li, W. J. Luo, M. L. Zhang, J. Y. Feng, Z. G. Zou, Energy Environ. Sci. 2013, 6, 347.
J. C. Bian, L. F. Xi, H. Chao, K. M. Lange, R.-Q. Zhang, M. Shalom, Adv. Energy Mater. 2016, 6, 1600263.
D. Yamasita, T. Takata, M. Hara, J. N. Kondo, K. Domen, Solid State Ionics 2004, 172, 591.
W. J. Luo, Z. S. Yang, Z. S. Li, J. Y. Zhang, J. G. Liu, Z. Y. Zhao, Z. Q. Wang, S. C. Yan, T. Yu, Z. G. Zou, Energy Environ. Sci. 2011, 4, 4046.
J. Y. Feng, W. J. Luo, T. Fang, H. Lv, Z. Q. Wang, J. Gao, W. M. Liu, T. Yu, Z. S. Li, Z. G. Zou, Adv. Funct. Mater. 2014, 24, 3535.
H. L. Gao, S. C. Yan, J. J. Wang, Z. G. Zou, Dalton Trans. 2014, 43, 8178.
G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han, C. Li, Angew. Chem. Int. Ed. 2014, 53, 7295.
J. G. Hou, Z. Wang, C. Yang, H. J. Cheng, S. Q. Jiao, H. M. Zhu, Energy Environ. Sci. 2013, 6, 3322.
M. T. Mayer, Y. Lin, G. Yuan, D. Wang, Acc. Chem. Res. 2013, 46, 1558.
R. Abe, M. Higashi, K. Domen, J. Am. Chem. Soc. 2010, 132, 11828.
D. K. Zhong, S. Choi, D. R. Gamelin, J. Am. Chem. Soc. 2011, 133, 18370.
T. W. Kim, K.-S. Choi, Science 2014, 343, 990.
D. P. Cao, W. J. Luo, J. Y. Feng, X. Zhao, Z. S. Li, Z. G. Zou, Energy Environ. Sci. 2014, 7, 752.
Y. Liang, T. Tsubota, L. P. A. Mooij, R. van de Krol, J. Phys. Chem. C 2011, 115, 17594.
K. Okuwada, S. Nakamura, H. Nozawa, J. Mater. Res. 2011, 14, 855.
S. Balaz, S. H. Porter, P. M. Woodward, L. J. Brillson, Chem. Mater. 2013, 25, 3337.
X. Zhao, W. J. Luo, J. Y. Feng, M. X. Li, Z. S. Li, T. Yu, Z. G. Zou, Adv. Energy Mater. 2014, 4, 1301785.
M. X. Li, W. J. Luo, D. P. Cao, X. Zhao, Z. S. Li, T. Yu, Z. G. Zou, Angew. Chem. Int. Ed. 2013, 52, 11016.
M. Higashi, K. Domen, R. Abe, J. Am. Chem. Soc. 2013, 135, 10238.
2011; 115
2015; 15
2010; 10
2010; 97
2013; 4
2013; 25
2013; 46
2015; 10
2011; 11
2014; 24
2009; 131
2011; 14
2011; 4
2014; 40
2013; 6
1972; 238
2011; 133
2014; 43
2009; 34
2016; 6
2014; 5
2013; 15
2014; 4
1995; 28
2013; 12
2004; 172
2013; 52
2010; 110
2010; 132
2014; 16
2013; 135
2014; 39
2016; 28
2008; 452
2014; 7
2012; 116
2012; 4
2012; 22
2014; 343
2014; 53
2014; 97
References_xml – reference: Z. S. Li, J. Y. Feng, S. C. Yan, Z. G. Zou, Nano Today 2015, 10, 468.
– reference: S. C. Warren, K. Voïtchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild, M. Grätzel, Nat. Mater. 2013, 12, 842.
– reference: J. G. Hou, Z. Wang, C. Yang, H. J. Cheng, S. Q. Jiao, H. M. Zhu, Energy Environ. Sci. 2013, 6, 3322.
– reference: S. Balaz, S. H. Porter, P. M. Woodward, L. J. Brillson, Chem. Mater. 2013, 25, 3337.
– reference: J. C. Bian, L. F. Xi, H. Chao, K. M. Lange, R.-Q. Zhang, M. Shalom, Adv. Energy Mater. 2016, 6, 1600263.
– reference: M. Higashi, K. Domen, R. Abe, J. Am. Chem. Soc. 2013, 135, 10238.
– reference: M. T. Mayer, Y. Lin, G. Yuan, D. Wang, Acc. Chem. Res. 2013, 46, 1558.
– reference: Y. Park, D. Kang, K.-S. Choi, Phys. Chem. Chem. Phys. 2014, 16, 1238.
– reference: L. Wang, X. Zhou, N. T. Nguyen, I. Hwang, P. Schmuki, Adv. Mater. 2016, 28, 2432.
– reference: L. Zhang, Y. Song, J. Y. Feng, T. Fang, Y. J. Zhong, Z. S. Li, Z. G. Zou, Int. J. Hydrogen Energy 2014, 39, 7697.
– reference: Z. S. Li, W. J. Luo, M. L. Zhang, J. Y. Feng, Z. G. Zou, Energy Environ. Sci. 2013, 6, 347.
– reference: F. F. Abdi, R. van de Krol, J. Phys. Chem. C 2012, 116, 9398.
– reference: F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, R. van de Krol, Nat. Commun. 2013, 4, 2195.
– reference: H. Dotan, K. Sivula, M. Gratzel, A. Rothschildand, S. C. Warren, Energy Environ. Sci. 2011, 4, 958.
– reference: D. P. Cao, W. J. Luo, J. Y. Feng, X. Zhao, Z. S. Li, Z. G. Zou, Energy Environ. Sci. 2014, 7, 752.
– reference: Y. Kim, Ceram. Int. 2014, 40, 5275.
– reference: D. K. Zhong, J. Sun, H. Inumaru, D. R. Gamelin, J. Am. Chem. Soc. 2009, 131, 6086.
– reference: M. X. Li, W. J. Luo, D. P. Cao, X. Zhao, Z. S. Li, T. Yu, Z. G. Zou, Angew. Chem. Int. Ed. 2013, 52, 11016.
– reference: G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 3026.
– reference: A. J. Bard, M. A. Fox, Acc. Chem. Res. 1995, 28, 141.
– reference: M. Barroso, A. J. Cowan, S. R. Pendlebury, M. Grätzel, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc. 2011, 133, 14868.
– reference: T. W. Kim, K.-S. Choi, Science 2014, 343, 990.
– reference: H. L. Gao, S. C. Yan, J. J. Wang, Z. G. Zou, Dalton Trans. 2014, 43, 8178.
– reference: M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
– reference: G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han, C. Li, Angew. Chem. Int. Ed. 2014, 53, 7295.
– reference: Y. Liang, T. Tsubota, L. P. A. Mooij, R. van de Krol, J. Phys. Chem. C 2011, 115, 17594.
– reference: M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani, K. Domen, Chem. Phys. Lett. 2008, 452, 120.
– reference: M. J. Liao, J. Y. Feng, W. J. Luo, Z. Q. Wang, J. Y. Zhang, Z. S. Li, T. Yu, Z. G. Zou, Adv. Funct. Mater. 2012, 22, 3066.
– reference: D. K. Zhong, S. Choi, D. R. Gamelin, J. Am. Chem. Soc. 2011, 133, 18370.
– reference: D. K. Zhong, D. R. Gamelin, J. Am. Chem. Soc. 2010, 132, 4202.
– reference: A. Fujishima, K. Honda, Nature 1972, 238, 37.
– reference: M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, Z. Mi, Nat. Commun. 2014, 5, 3825.
– reference: J. C. Bian, Q. Li, C. Huang, J. F. Li, Y. Guo, M. Zaw, R.-Q. Zhang, Nano Energy 2015, 15, 353.
– reference: C. Zhou, G. Chen, Y. Li, H. Zhang, J. A. Pei, Int. J. Hydrogen Energy 2009, 34, 2113.
– reference: X. Zhao, W. J. Luo, J. Y. Feng, M. X. Li, Z. S. Li, T. Yu, Z. G. Zou, Adv. Energy Mater. 2014, 4, 1301785.
– reference: D. Yamasita, T. Takata, M. Hara, J. N. Kondo, K. Domen, Solid State Ionics 2004, 172, 591.
– reference: R. Abe, M. Higashi, K. Domen, J. Am. Chem. Soc. 2010, 132, 11828.
– reference: M. Higashi, K. Domen, R. Abe, Energy Environ. Sci. 2011, 4, 4138.
– reference: J. G. Hou, C. Yang, H. J. Cheng, S. Q. Jiao, O. Takeda, H. M. Zhu, Energy Environ. Sci. 2014, 7, 3758.
– reference: H. Ye, H. S. Park, A. J. Bard, J. Phys. Chem. C 2011, 115, 12464.
– reference: K. Okuwada, S. Nakamura, H. Nozawa, J. Mater. Res. 2011, 14, 855.
– reference: J. Y. Feng, W. J. Luo, T. Fang, H. Lv, Z. Q. Wang, J. Gao, W. M. Liu, T. Yu, Z. S. Li, Z. G. Zou, Adv. Funct. Mater. 2014, 24, 3535.
– reference: B. A. Pinaud, P. C. K. Vesborg, T. F. Jaramillo, J. Phys. Chem. C 2012, 116, 15918.
– reference: S.-K. Sun, Y.-R. Zhang, Y. Masubuchi, T. Motohashi, S. Kikkawa, J. Am. Ceram. Soc. 2014, 97, 1023.
– reference: M. Zhang, W. Luo, Z. Li, T. Yu, Z. G. Zou, Appl. Phys. Lett. 2010, 97, 042105.
– reference: D. R. Gamelin, Nat. Chem. 2012, 4, 965.
– reference: J. Brillet, M. Grätzel, K. Sivula, Nano Lett. 2010, 10, 4155.
– reference: W. J. Luo, Z. S. Yang, Z. S. Li, J. Y. Zhang, J. G. Liu, Z. Y. Zhao, Z. Q. Wang, S. C. Yan, T. Yu, Z. G. Zou, Energy Environ. Sci. 2011, 4, 4046.
– reference: Y. Mizuno, H. Wagata, K. Yubuta, N. Zettsu, S. Oishi, K. Teshima, CrystEngComm 2013, 15, 8133.
– volume: 10
  start-page: 468
  year: 2015
  publication-title: Nano Today
– volume: 25
  start-page: 3337
  year: 2013
  publication-title: Chem. Mater.
– volume: 135
  start-page: 10238
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 8178
  year: 2014
  publication-title: Dalton Trans.
– volume: 4
  start-page: 4138
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 1558
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 24
  start-page: 3535
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 353
  year: 2015
  publication-title: Nano Energy
– volume: 52
  start-page: 11016
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 131
  start-page: 6086
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 9398
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 238
  start-page: 37
  year: 1972
  publication-title: Nature
– volume: 4
  start-page: 2195
  year: 2013
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4155
  year: 2010
  publication-title: Nano Lett.
– volume: 6
  start-page: 3322
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 116
  start-page: 15918
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 133
  start-page: 18370
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3026
  year: 2011
  publication-title: Nano Lett.
– volume: 34
  start-page: 2113
  year: 2009
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 3825
  year: 2014
  publication-title: Nat. Commun.
– volume: 97
  start-page: 1023
  year: 2014
  publication-title: J. Am. Ceram. Soc.
– volume: 7
  start-page: 3758
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 115
  start-page: 17594
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 855
  year: 2011
  publication-title: J. Mater. Res.
– volume: 28
  start-page: 2432
  year: 2016
  publication-title: Adv. Mater.
– volume: 172
  start-page: 591
  year: 2004
  publication-title: Solid State Ionics
– volume: 343
  start-page: 990
  year: 2014
  publication-title: Science
– volume: 28
  start-page: 141
  year: 1995
  publication-title: Acc. Chem. Res.
– volume: 40
  start-page: 5275
  year: 2014
  publication-title: Ceram. Int.
– volume: 132
  start-page: 11828
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4046
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 842
  year: 2013
  publication-title: Nat. Mater.
– volume: 133
  start-page: 14868
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 752
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 39
  start-page: 7697
  year: 2014
  publication-title: Int. J. Hydrogen Energy
– volume: 132
  start-page: 4202
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 452
  start-page: 120
  year: 2008
  publication-title: Chem. Phys. Lett.
– volume: 4
  start-page: 965
  year: 2012
  publication-title: Nat. Chem.
– volume: 16
  start-page: 1238
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 3066
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1600263
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 8133
  year: 2013
  publication-title: CrystEngComm
– volume: 4
  start-page: 1301785
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 347
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 958
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 110
  start-page: 6446
  year: 2010
  publication-title: Chem. Rev.
– volume: 97
  start-page: 042105
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 53
  start-page: 7295
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 115
  start-page: 12464
  year: 2011
  publication-title: J. Phys. Chem. C
SSID ssj0017734
Score 2.509105
Snippet Here SrTaO2N has been found to exhibit photoelectrochemical water splitting, with a theoretical solar‐to‐hydrogen efficiency of 14.4%. Ameliorating the...
SourceID wiley
istex
SourceType Publisher
StartPage 7156
SubjectTerms charge separation efficiency
interparticle charge transport
photoanodes
solar water splitting
SrTaO2N
Title Enhanced Water-Splitting Performance of Perovskite SrTaO2N Photoanode Film through Ameliorating Interparticle Charge Transport
URI https://api.istex.fr/ark:/67375/WNG-M6H5QGT3-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201603021
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQucCBHVE2-YC4hdrZnBwrSqkQLYUWtbfIrp0WlSaoC0Kc-AS-kS_B45RQOMItlmLLmozjN_abNwidCEF80M2yFFGO5fqOtELmcMvTgRvXgMEXEgLFesOv3btXXa-7kMWf6UPkB26wMsz_GhY4F5PSt2golzFkkkOZZGIyyYGwBajoLtePooxl18o-BYIX7X6pNhK79LO7hqZg1ZefENXsMdV1xL9ml1FLhmezqTjrvf4SbvzP9DfQ2hyA4nLmMZtoSSVbaHVBlnAbvV0kA0MMwB2NRMcfb-8tDVUNQRo3vxMNcBpDM32ewAkwbo3b_MZu4OYgnaY8SaXC1YfHEZ5XAsLlkZ6xcTg9TMZ1nLsthjv_vsK50PoOuq9etM9r1rxSg9WHi0mIZt3YFVRof1BS-FSRHhOMch0tqcBT3GGSEB5rf7GpL7gtCONuLEMahFD8w9lFhSRN1B7CYSz1ICLo0UC6caBCt6edKbRFoGKimFNEp-ZLRU-ZGkfEx0MgpzEv6jQuo7pf824v207UKSLb2D9_MRNotiOwfJRbPipXqvW8tf-XTgdoBZ5hR6PBISpMxzN1pKHKVByj5XKlft06Nm75CZVL5kU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6KsPiBuATubk2MFlLK0FCgqN8uunRYBCSoFIU58At_Il-Bx2hQ4wtFRbDn2OH5jv3mD0LaUJATdLEcT7Tl-6CknZp5wAuO4CQMYQqnAUazVw-q1f3ITDNmEEAuT60MUB26wMuz_GhY4HEjvjVRDhUoglBzyJBMIJZ-AtN7Wq7osFKQoY_nFckiB4kVvhrqNxN37Wd-AUxjX158g1e4ylVkkh_3LySV3u899udt--yXd-K8PmEMzAwyKy7nRzKMxnS6g6W_KhIvo_TDtWm4Abhkw2vt8_7gyaNVypHFjFGuAswSK2csTHALjq15TnLt13Ohm_UykmdK4cnv_gAfJgHD5wXTZ2pxpJqc7DiwXw7V_R-NCa30JXVcOm_tVZ5CswenA3SQ4tH7iSyqNSWglQ6pJm0lGhXGYdBRo4TFFiEiMybg0lMKVhAk_UTGNYsj_4S2j8TRL9QrCcaJMIzJq00j5SaRjv23sKXZlpBOimVdCO3aq-GMuyMFF7w74aSzgrfoRr4XV4OKo6fFWCbl2AooXc41ml8PI82LkefmgUitKq3-ptIUmq83aGT87rp-uoSl4DhscjdbReL_3rDcMcunLTWubX7PQ6Mw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7IgdHxC3gJ3NybGihLK0FChqb5Zd2wUBCSoFIU58At_Il-BJSliOcHQUO9b4OZ7xzLxBaEtKEgJvlqOJ9hw_9JQTM084gTXchFUYQqnAUKw3wtqlf9QJOt-y-At-iPLCDXZG_r-GDX6vzO4XaahQBjLJoUwygUzyMd9-FHBdPS8JpChjhV85pBDhRTuftI3E3f3Z3-qmINbnnzpqfsgk00h8Tq-ILbnZeRzIne7LL-bG_8x_Bk0NNVBcKSAzi0Z0Oocmv_ESzqPX_fQqjwzAbauK9t9f3y6srppHSOPmV6YBzgw0s6cHuALGF_2WOHUbuHmVDTKRZkrj5Pr2Dg9LAeHKnZ1xjjg7TBHsOMQtBqd_T-OSaX0BXSb7rb2aMyzV4PTAMwnmrG98SaUFhFYypJp0mWRUWHNJR4EWHlOECGMB49JQClcSJnyjYhrFUP3DW0SjaZbqJYRjo-wgMurSSPkm0rHfhYV1ZaQN0cxbRtv5SvH7go6Di_4NRKexgLcbB7we1oKzg5bH28vIzeVfvlgwNLscJM9LyfNKNamXrZW_dNpE481qwk8OG8eraAIew-lGozU0Oug_6nWrtgzkRo7MDyrx54Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Water-Splitting+Performance+of+Perovskite+SrTaO2N+Photoanode+Film+through+Ameliorating+Interparticle+Charge+Transport&rft.jtitle=Advanced+functional+materials&rft.au=Zhong%2C+Yujiao&rft.au=Li%2C+Zhaosheng&rft.au=Zhao%2C+Xin&rft.au=Fang%2C+Tao&rft.date=2016-10-18&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=39&rft.spage=7156&rft.epage=7163&rft_id=info:doi/10.1002%2Fadfm.201603021&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_M6H5QGT3_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon