Scalable Synthesis of Ti3C2Tx MXene
Scaling the production of synthetic 2D materials to industrial quantities has faced significant challenges due to synthesis bottlenecks whereby few have been produced in large volumes. These challenges typically stem from bottom‐up approaches limiting the production to the substrate size or precurso...
Saved in:
Published in | Advanced engineering materials Vol. 22; no. 3 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scaling the production of synthetic 2D materials to industrial quantities has faced significant challenges due to synthesis bottlenecks whereby few have been produced in large volumes. These challenges typically stem from bottom‐up approaches limiting the production to the substrate size or precursor availability for chemical synthesis and/or exfoliation. In contrast, MXenes, a large class of 2D transition metal carbides and/or nitrides, are produced via a top‐down synthesis approach. The selective wet etching process does not have similar synthesis constraints as some other 2D materials. The reaction occurs in the whole volume; therefore, the process can be readily scaled with reactor volume. Herein, the synthesis of 2D titanium carbide MXene (Ti3C2Tx) is studied in two batch sizes, 1 and 50 g, to determine if large‐volume synthesis affects the resultant structure or composition of MXene flakes. Characterization of the morphology and properties of the produced MXene using scanning electron microscopy, X‐ray diffraction, dynamic light scattering, Raman spectroscopy, X‐ray photoelectron spectroscopy, UV–visible spectroscopy, and conductivity measurements show that the materials produced in both batch sizes are essentially identical. This illustrates that MXenes experience no change in structure or properties when scaling synthesis, making them viable for further scale‐up and commercialization.
Herein, a reactor used for MXene synthesis and the scalable production (50 g) of 2D Ti3C2Tx in one batch is demonstrated. The large‐scale Ti3C2Tx produced in this study has identical properties to conventional laboratory synthesis, implying that Ti3C2Tx and other MXenes can be produced in industrial quantities without a loss of properties. |
---|---|
AbstractList | Scaling the production of synthetic 2D materials to industrial quantities has faced significant challenges due to synthesis bottlenecks whereby few have been produced in large volumes. These challenges typically stem from bottom‐up approaches limiting the production to the substrate size or precursor availability for chemical synthesis and/or exfoliation. In contrast, MXenes, a large class of 2D transition metal carbides and/or nitrides, are produced via a top‐down synthesis approach. The selective wet etching process does not have similar synthesis constraints as some other 2D materials. The reaction occurs in the whole volume; therefore, the process can be readily scaled with reactor volume. Herein, the synthesis of 2D titanium carbide MXene (Ti3C2Tx) is studied in two batch sizes, 1 and 50 g, to determine if large‐volume synthesis affects the resultant structure or composition of MXene flakes. Characterization of the morphology and properties of the produced MXene using scanning electron microscopy, X‐ray diffraction, dynamic light scattering, Raman spectroscopy, X‐ray photoelectron spectroscopy, UV–visible spectroscopy, and conductivity measurements show that the materials produced in both batch sizes are essentially identical. This illustrates that MXenes experience no change in structure or properties when scaling synthesis, making them viable for further scale‐up and commercialization.
Herein, a reactor used for MXene synthesis and the scalable production (50 g) of 2D Ti3C2Tx in one batch is demonstrated. The large‐scale Ti3C2Tx produced in this study has identical properties to conventional laboratory synthesis, implying that Ti3C2Tx and other MXenes can be produced in industrial quantities without a loss of properties. |
Author | Zhu, Yuanzhe Anayee, Mark Gogotsi, Oleksiy Gogotsi, Yury Uzun, Simge Zahorodna, Veronika Sarycheva, Asia Balitskiy, Vitaliy Shuck, Christopher E. Levitt, Ariana |
Author_xml | – sequence: 1 givenname: Christopher E. orcidid: 0000-0002-1274-8484 surname: Shuck fullname: Shuck, Christopher E. organization: Drexel University – sequence: 2 givenname: Asia orcidid: 0000-0002-5151-8980 surname: Sarycheva fullname: Sarycheva, Asia organization: Drexel University – sequence: 3 givenname: Mark orcidid: 0000-0002-6691-920X surname: Anayee fullname: Anayee, Mark organization: Drexel University – sequence: 4 givenname: Ariana orcidid: 0000-0003-3858-186X surname: Levitt fullname: Levitt, Ariana organization: Drexel University – sequence: 5 givenname: Yuanzhe surname: Zhu fullname: Zhu, Yuanzhe organization: Drexel University – sequence: 6 givenname: Simge orcidid: 0000-0002-0469-1772 surname: Uzun fullname: Uzun, Simge organization: Drexel University – sequence: 7 givenname: Vitaliy surname: Balitskiy fullname: Balitskiy, Vitaliy organization: Materials Research Center – sequence: 8 givenname: Veronika orcidid: 0000-0002-8873-015X surname: Zahorodna fullname: Zahorodna, Veronika organization: Materials Research Center – sequence: 9 givenname: Oleksiy orcidid: 0000-0002-3173-4432 surname: Gogotsi fullname: Gogotsi, Oleksiy organization: Materials Research Center – sequence: 10 givenname: Yury orcidid: 0000-0001-9423-4032 surname: Gogotsi fullname: Gogotsi, Yury email: gogotsi@drexel.edu organization: Drexel University |
BookMark | eNo9z0tLAzEUBeAgLdiHW9cDrlPvzctkWcb6gBYXHcFdSCY3OjKdSkfQ-fdalK7OOZsD35SNun1HjF0iLBBAXIdEu4UAdIBC4RmboBY3XBhlR79dScvRaHPOpn3_DoAIKCfsaluHNsSWiu3Qfb5R3_TFPhdVI0tRfRebF-pozsY5tD1d_OeMPd-tqvKBr5_uH8vlmr9KZZGHiCGZTFmJ6Gpjapd1sklEk3OihECooAana-0SqghOAGhyyYDQyVg5Y-7v96tpafAfh2YXDoNH8EefP_r8yeeXt6vNackfpflGkA |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DOI | 10.1002/adem.201901241 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | n/a |
ExternalDocumentID | ADEM201901241 |
Genre | article |
GrantInformation_xml | – fundername: European Commission funderid: 777810 – fundername: National Science Foundation funderid: DGE-1646737 – fundername: Intelligence Advanced Research Projects Activity funderid: 2018-18071700007 – fundername: Basic Energy Sciences |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E QRW R.K ROL RWI RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ XPP XV2 ZZTAW |
ID | FETCH-LOGICAL-g3481-ab1ad6fef42b9c66c9f5d8d2b6ffded10e140c095c59d14b092005e9d6025d683 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Wed Jan 22 16:39:00 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3481-ab1ad6fef42b9c66c9f5d8d2b6ffded10e140c095c59d14b092005e9d6025d683 |
ORCID | 0000-0003-3858-186X 0000-0002-8873-015X 0000-0002-3173-4432 0000-0002-0469-1772 0000-0002-6691-920X 0000-0001-9423-4032 0000-0002-1274-8484 0000-0002-5151-8980 |
OpenAccessLink | https://www.osti.gov/biblio/1596883 |
PageCount | 8 |
ParticipantIDs | wiley_primary_10_1002_adem_201901241_ADEM201901241 |
PublicationCentury | 2000 |
PublicationDate | March 2020 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationTitle | Advanced engineering materials |
PublicationYear | 2020 |
References | 2004 2015 2013 2008 2016; 306 90 104 3 8 2019; 7 2018; 28 1985; 1 2017; 2 2015 2017 2018 2018 2019 2019; 150 7 1 4 29 2009; 21 2013; 24 2018 2018; 12 20 2019; 11 2013; 46 2015; 362 2016; 10 2015; 108 2017; 29 2015 2009; 520 324 2016; 18 2015 2018; 17 12 2007; 53 2011; 3 2018 2016; 6 8 2018; 130 2018 2019 2019 2015 2016; 10 31 2 31 120 2016; 3 2005; 102 2014 2017 2018 2019 2019; 6 53 96 13 48 2015; 274 2017 2016; 11 128 1988; 43 2016; 353 2015 2014 2013; 9 50 4 2019; 29 2017 2016 2015 2007; 1 6 48 45 2004 2006 2016 2015; 22 27 2013 2020; 14 2018; 12 2016; 28 2016 2016 2019; 2 26 31 |
References_xml | – volume: 53 start-page: 1 year: 2007 publication-title: Prog. Cryst. Growth Charact. Mater. – volume: 22 27 start-page: 5575 3167 year: 2016 2015 publication-title: Chem. Eur. J. Chem. Mater. – volume: 14 start-page: 204 year: 2013 2020 publication-title: ACS Nano – volume: 29 start-page: 4848 year: 2017 publication-title: Adv. Mater. – volume: 10 31 2 31 120 start-page: 24491 3324 3368 369 18850 year: 2018 2019 2019 2015 2016 publication-title: ACS Appl. Mater. Interfaces Chem. Mater. ACS Appl. Nano Mater. Acta Phys. Chim. Sin. J. Phys. Chem. C – volume: 28 start-page: 349 year: 2016 publication-title: Chem. Mater. – year: 2004 2006 – volume: 3 start-page: 042001 year: 2016 publication-title: 2D Mater. – volume: 1 year: 1985 – volume: 150 7 1 4 29 start-page: 62 15095 173 eaau0920 1809223 1905015 year: 2015 2017 2018 2018 2019 2019 publication-title: Mater. Lett. Sci. Rep. ACS Appl. Energy Mater. Sci. Adv. Adv. Funct. Mater. Adv. Funct. Mater. – volume: 306 90 104 3 8 start-page: 666 46 908 270 6904 year: 2004 2015 2013 2008 2016 publication-title: Science Prog. Surf. Sci. Chem. Eng. Sci. Nat. Nanotechnol. Nanoscale – volume: 353 start-page: 1137 year: 2016 publication-title: Science – volume: 12 20 start-page: 986 6073 year: 2018 2018 publication-title: ACS Nano Phys. Chem. Chem. Phys. – volume: 9 50 4 start-page: 9507 9507 1716 year: 2015 2014 2013 publication-title: ACS Nano Chem. Commun. Nat. Commun. – volume: 1 6 48 45 start-page: 0014. 1600355 136 1558 year: 2017 2016 2015 2007 publication-title: Nat. Rev. Chem. Adv. Energy Mater. Acc. Chem. Res. Carbon – volume: 21 start-page: 2889 year: 2009 publication-title: Adv. Mater. – volume: 18 start-page: 5099 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 11 128 start-page: 3841 5092 year: 2017 2016 publication-title: ACS Nano Angew. Chem., Int. Ed. – volume: 362 start-page: 406 year: 2015 publication-title: Appl. Surf. Sci. – volume: 43 start-page: 1759 year: 1988 publication-title: Chem. Eng. Sci. – volume: 2 26 31 start-page: 1600050 4162 2941 year: 2016 2016 2019 publication-title: Adv. Electron. Mater. Adv. Funct. Mater. Chem. Mater. – volume: 274 start-page: 44 year: 2015 publication-title: Powder Technol. – volume: 29 start-page: 7633 year: 2017 publication-title: Chem. Mater. – volume: 108 start-page: 147 year: 2015 publication-title: Scr. Mater. – volume: 3 start-page: 20 year: 2011 publication-title: Nanoscale – volume: 24 start-page: 245602 year: 2013 publication-title: Nanotechnology – volume: 10 start-page: 11344 year: 2016 publication-title: ACS Nano – volume: 17 12 start-page: 9997 3578 year: 2015 2018 publication-title: Phys. Chem. Chem. Phys. ACS Nano – volume: 46 start-page: 544 year: 2013 publication-title: J. Appl. Crystallogr. – volume: 7 start-page: 269 year: 2019 publication-title: J. Mater. Chem. A – volume: 130 start-page: 5542 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 6 8 start-page: 1701076 21011 year: 2018 2016 publication-title: Adv. Opt. Mater. ACS Appl. Mater. Interfaces – volume: 353 start-page: aac9439 year: 2016 publication-title: Science – volume: 11 start-page: 32320 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 16098 year: 2017 publication-title: Nat. Rev. Mater. – volume: 6 53 96 13 48 start-page: 11173 6883 103 11500 72 year: 2014 2017 2018 2019 2019 publication-title: ACS Appl. Mater. Interfaces Chem. Commun. Electrochem. Commun. ACS Nano Chem. Soc. Rev. – volume: 520 324 start-page: 656 1312 year: 2015 2009 publication-title: Nature Science – volume: 29 start-page: 1803807 year: 2019 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 10419 year: 2018 publication-title: ACS Nano – volume: 10 start-page: 9193 year: 2016 publication-title: ACS Nano – volume: 102 start-page: 10451 year: 2005 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 28 start-page: 1705506 year: 2018 publication-title: Adv. Funct. Mater. |
SSID | ssj0011013 |
Score | 2.6940079 |
Snippet | Scaling the production of synthetic 2D materials to industrial quantities has faced significant challenges due to synthesis bottlenecks whereby few have been... |
SourceID | wiley |
SourceType | Publisher |
SubjectTerms | MXene scalability synthesis titanium carbide two-dimensional materials |
Title | Scalable Synthesis of Ti3C2Tx MXene |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201901241 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7Skx58i28W9Jq2m81mN0cpliLUg22htyWPiRRhK7aF6q83k23X1qMecwhkmMnMN8PMN4TcezUrLllOXaoyyplh1J84BZaBT4i0sKHg1n8WvRF_GqfjjSn-ih-iLrjhzwj-Gj-40rPWD2kodo9ja5YPaCxMrmPDFqKil5o_yoe2sB8ZV3xTpJlZsza2WWv7-jY0DbGle0DU-lVVS8lbczHXTfP1i7DxP88-JPsr4Bk9VJZyRHagPCZ7G3SEJ-Ru4BWGo1TR4LP0wHA2mUVTFw0nSYcNl1F_7P3iKRl1H4edHl0tUaCvOGNLlY6VFQ4cZ1oaIYx0qc0t08I5CzZug0-xjAdaJpU25rotsc4E0gqPhqzIkzPSKKclnJMoi1Vic5lapzMuIFfGePcAGQgQLlFwQViQvHiviDKKihKZFShzUctcoInVp8u_XLoiuwzz3tALdk0a848F3HhwMNe3wQC-AbMYr3U |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QOAAH3og3leCabU3TtDmiiWnAtgPrpN2qPNGE1CG2ScCvJ063wjjCMYdIsezYny37M0I3Ts2CcpJiG4sEU6IIdieKDUmMS4gk077g1uuzzpA-jOJlNyHMwpT8EFXBDX6G99fwwaEg3fhmDYX2cejNchGNwOj6Oqz19lnVU8Ug5YKb35AMS74xEM0seRubpLF6fxWc-ujS3kFy-a6yqeSlPp_Juvr8Rdn4r4fvou0F9gxuS2PZQ2um2EdbPxgJD9D1wOkMpqmCwUfhsOF0PA0mNsjGUYtk70Fv5FzjIRq277JWBy_2KOBnGLPFQoZCM2ssJZIrxhS3sU41kcxabXTYNC7LUg5rqZjrkMomh1KT4Zo5QKRZGh2hWjEpzDEKklBEOuWxtjKhzKRCKechTGKYYTYS5gQRL3r-WnJl5CUrMslB5rySOQcrq06nf7l0hTY6Wa-bd-_7j2dok0Aa7FvDzlFt9jY3Fw4rzOSlt4Yv12OzkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kgujBt_h2Qa9pd7PZ7OYoraU-WsS20NuSpxRhW2wL6q832W3X1qMecwhkmMnMN8PMNwA3Vs2cMJwgE_EYESwxsieCNI61TYgEVXnBrd2hrT55GESDpSn-gh-iLLi5n5H7a_fBx8rUfkhDXfe4a82yAQ27yfV1Qv3E2XXjpSSQsrEtX5DsdnwjxzOzoG30cW31_io2zYNLcwf44llFT8lbdTYVVfn1i7HxP-_ehe058vRuC1PZgzWd7cPWEh_hAVx3rcbcLJXX_cwsMpwMJ97IeL1hWMe9D689sI7xEPrNu169heZbFNCrG7JFXARcUaMNwYJJSiUzkUoUFtQYpVXga5tjSYu0ZMRUQITPXKFJM0UtHFI0CY-gko0yfQxeHPBQJSxSRsSE6oRLaf2DjjXV1IRcnwDOJU_HBVNGWnAi49TJnJYyp87GytPpXy5dwcZzo5k-3Xcez2ATuxw47ws7h8r0faYvLFCYisvcFr4BBjmySA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Synthesis+of+Ti3C2Tx+MXene&rft.jtitle=Advanced+engineering+materials&rft.au=Shuck%2C+Christopher+E.&rft.au=Sarycheva%2C+Asia&rft.au=Anayee%2C+Mark&rft.au=Levitt%2C+Ariana&rft.date=2020-03-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=22&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.201901241&rft.externalDBID=10.1002%252Fadem.201901241&rft.externalDocID=ADEM201901241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |