CNN-LSTM Neural Network Model for Quantitative Strategy Analysis in Stock Markets
In this paper, the convolutional neural network and long short-term memory (CNN-LSTM) neural network model is proposed to analyse the quantitative strategy in stock markets. Methodically, the CNN-LSTM neural network is used to make the quantitative stock selection strategy for judging stock trends b...
Saved in:
Published in | Neural Information Processing Vol. 10635; pp. 198 - 206 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2017
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the convolutional neural network and long short-term memory (CNN-LSTM) neural network model is proposed to analyse the quantitative strategy in stock markets. Methodically, the CNN-LSTM neural network is used to make the quantitative stock selection strategy for judging stock trends by using the CNN, and then make the quantitative timing strategy for improving the profits by using the LSTM. It is demonstrated by the experiments that the CNN-LSTM neural network model can be successfully applied to making quantitative strategy, and achieving better returns than the basic Momentum strategy and the Benchmark index. |
---|---|
AbstractList | In this paper, the convolutional neural network and long short-term memory (CNN-LSTM) neural network model is proposed to analyse the quantitative strategy in stock markets. Methodically, the CNN-LSTM neural network is used to make the quantitative stock selection strategy for judging stock trends by using the CNN, and then make the quantitative timing strategy for improving the profits by using the LSTM. It is demonstrated by the experiments that the CNN-LSTM neural network model can be successfully applied to making quantitative strategy, and achieving better returns than the basic Momentum strategy and the Benchmark index. |
Author | Liu, Shuanglong Zhang, Chao Ma, Jinwen |
Author_xml | – sequence: 1 givenname: Shuanglong surname: Liu fullname: Liu, Shuanglong organization: Department of Information Science, School of Mathematical Sciences and LMAM, Peking University, Beijing, China – sequence: 2 givenname: Chao surname: Zhang fullname: Zhang, Chao organization: Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China – sequence: 3 givenname: Jinwen surname: Ma fullname: Ma, Jinwen email: jwma@math.pku.edu.cn organization: Department of Information Science, School of Mathematical Sciences and LMAM, Peking University, Beijing, China |
BookMark | eNqNkMFOGzEQhk1JqybAG_SwL2A6Y6-98RFFpUUKQYhwthxnHLZZ7aa2A8rb1wlVe-1pRv-vb6T5JmzUDz0x9gXhGgGar6aZcsklGt4AGM3BCjxjE1mSUwAf2Bg1IpeyNuf_CiVGbAwSBDdNLT-xCQIKWXajP7OrlH4CgCiNUc2YPc4WCz5_Wt5XC9pH15WR34a4re6HNXVVGGL1uHd9brPL7StVTzm6TJtDddO77pDaVLV9CQdfCBe3lNMl-xhcl-jqz7xgz7fflrMffP7w_W52M-cbWWPmhIIEUkDtlF_DCrxC9NKviZybeuGmJgCJFXkjRaNdHZqgPGkDKmgZgrxg4v1u2sW231C0q2HYJotgj_ps0WelLU7syZY96itQ_Q7t4vBrTylbOlKe-vJX51_cLlNMVgtjiiMr1LRQ-n8xpQxKpf5ivwFVQ4Kt |
ContentType | Book Chapter |
Copyright | Springer International Publishing AG 2017 |
Copyright_xml | – notice: Springer International Publishing AG 2017 |
DBID | FFUUA |
DEWEY | 006.32 |
DOI | 10.1007/978-3-319-70096-0_21 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 3319700960 9783319700960 |
EISSN | 1611-3349 |
Editor | Li, Yuanqing El-Alfy, El-Sayed M Xie, Shengli Liu, Derong Zhao, Dongbin |
Editor_xml | – sequence: 1 fullname: El-Alfy, El-Sayed M – sequence: 2 fullname: Liu, Derong – sequence: 3 fullname: Zhao, Dongbin – sequence: 4 fullname: Li, Yuanqing – sequence: 5 fullname: Xie, Shengli |
EndPage | 206 |
ExternalDocumentID | EBC6299027_258_216 EBC5591355_258_216 |
GroupedDBID | 0D6 0DA 38. AABBV AALVI ABBVZ ABHTH ABQUB ACDJR ADCXD AEDXK AEJLV AEKFX AETDV AEZAY AGIGN AGYGE AIODD ALBAV ALMA_UNASSIGNED_HOLDINGS AZZ BATQV BBABE CVWCR CZZ FFUUA I4C IEZ SBO SWYDZ TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-g341t-e12e21ef16a5cd0b0c511c3cdeeaa8c2a89f0e2bec93276a4f7f5ce6905f63ff3 |
ISBN | 3319700952 9783319700953 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 19:47:08 EDT 2025 Fri Apr 04 22:37:57 EDT 2025 Thu May 29 15:57:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342TA1637-1638T |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g341t-e12e21ef16a5cd0b0c511c3cdeeaa8c2a89f0e2bec93276a4f7f5ce6905f63ff3 |
Notes | S. Liu and C. Zhang—The two authors contributed equally to this paper. |
OCLC | 1012397496 |
PQID | EBC5591355_258_216 |
PageCount | 9 |
ParticipantIDs | springer_books_10_1007_978_3_319_70096_0_21 proquest_ebookcentralchapters_6299027_258_216 proquest_ebookcentralchapters_5591355_258_216 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II |
PublicationTitle | Neural Information Processing |
PublicationYear | 2017 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, United Kingdom – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, United Kingdom – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Madras, Indian Institute of Technology, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max Planck Institute for Informatics, Saarbrücken, Germany |
SSID | ssj0002743957 ssj0002792 |
Score | 2.3894718 |
Snippet | In this paper, the convolutional neural network and long short-term memory (CNN-LSTM) neural network model is proposed to analyse the quantitative strategy in... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 198 |
SubjectTerms | CNN LSTM Neural network Quantitative strategy Stock markets |
Title | CNN-LSTM Neural Network Model for Quantitative Strategy Analysis in Stock Markets |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5591355&ppg=216 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6299027&ppg=216 http://link.springer.com/10.1007/978-3-319-70096-0_21 |
Volume | 10635 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZZdhk7dD_Z2m3osFvwsCVbVg47lNJRSmoYS0dvQlbkNjAcWBxKx_74vacfsZMVRncxiSNiR9_L83tP7_tEyEeNZEWJK6xaL5JcM5PoerpIatezWMsidzqzF5U4u8zPr4qr0ej3kF3S1Z_Mr3t5Jf-DKpwDXJEl-wBkt18KJ-A14AtHQBiOe8Hvbpk1CC45xYzAJ3Iwhq7_-DTCPpvlxtU3bza6vf6x6j_YFopPbvSqL0s7UJftbSSIBQmDqkpm3-YXk3DNyveOu43UHP8Re0NbR1fDRqSgeHvXK54scZ9g8LyOGmS9eJSbIrv-PAurGNWqc81hk7jRRPQ7w8JEVu4VJmJhcq-02VfXdjJZDq6gxHiPDxwgB28N-Y4_Zb2DFii7yL3MaXC6md_HOjy_mVMw-PvRMOwGQeYWXk0kqUIVgkelLMbk8fHp-ez7tkLHMFcrtul7ilKLfk3K3xUyheJdM6_l1P-KAUvzvkvu5DN7S_Auspk_I0-R7UKRhgLz95yMbPuCHEQIaIDgJfkabYB6G6DBBqizAQo2QIc2QKMN0GgDdNlSZwM02MArcvnldH5yloTtOJJrCHW6xGbMssw2mdCFWaR1aiBYN9wsrNVaGqbltEktA6cAOUEpdN6UTWGsmKZFI3jT8Ndk3K5a-4bQXDINsba2vNHgK0pp4Q0EmzWXQk5L85YkcXqUaxoIncrGT8ZaQR6cQaSsWCFhNsU_xwuMuljZj5_EOVc4fK2iejeApbgCsJQDSyFYhw8afUSe9P-Gd2Tc_dzY9xC4dvWHYGF_AHLlkEo |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Neural+Information+Processing&rft.au=Liu%2C+Shuanglong&rft.au=Zhang%2C+Chao&rft.au=Ma%2C+Jinwen&rft.atitle=CNN-LSTM+Neural+Network+Model+for+Quantitative+Strategy+Analysis+in+Stock+Markets&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2017-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319700953&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=198&rft.epage=206&rft_id=info:doi/10.1007%2F978-3-319-70096-0_21 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5591355-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6299027-l.jpg |