Data-Driven Generation of Rubric Parameters from an Educational Programming Environment
We demonstrate that, by using a small set of hand-graded students, we can automatically generate rubric parameters with a high degree of validity, and that a predictive model incorporating these rubric parameters is more accurate than a previously reported model. We present this method as one approa...
Saved in:
Published in | Artificial Intelligence in Education Vol. 10331; pp. 490 - 493 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2017
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate that, by using a small set of hand-graded students, we can automatically generate rubric parameters with a high degree of validity, and that a predictive model incorporating these rubric parameters is more accurate than a previously reported model. We present this method as one approach to addressing the often challenging problem of grading assignments in programming environments. A classic solution is creating unit-tests that the student-generated program must pass, but the rigid, structured nature of unit-tests is suboptimal for assessing more open-ended assignments. Furthermore, the creation of unit-tests requires predicting the various ways a student might correctly solve a problem – a challenging and time-intensive process. The current study proposes an alternative, semi-automated method for generating rubric parameters using low-level data from the Alice programming environment. |
---|---|
AbstractList | We demonstrate that, by using a small set of hand-graded students, we can automatically generate rubric parameters with a high degree of validity, and that a predictive model incorporating these rubric parameters is more accurate than a previously reported model. We present this method as one approach to addressing the often challenging problem of grading assignments in programming environments. A classic solution is creating unit-tests that the student-generated program must pass, but the rigid, structured nature of unit-tests is suboptimal for assessing more open-ended assignments. Furthermore, the creation of unit-tests requires predicting the various ways a student might correctly solve a problem – a challenging and time-intensive process. The current study proposes an alternative, semi-automated method for generating rubric parameters using low-level data from the Alice programming environment. |
Author | Grover, Shuchi Bienkowski, Marie Eagle, Michael Diana, Nicholas Stamper, John Basu, Satabdi |
Author_xml | – sequence: 1 givenname: Nicholas surname: Diana fullname: Diana, Nicholas email: ndiana@cmu.edu organization: Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, USA – sequence: 2 givenname: Michael surname: Eagle fullname: Eagle, Michael email: meagle@cs.cmu.edu organization: Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: John surname: Stamper fullname: Stamper, John email: john@stamper.org organization: Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, USA – sequence: 4 givenname: Shuchi surname: Grover fullname: Grover, Shuchi email: shuchi.grover@sri.com organization: SRI International, Menlo Park, USA – sequence: 5 givenname: Marie surname: Bienkowski fullname: Bienkowski, Marie email: marie.bienkowski@sri.com organization: SRI International, Menlo Park, USA – sequence: 6 givenname: Satabdi surname: Basu fullname: Basu, Satabdi email: satabdi.basu@sri.com organization: SRI International, Menlo Park, USA |
BookMark | eNqNkc1OAjEQgKuiEZA38NAXqE63f9ujQUQTEonR6K3pdru4Ci12F57fBYxePU0yM99k5psB6oUYPEKXFK4ogLrWKieMMKqJpDwTBAxXR2jAusw-kR-jPpWUEsa4Pvkr8Lce6gODjGjF2Rnqa51RqYDJczRqmg8AoDmXTGV99HprW0tuU731AU998Mm2dQw4VvhpU6Ta4blNduVbnxpcpbjCNuBJuXH7NrvE8xQXXcOqDgs8Cds6xbDyob1Ap5VdNn70E4fo5W7yPL4ns8fpw_hmRhaM05bIonCVgkxDyZxwqtROUpdXueScOumUlaWiBQdwufNFpWhVWstAulKIsgI2RNlhbrNO3Qo-mSLGz8ZQMDuHpnNomOnEmL0ys3PYQfwArVP82vimNX5HuW7vZJfu3a535xqZ6ZxDbgTTRlDxX0yI7gtM_GLfsriFiw |
ContentType | Book Chapter |
Copyright | Springer International Publishing AG 2017 |
Copyright_xml | – notice: Springer International Publishing AG 2017 |
DBID | FFUUA |
DEWEY | 371.334 |
DOI | 10.1007/978-3-319-61425-0_47 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Education |
EISBN | 3319614258 9783319614250 |
EISSN | 1611-3349 |
Editor | Baker, Ryan Rodrigo, Ma. Mercedes T du Boulay, Benedict Hu, Xiangen André, Elisabeth |
Editor_xml | – sequence: 1 fullname: Baker, Ryan – sequence: 2 fullname: Rodrigo, Ma. Mercedes T – sequence: 3 fullname: Hu, Xiangen – sequence: 4 fullname: du Boulay, Benedict – sequence: 5 fullname: André, Elisabeth |
EndPage | 493 |
ExternalDocumentID | EBC6298408_539_515 EBC5596135_539_515 |
GroupedDBID | 0D6 0DA 38. AABBV AALVI ABBVZ ABHTH ABQUB ACDJR ADCXD AEDXK AEJLV AEKFX AEZAY AGIGN AGYGE AIODD ALBAV ALMA_UNASSIGNED_HOLDINGS AZZ BATQV BBABE CVWCR CZZ FFUUA I4C IEZ SBO SWYDZ TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-g341t-6bbcf70290d3c5c7d9c61c8f86441c6c7a6d71b400c8cebf71fdaa306cd55df03 |
ISBN | 331961424X 9783319614243 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 19:48:23 EDT 2025 Mon Apr 07 01:55:52 EDT 2025 Thu May 29 00:28:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342TJ210.2-211. |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g341t-6bbcf70290d3c5c7d9c61c8f86441c6c7a6d71b400c8cebf71fdaa306cd55df03 |
OCLC | 992167036 |
PQID | EBC5596135_539_515 |
PageCount | 4 |
ParticipantIDs | springer_books_10_1007_978_3_319_61425_0_47 proquest_ebookcentralchapters_6298408_539_515 proquest_ebookcentralchapters_5596135_539_515 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 18th International Conference, AIED 2017, Wuhan, China, June 28 - July 1, 2017, Proceedings |
PublicationTitle | Artificial Intelligence in Education |
PublicationYear | 2017 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, United Kingdom – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, United Kingdom – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Madras, Indian Institute of Technology, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max Planck Institute for Informatics, Saarbrücken, Germany |
SSID | ssj0001846372 ssj0002792 |
Score | 2.0601404 |
Snippet | We demonstrate that, by using a small set of hand-graded students, we can automatically generate rubric parameters with a high degree of validity, and that a... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 490 |
SubjectTerms | Alice Automatic assessment Educational data mining Programming |
Title | Data-Driven Generation of Rubric Parameters from an Educational Programming Environment |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5596135&ppg=515 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6298408&ppg=515 http://link.springer.com/10.1007/978-3-319-61425-0_47 |
Volume | 10331 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVguQAHYAFRvuQDN2SUL8fxsbQLVQWoQi30ZtnjGHEgldr0wq9nZuM0TqiEyiVaRY7XykusN5N5bxh7A7psnfYOg5wMRFUFL2wRCpFDHZTWVR40aYc_f6kPTqrDU3k69pKP6pLevYPf1-pK_gdVPIe4kkr2BsheTYon8Dfii0dEGI8L8jtPs0bP2G2Zz2CWkfhq_uymqo30gdi3vRX757S7RbPpkSx-vXRUT39kqVCL3DYH0YlNJsI_ORoquX5RbmEzyePStEGuFmmDMW24SDwmua_dj7NQs6R3lWRx5WzvzKLg6q-dOC2-IKEUXStFZgZ_zbnxtRwUnQvj6837vbrQGIA2RpbaSLISuK0auWJ3djeHn75NqTTkUKWimPtqkdFbaVp0opq8bk2z-GLxSXzLNI4fsvukPuEkC8FVPmK32m7NHoy9N3jcitfUbTtCs2b3ElPJx-x7AjSfgOZngQ9A8wloTkBz2_EEaJ4AzROgn7CTD5vjvQMR22eIH0hNelE7B0Flhc58CRKU11Dn0ISGKDDUoGztVe5wE4cGWhdUHry1GEKCl9KHrHzKVt1Z1z5jHGmnIx6jqBkBZL6pQgU43hUAZV7BDhPj7TPbj_yxshiGm3VhMG5F3ihHIP85fgH8Dns7YmJo-IUZ3bYRTFMaBNNswTQE5vMbzv6C3Z3ekJds1Z9ftq-QavbudXzU_gD3-nzZ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Artificial+Intelligence+in+Education&rft.atitle=Data-Driven+Generation+of+Rubric+Parameters+from+an+Educational+Programming+Environment&rft.date=2017-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319614243&rft.volume=10331&rft_id=info:doi/10.1007%2F978-3-319-61425-0_47&rft.externalDBID=515&rft.externalDocID=EBC6298408_539_515 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5596135-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6298408-l.jpg |