Data-Driven Generation of Rubric Parameters from an Educational Programming Environment

We demonstrate that, by using a small set of hand-graded students, we can automatically generate rubric parameters with a high degree of validity, and that a predictive model incorporating these rubric parameters is more accurate than a previously reported model. We present this method as one approa...

Full description

Saved in:
Bibliographic Details
Published inArtificial Intelligence in Education Vol. 10331; pp. 490 - 493
Main Authors Diana, Nicholas, Eagle, Michael, Stamper, John, Grover, Shuchi, Bienkowski, Marie, Basu, Satabdi
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate that, by using a small set of hand-graded students, we can automatically generate rubric parameters with a high degree of validity, and that a predictive model incorporating these rubric parameters is more accurate than a previously reported model. We present this method as one approach to addressing the often challenging problem of grading assignments in programming environments. A classic solution is creating unit-tests that the student-generated program must pass, but the rigid, structured nature of unit-tests is suboptimal for assessing more open-ended assignments. Furthermore, the creation of unit-tests requires predicting the various ways a student might correctly solve a problem – a challenging and time-intensive process. The current study proposes an alternative, semi-automated method for generating rubric parameters using low-level data from the Alice programming environment.
AbstractList We demonstrate that, by using a small set of hand-graded students, we can automatically generate rubric parameters with a high degree of validity, and that a predictive model incorporating these rubric parameters is more accurate than a previously reported model. We present this method as one approach to addressing the often challenging problem of grading assignments in programming environments. A classic solution is creating unit-tests that the student-generated program must pass, but the rigid, structured nature of unit-tests is suboptimal for assessing more open-ended assignments. Furthermore, the creation of unit-tests requires predicting the various ways a student might correctly solve a problem – a challenging and time-intensive process. The current study proposes an alternative, semi-automated method for generating rubric parameters using low-level data from the Alice programming environment.
Author Grover, Shuchi
Bienkowski, Marie
Eagle, Michael
Diana, Nicholas
Stamper, John
Basu, Satabdi
Author_xml – sequence: 1
  givenname: Nicholas
  surname: Diana
  fullname: Diana, Nicholas
  email: ndiana@cmu.edu
  organization: Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, USA
– sequence: 2
  givenname: Michael
  surname: Eagle
  fullname: Eagle, Michael
  email: meagle@cs.cmu.edu
  organization: Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: John
  surname: Stamper
  fullname: Stamper, John
  email: john@stamper.org
  organization: Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, USA
– sequence: 4
  givenname: Shuchi
  surname: Grover
  fullname: Grover, Shuchi
  email: shuchi.grover@sri.com
  organization: SRI International, Menlo Park, USA
– sequence: 5
  givenname: Marie
  surname: Bienkowski
  fullname: Bienkowski, Marie
  email: marie.bienkowski@sri.com
  organization: SRI International, Menlo Park, USA
– sequence: 6
  givenname: Satabdi
  surname: Basu
  fullname: Basu, Satabdi
  email: satabdi.basu@sri.com
  organization: SRI International, Menlo Park, USA
BookMark eNqNkc1OAjEQgKuiEZA38NAXqE63f9ujQUQTEonR6K3pdru4Ci12F57fBYxePU0yM99k5psB6oUYPEKXFK4ogLrWKieMMKqJpDwTBAxXR2jAusw-kR-jPpWUEsa4Pvkr8Lce6gODjGjF2Rnqa51RqYDJczRqmg8AoDmXTGV99HprW0tuU731AU998Mm2dQw4VvhpU6Ta4blNduVbnxpcpbjCNuBJuXH7NrvE8xQXXcOqDgs8Cds6xbDyob1Ap5VdNn70E4fo5W7yPL4ns8fpw_hmRhaM05bIonCVgkxDyZxwqtROUpdXueScOumUlaWiBQdwufNFpWhVWstAulKIsgI2RNlhbrNO3Qo-mSLGz8ZQMDuHpnNomOnEmL0ys3PYQfwArVP82vimNX5HuW7vZJfu3a535xqZ6ZxDbgTTRlDxX0yI7gtM_GLfsriFiw
ContentType Book Chapter
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID FFUUA
DEWEY 371.334
DOI 10.1007/978-3-319-61425-0_47
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Education
EISBN 3319614258
9783319614250
EISSN 1611-3349
Editor Baker, Ryan
Rodrigo, Ma. Mercedes T
du Boulay, Benedict
Hu, Xiangen
André, Elisabeth
Editor_xml – sequence: 1
  fullname: Baker, Ryan
– sequence: 2
  fullname: Rodrigo, Ma. Mercedes T
– sequence: 3
  fullname: Hu, Xiangen
– sequence: 4
  fullname: du Boulay, Benedict
– sequence: 5
  fullname: André, Elisabeth
EndPage 493
ExternalDocumentID EBC6298408_539_515
EBC5596135_539_515
GroupedDBID 0D6
0DA
38.
AABBV
AALVI
ABBVZ
ABHTH
ABQUB
ACDJR
ADCXD
AEDXK
AEJLV
AEKFX
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BATQV
BBABE
CVWCR
CZZ
FFUUA
I4C
IEZ
SBO
SWYDZ
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-g341t-6bbcf70290d3c5c7d9c61c8f86441c6c7a6d71b400c8cebf71fdaa306cd55df03
ISBN 331961424X
9783319614243
ISSN 0302-9743
IngestDate Tue Jul 29 19:48:23 EDT 2025
Mon Apr 07 01:55:52 EDT 2025
Thu May 29 00:28:31 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342TJ210.2-211.
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g341t-6bbcf70290d3c5c7d9c61c8f86441c6c7a6d71b400c8cebf71fdaa306cd55df03
OCLC 992167036
PQID EBC5596135_539_515
PageCount 4
ParticipantIDs springer_books_10_1007_978_3_319_61425_0_47
proquest_ebookcentralchapters_6298408_539_515
proquest_ebookcentralchapters_5596135_539_515
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 18th International Conference, AIED 2017, Wuhan, China, June 28 - July 1, 2017, Proceedings
PublicationTitle Artificial Intelligence in Education
PublicationYear 2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, United Kingdom
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, United Kingdom
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Madras, Indian Institute of Technology, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
SSID ssj0001846372
ssj0002792
Score 2.0601404
Snippet We demonstrate that, by using a small set of hand-graded students, we can automatically generate rubric parameters with a high degree of validity, and that a...
SourceID springer
proquest
SourceType Publisher
StartPage 490
SubjectTerms Alice
Automatic assessment
Educational data mining
Programming
Title Data-Driven Generation of Rubric Parameters from an Educational Programming Environment
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5596135&ppg=515
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6298408&ppg=515
http://link.springer.com/10.1007/978-3-319-61425-0_47
Volume 10331
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVguQAHYAFRvuQDN2SUL8fxsbQLVQWoQi30ZtnjGHEgldr0wq9nZuM0TqiEyiVaRY7XykusN5N5bxh7A7psnfYOg5wMRFUFL2wRCpFDHZTWVR40aYc_f6kPTqrDU3k69pKP6pLevYPf1-pK_gdVPIe4kkr2BsheTYon8Dfii0dEGI8L8jtPs0bP2G2Zz2CWkfhq_uymqo30gdi3vRX757S7RbPpkSx-vXRUT39kqVCL3DYH0YlNJsI_ORoquX5RbmEzyePStEGuFmmDMW24SDwmua_dj7NQs6R3lWRx5WzvzKLg6q-dOC2-IKEUXStFZgZ_zbnxtRwUnQvj6837vbrQGIA2RpbaSLISuK0auWJ3djeHn75NqTTkUKWimPtqkdFbaVp0opq8bk2z-GLxSXzLNI4fsvukPuEkC8FVPmK32m7NHoy9N3jcitfUbTtCs2b3ElPJx-x7AjSfgOZngQ9A8wloTkBz2_EEaJ4AzROgn7CTD5vjvQMR22eIH0hNelE7B0Flhc58CRKU11Dn0ISGKDDUoGztVe5wE4cGWhdUHry1GEKCl9KHrHzKVt1Z1z5jHGmnIx6jqBkBZL6pQgU43hUAZV7BDhPj7TPbj_yxshiGm3VhMG5F3ihHIP85fgH8Dns7YmJo-IUZ3bYRTFMaBNNswTQE5vMbzv6C3Z3ekJds1Z9ftq-QavbudXzU_gD3-nzZ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Artificial+Intelligence+in+Education&rft.atitle=Data-Driven+Generation+of+Rubric+Parameters+from+an+Educational+Programming+Environment&rft.date=2017-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319614243&rft.volume=10331&rft_id=info:doi/10.1007%2F978-3-319-61425-0_47&rft.externalDBID=515&rft.externalDocID=EBC6298408_539_515
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5596135-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6298408-l.jpg