Algorithm Configuration: Learning Policies for the Quick Termination of Poor Performers
One way to speed up the algorithm configuration task is to use short runs instead of long runs as much as possible, but without discarding the configurations that eventually do well on the long runs. We consider the problem of selecting the top performing configurations of Conditional Markov Chain S...
Saved in:
Published in | Learning and Intelligent Optimization Vol. 11353; pp. 220 - 224 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
ISBN | 3030053474 9783030053475 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-030-05348-2_20 |
Cover
Loading…
Abstract | One way to speed up the algorithm configuration task is to use short runs instead of long runs as much as possible, but without discarding the configurations that eventually do well on the long runs. We consider the problem of selecting the top performing configurations of Conditional Markov Chain Search (CMCS), a general algorithm schema that includes, for example, VNS. We investigate how the structure of performance on short tests links with those on long tests, showing that significant differences arise between test domains. We propose a “performance envelope” method to exploit the links; that learns when runs should be terminated, but that automatically adapts to the domain. |
---|---|
AbstractList | One way to speed up the algorithm configuration task is to use short runs instead of long runs as much as possible, but without discarding the configurations that eventually do well on the long runs. We consider the problem of selecting the top performing configurations of Conditional Markov Chain Search (CMCS), a general algorithm schema that includes, for example, VNS. We investigate how the structure of performance on short tests links with those on long tests, showing that significant differences arise between test domains. We propose a “performance envelope” method to exploit the links; that learns when runs should be terminated, but that automatically adapts to the domain. |
Author | Karapetyan, Daniel Parkes, Andrew J. Stützle, Thomas |
Author_xml | – sequence: 1 givenname: Daniel surname: Karapetyan fullname: Karapetyan, Daniel email: daniel.karapetyan@gmail.com – sequence: 2 givenname: Andrew J. surname: Parkes fullname: Parkes, Andrew J. – sequence: 3 givenname: Thomas surname: Stützle fullname: Stützle, Thomas |
BookMark | eNo1kN1OAjEQhauiEZA38GJfoNp2-rP1jhD_EhIxwXjZLN3usgIttsv7W1CvZnLmnMnMN0IDH7xD6JaSO0qIuteqxIAJEEwE8BIzw8gZmmQZsnjS2DkaUkkpBuD6Ao3-B4oP0DD3DGvF4QqNKCkpEM4JvUaTlL4IIYyVXAoxRJ_TbRti1693xSz4pmsPseq74B-Kuaui73xbLMK2s51LRRNi0a9d8X7o7KZYurjr_MlchCa78nThYjbtXEw36LKptslN_uoYfTw9LmcveP72_DqbznELnPVYQl03VEtVq5W01AHjNdGl5SJfvBKN1mCZUtQKzpyj1Fme_xCyYbSspJAwRux3b9rHfKyLZhXCJhlKzJGjycAMmEzDnJiZI8cc4r-hfQzfB5d6444p63wfq61dV_s-v2CEZlwobqjmhgHAD-N2chU |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DBID | FFUUA |
DEWEY | 6.31 |
DOI | 10.1007/978-3-030-05348-2_20 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030053482 3030053482 |
EISSN | 1611-3349 |
Editor | Battiti, Roberto Brunato, Mauro Kotsireas, Ilias Pardalos, Panos M |
Editor_xml | – sequence: 1 fullname: Pardalos, Panos M – sequence: 2 fullname: Battiti, Roberto – sequence: 3 fullname: Brunato, Mauro – sequence: 4 fullname: Kotsireas, Ilias |
EndPage | 224 |
ExternalDocumentID | EBC5924574_194_233 |
GroupedDBID | 0D6 0DA 38. AABBV AEDXK AEJLV AEKFX AEZAY AIFIR ALEXF ALMA_UNASSIGNED_HOLDINGS AYMPB BBABE CXBFT CZZ EXGDT FCSXQ FFUUA I4C IEZ MGZZY NSQWD OORQV SBO TPJZQ TSXQS Z81 Z83 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS LDH P2P RSU ~02 |
ID | FETCH-LOGICAL-g342t-63ddf1967d7b6c1e324d098c45130b5f993c2771c542ee11ec444056f218a6563 |
ISBN | 3030053474 9783030053475 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:15:18 EDT 2025 Thu May 29 16:31:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | QA76.9.A43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g342t-63ddf1967d7b6c1e324d098c45130b5f993c2771c542ee11ec444056f218a6563 |
OCLC | 1081304401 |
OpenAccessLink | https://dipot.ulb.ac.be/dspace/bitstream/2013/283882/3/cmcs-tuning-lion2018.pdf |
PQID | EBC5924574_194_233 |
PageCount | 5 |
ParticipantIDs | springer_books_10_1007_978_3_030_05348_2_20 proquest_ebookcentralchapters_5924574_194_233 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 12th International Conference, LION 12, Kalamata, Greece, June 10-15, 2018, Revised Selected Papers |
PublicationTitle | Learning and Intelligent Optimization |
PublicationYear | 2019 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug |
SSID | ssj0002284655 ssj0002792 |
Score | 2.165543 |
Snippet | One way to speed up the algorithm configuration task is to use short runs instead of long runs as much as possible, but without discarding the configurations... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 220 |
Title | Algorithm Configuration: Learning Policies for the Quick Termination of Poor Performers |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5924574&ppg=233 http://link.springer.com/10.1007/978-3-030-05348-2_20 |
Volume | 11353 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT9swFMet0V0QB2Ab4rd84FZ5Io5_JNwKKiA0MSaVjZtVO3apNlqppBf-ep6TOE2iXtglqtLEsvxx7Ofn931G6Cw1lLmMOeITuxAmhSHjVGriM4G7caKd1UWU7724fWR3T_wpHO9eqUty_d28rdWV_A9VuAdcvUr2A2TrQuEG_Aa-cAXCcO0Yv203a6leDk6NMqI3ZNbM-z9hFHip5JXNHjH4N5kvpvnzSyHzm06Wizqyoy6rSBMMi-c6-vDXcmr-9kdlyEywLh_m8O9DKTmoIuiD58CLlVqeg-A57PgeG-6vwU1rtQmznf9mWXnUST18-pMz1g7GzfgLeJX4dwGgouerySdsuNMyHUYn9_Xw8orDApFLpqKUKXhoA23IhPfQ58Hw7sfv2ptGYZYVnHvxTqhkmfWxUemGcHJdnVpLjM6ueGFsjHbQlhegYK8MgVruok929gVth-M3cDUaf0V_aqC4BfQCB5w44MRACgNOXODEDZx47rDHiVc4v6HH6-Ho6pZU52SQScxoTkScZQ5GUplJLUxkwUbOztPEMA4GiuYOTFBDpYwMZ9TaKLKGMbDThQPzbgzfaLyHerP5zO4jbLWIY8k1pWMKZkuWJrFIaEqjWESZS5IDREIjqWI3vwohNmWTvKoOrgPUDy2p_OOvKqTJBgQqVoBAFQiUR3D4wdKP0OaqXx-jXr5Y2hOwEXN9WnWQd0VnYnk |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Learning+and+Intelligent+Optimization&rft.atitle=Algorithm+Configuration%3A+Learning+Policies+for+the+Quick+Termination+of+Poor+Performers&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030053475&rft.volume=11353&rft_id=info:doi/10.1007%2F978-3-030-05348-2_20&rft.externalDBID=233&rft.externalDocID=EBC5924574_194_233 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5924574-l.jpg |