Location-Aware Human Activity Recognition

In this paper, we present one of the winning solutions of an international human activity recognition challenge organized by DrivenData in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. The objective of the challenge was...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Data Mining and Applications Vol. 10604; pp. 821 - 835
Main Authors Nguyen, Tam T., Fernandez, Daniel, Nguyen, Quy T. K., Bagheri, Ebrahim
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present one of the winning solutions of an international human activity recognition challenge organized by DrivenData in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. The objective of the challenge was to predict activities of daily living and posture or ambulation based on wrist-worn accelerometer, RGB-D camera, and passive environmental sensor data, which was collected from a smart home in the UK. Most of the state of the art research focus on one type of data, e.g., wearable sensor data, for making predictions and overlook the usefulness of user locations for this purpose. In our work, we propose a novel approach that leverages heterogeneous data types as well as user locations for building predictive models. Note that while we do not have actual location information but we build models to predict location using machine learning models and use the predictions in user activity recognition. Compared to the state of the art, our proposed approach is able to achieve a 38% improvement with a Brier score of 0.1346. This means that roughly 9 out of 10 predictions matched the human-labeled descriptions.
AbstractList In this paper, we present one of the winning solutions of an international human activity recognition challenge organized by DrivenData in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. The objective of the challenge was to predict activities of daily living and posture or ambulation based on wrist-worn accelerometer, RGB-D camera, and passive environmental sensor data, which was collected from a smart home in the UK. Most of the state of the art research focus on one type of data, e.g., wearable sensor data, for making predictions and overlook the usefulness of user locations for this purpose. In our work, we propose a novel approach that leverages heterogeneous data types as well as user locations for building predictive models. Note that while we do not have actual location information but we build models to predict location using machine learning models and use the predictions in user activity recognition. Compared to the state of the art, our proposed approach is able to achieve a 38% improvement with a Brier score of 0.1346. This means that roughly 9 out of 10 predictions matched the human-labeled descriptions.
Author Nguyen, Quy T. K.
Bagheri, Ebrahim
Fernandez, Daniel
Nguyen, Tam T.
Author_xml – sequence: 1
  givenname: Tam T.
  surname: Nguyen
  fullname: Nguyen, Tam T.
  email: nthanhtam@gmail.com
– sequence: 2
  givenname: Daniel
  surname: Fernandez
  fullname: Fernandez, Daniel
– sequence: 3
  givenname: Quy T. K.
  surname: Nguyen
  fullname: Nguyen, Quy T. K.
– sequence: 4
  givenname: Ebrahim
  surname: Bagheri
  fullname: Bagheri, Ebrahim
BookMark eNqNkE9Lw0AQxVetYlv7DTz06mF1JzPZP8dS1AoFQfS8bJJNjdakJlvFb--mFcGbh2HgzfwevDdig7qpPWPnIC5BCHVllObIEQyXBpThZFN9wCZRxijuNDpkQ5AAHJHM0Z-bVgM2FCgSbhThCRtFTyMIlBSnbNJ1L0IIMCgE0ZBdLJvchaqp-ezTtX662L65ejrLQ_VRha_pg8-bVV31D2fsuHTrzk9-9pg93Vw_zhd8eX97N58t-QoJAodCFaRLlZF0WktK0csMCBGzwkNBVIqSPCTKJEKhlC7zVFAOqXcFZibDMUv2vt2mreqVb23WNK-dBWH7cmxMatHGrHZXhO3LiRDtoU3bvG99F6zvqdzXoXXr_Nltgm87KxOtImV1QnHgv1iaGkhB_WLfaLV06Q
ContentType Book Chapter
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID FFUUA
DEWEY 6.3120000000000003
DOI 10.1007/978-3-319-69179-4_58
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783319691794
3319691791
EISSN 1611-3349
Editor Li, Chengliang
Peng, Wen-Chih
Cong, Gao
Zhang, Wei Emma
Sun, Aixin
Editor_xml – sequence: 1
  fullname: Li, Chengliang
– sequence: 2
  fullname: Peng, Wen-Chih
– sequence: 3
  fullname: Zhang, Wei Emma
– sequence: 4
  fullname: Cong, Gao
– sequence: 5
  fullname: Sun, Aixin
EndPage 835
ExternalDocumentID EBC6287691_824_821
EBC5591517_824_821
GroupedDBID 0D6
0DA
38.
AABBV
AALVI
ABBVZ
ABHTH
ABQUB
ACDJR
ADCXD
AEDXK
AEJLV
AEKFX
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BATQV
BBABE
CVWCR
CZZ
FFUUA
H13
I4C
IEZ
SBO
SWYDZ
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-g341t-1d7d48f7b46a886453e6b14333bde1d44f0f4e1279207366abe4d4c15ead3b9b3
ISBN 9783319691787
3319691783
ISSN 0302-9743
IngestDate Tue Jul 29 20:15:03 EDT 2025
Mon Apr 07 02:06:31 EDT 2025
Thu May 29 15:57:46 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342QA76.9.D343Q
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g341t-1d7d48f7b46a886453e6b14333bde1d44f0f4e1279207366abe4d4c15ead3b9b3
OCLC 1009041760
PQID EBC5591517_824_821
PageCount 15
ParticipantIDs springer_books_10_1007_978_3_319_69179_4_58
proquest_ebookcentralchapters_6287691_824_821
proquest_ebookcentralchapters_5591517_824_821
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 13th International Conference, ADMA 2017, Singapore, November 5-6, 2017, Proceedings
PublicationTitle Advanced Data Mining and Applications
PublicationYear 2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001930044
ssj0002792
Score 2.0895543
Snippet In this paper, we present one of the winning solutions of an international human activity recognition challenge organized by DrivenData in conjunction with the...
SourceID springer
proquest
SourceType Publisher
StartPage 821
Title Location-Aware Human Activity Recognition
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5591517&ppg=821
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6287691&ppg=821
http://link.springer.com/10.1007/978-3-319-69179-4_58
Volume 10604
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFG90XtSDOjXOr3DwYpYaoKVlR5zTZdk8mM3s1tC1eNsShzHxr_cV6AZkiZkHCGmgKfxK-97vfSF0BzswbMOBxG6cxJgmsY8lTCvM3UT5nGmXK0Poj15Zf0IH02C6Ln6ZRZek8mH2szGu5D-oQhvgaqJkt0B21Sk0wDXgC2dAGM414bdKs-buxdZ6_xSncXuUFXrITAFRySZdnhHDRd6Io2_j7pXT99GsKB_xZj2JCpwKJsDjNSbAMoE1LrFEZ0UvFe2RmN8P1LVix7PLoUmns3FxLftTmNgn82wHU5HnXq_msg7zuOdaLuveY5eBigYPitCncIDeusvDoIH2ot5g-L5mxzomE5ipybUaJMnTJa0HXQqE3DSmispQs3JnwsP4GB2agBLHRHrAKE_Qjp430ZEtp-EUq2sTHZRyQ56i-ypcTgaXY-FySnCdoclzb9zt46KuBf4AmSHFnuKKhgmXlMVhyGhANJMgtxIilfYUpYmbUO2Z1I6wADMWS00VnXkB_PVEdiQ5R435Yq4vkMOl7GjCPe0qEC2VlsSXCQ2hm5gpRvwWwvYjiMz6Xrj8zvJXXgpQKEHm4xaOP--vwddCbftlhbl9KWwabIBEEAGQiAwSYSC53LL3K7S_nufXqJF-fukbkAFTeVtMmF_SCFa6
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advanced+Data+Mining+and+Applications&rft.atitle=Location-Aware+Human+Activity+Recognition&rft.date=2017-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319691787&rft.volume=10604&rft_id=info:doi/10.1007%2F978-3-319-69179-4_58&rft.externalDBID=821&rft.externalDocID=EBC6287691_824_821
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5591517-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6287691-l.jpg