Tuning the Kinetics of Zinc‐Ion Insertion/Extraction in V2O5 by In Situ Polyaniline Intercalation Enables Improved Aqueous Zinc‐Ion Storage Performance
Rechargeable zinc‐ion batteries (ZIBs) are emerging as a promising alternative for Li‐ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy i...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 26 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2020
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable zinc‐ion batteries (ZIBs) are emerging as a promising alternative for Li‐ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. In this way, a remarkably enlarged interlayer distance (13.90 Å) can be constructed alternatively between the VO layers, offering expediting channels for facile Zn2+ diffusion. Importantly, the electrostatic interactions between the Zn2+ and the host O2−, which is another key factor in hindering the Zn2+ diffusion kinetics, can be effectively blocked by the unique π‐conjugated structure of PANI. As a result, the PANI‐intercalated V2O5 exhibits a stable and highly reversible electrochemical reaction during repetitive Zn2+ insertion and extraction, as demonstrated by in situ synchrotron X‐ray diffraction and Raman studies. Further first‐principles calculations clearly reveal a remarkably lowered binding energy between Zn2+ and host O2−, which explains the favorable kinetics in PANI‐intercalated V2O5. Benefitting from the above, the overall electrochemical performance of PANI‐intercalated V2O5 electrode is remarkable improved, exhibiting excellent high rate capability of 197.1 mAh g−1 at current density of 20 A g−1 with capacity retention of 97.6% over 2000 cycles.
An in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. PANI not only expands the diffusion channels for facilitating Zn2+ diffusion, but also maintains the structural stability as interlayer pillars. Especially, its unique π‐conjugated structure, serving as electron‐reservoir, simultaneously shields the electrostatic interactions between Zn2+ and V2O5 host. |
---|---|
AbstractList | Rechargeable zinc‐ion batteries (ZIBs) are emerging as a promising alternative for Li‐ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. In this way, a remarkably enlarged interlayer distance (13.90 Å) can be constructed alternatively between the VO layers, offering expediting channels for facile Zn2+ diffusion. Importantly, the electrostatic interactions between the Zn2+ and the host O2−, which is another key factor in hindering the Zn2+ diffusion kinetics, can be effectively blocked by the unique π‐conjugated structure of PANI. As a result, the PANI‐intercalated V2O5 exhibits a stable and highly reversible electrochemical reaction during repetitive Zn2+ insertion and extraction, as demonstrated by in situ synchrotron X‐ray diffraction and Raman studies. Further first‐principles calculations clearly reveal a remarkably lowered binding energy between Zn2+ and host O2−, which explains the favorable kinetics in PANI‐intercalated V2O5. Benefitting from the above, the overall electrochemical performance of PANI‐intercalated V2O5 electrode is remarkable improved, exhibiting excellent high rate capability of 197.1 mAh g−1 at current density of 20 A g−1 with capacity retention of 97.6% over 2000 cycles. Rechargeable zinc-ion batteries (ZIBs) are emerging as a promising alternative for Li-ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. In this way, a remarkably enlarged interlayer distance (13.90 Å) can be constructed alternatively between the V-O layers, offering expediting channels for facile Zn2+ diffusion. Importantly, the electrostatic interactions between the Zn2+ and the host O2-, which is another key factor in hindering the Zn2+ diffusion kinetics, can be effectively blocked by the unique π-conjugated structure of PANI. As a result, the PANI-intercalated V2O5 exhibits a stable and highly reversible electrochemical reaction during repetitive Zn2+ insertion and extraction, as demonstrated by in situ synchrotron X-ray diffraction and Raman studies. Further first-principles calculations clearly reveal a remarkably lowered binding energy between Zn2+ and host O2-, which explains the favorable kinetics in PANI-intercalated V2O5. Benefitting from the above, the overall electrochemical performance of PANI-intercalated V2O5 electrode is remarkable improved, exhibiting excellent high rate capability of 197.1 mAh g-1 at current density of 20 A g-1 with capacity retention of 97.6% over 2000 cycles. Rechargeable zinc‐ion batteries (ZIBs) are emerging as a promising alternative for Li‐ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. In this way, a remarkably enlarged interlayer distance (13.90 Å) can be constructed alternatively between the VO layers, offering expediting channels for facile Zn2+ diffusion. Importantly, the electrostatic interactions between the Zn2+ and the host O2−, which is another key factor in hindering the Zn2+ diffusion kinetics, can be effectively blocked by the unique π‐conjugated structure of PANI. As a result, the PANI‐intercalated V2O5 exhibits a stable and highly reversible electrochemical reaction during repetitive Zn2+ insertion and extraction, as demonstrated by in situ synchrotron X‐ray diffraction and Raman studies. Further first‐principles calculations clearly reveal a remarkably lowered binding energy between Zn2+ and host O2−, which explains the favorable kinetics in PANI‐intercalated V2O5. Benefitting from the above, the overall electrochemical performance of PANI‐intercalated V2O5 electrode is remarkable improved, exhibiting excellent high rate capability of 197.1 mAh g−1 at current density of 20 A g−1 with capacity retention of 97.6% over 2000 cycles. An in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. PANI not only expands the diffusion channels for facilitating Zn2+ diffusion, but also maintains the structural stability as interlayer pillars. Especially, its unique π‐conjugated structure, serving as electron‐reservoir, simultaneously shields the electrostatic interactions between Zn2+ and V2O5 host. |
Author | Ren, Yang Zhang, Binghao Zhu, He Geng, Hongbo Liu, Sucheng Zhu, Hekang Li, Gen Yang, Yang Liu, Qi Li, Cheng Chao |
Author_xml | – sequence: 1 givenname: Sucheng surname: Liu fullname: Liu, Sucheng organization: Guangdong University of Technology – sequence: 2 givenname: He surname: Zhu fullname: Zhu, He organization: City University of Hong Kong – sequence: 3 givenname: Binghao surname: Zhang fullname: Zhang, Binghao organization: City University of Hong Kong – sequence: 4 givenname: Gen surname: Li fullname: Li, Gen organization: City University of Hong Kong – sequence: 5 givenname: Hekang surname: Zhu fullname: Zhu, Hekang organization: City University of Hong Kong – sequence: 6 givenname: Yang surname: Ren fullname: Ren, Yang organization: Argonne National Laboratory – sequence: 7 givenname: Hongbo surname: Geng fullname: Geng, Hongbo organization: Guangdong University of Technology – sequence: 8 givenname: Yang surname: Yang fullname: Yang, Yang organization: Guangdong University of Technology – sequence: 9 givenname: Qi surname: Liu fullname: Liu, Qi organization: City University of Hong Kong – sequence: 10 givenname: Cheng Chao orcidid: 0000-0003-2434-760X surname: Li fullname: Li, Cheng Chao email: licc@gdut.edu.cn organization: Guangdong University of Technology |
BackLink | https://www.osti.gov/servlets/purl/1756167$$D View this record in Osti.gov |
BookMark | eNpNkU1PGzEQhq2KSg2UK2erPS-M7fVufIxooFGpQOLjwMXyeifBaGNT20ubW39C7_13_SV1mgpxmpl3Hs2H3n2y54NHQo4YHDMAfmL6tTnmwAEYY-INmTDJWVWDkntkAkrISjX19B3ZT-kRAFQDzYT8vhm98yuaH5B-cR6zs4mGJb133v75-WsRPF34hDG74E_mP3I0dptS5-kdv5S025Q-vXZ5pFdh2BjvhjKlaBmjNYP5B8-96QZMdLF-iuEZezr7NmIY0-st1zlEs0J6hXEZ4tp4i-_J26UZEh7-jwfk9mx-c_q5urg8X5zOLqqVEEpUAqBmfNor6AAt5wokdl2Ntu5N3alGtaYTzVQUzUhVagXLRraiVy3HkosD8mE3N6TsdLIuo32wwXu0WbNWNqxpC_RxB5UXyvUp68cwRl_u0rxmUyUlb6FQakd9dwNu9FN0axM3moHeWqS3FukXi_Ts09fZSyX-An_Si30 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
DBID | 7SR 8BQ 8FD JG9 OIOZB OTOTI |
DOI | 10.1002/adma.202001113 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1756167 ADMA202001113 |
Genre | article |
GrantInformation_xml | – fundername: Argonne National Laboratory funderid: DE‐AC02‐06CH11357 – fundername: Pearl River Talent Program of Guangdong Province funderid: 2017GC010030 – fundername: Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme – fundername: Shenzhen–Hong Kong Innovation Circle Category D Project funderid: SGDX2019081623240948 – fundername: National Natural Science Foundation of China funderid: 51971066; 51771058 – fundername: City University of Hong Kong funderid: 9610399 – fundername: U.S. Department of Energy |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-g3393-3004128d90b0ec22905ebb4ec4da4b9697ab3683bb4a5996990f6573d972e90f3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Thu May 18 22:26:50 EDT 2023 Sun Jul 13 05:15:38 EDT 2025 Wed Jan 22 16:33:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3393-3004128d90b0ec22905ebb4ec4da4b9697ab3683bb4a5996990f6573d972e90f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-06CH11357; DE‐AC02‐06CH11357 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division |
ORCID | 0000-0003-2434-760X 000000032434760X |
OpenAccessLink | https://www.osti.gov/servlets/purl/1756167 |
PQID | 2418955270 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1756167 proquest_journals_2418955270 wiley_primary_10_1002_adma_202001113_ADMA202001113 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: United States |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 1993; 7 2017; 7 1959; 63 2017; 8 2017; 41 2019; 11 2016; 305 2019; 12 2017; 46 2019; 58 1989; 111 2019; 19 1996; 143 2012; 488 2017; 9 2017; 117 2012; 51 2018; 7 2018; 9 2018; 8 2018; 3 2019; 60 2013; 12 2018; 30 2008; 20 1996; 8 2017; 339 2019; 7 2011; 334 2018; 28 2015; 5 2019; 3 2011; 2 2013; 49 2019; 31 2015; 51 1996; 360 2006; 18 2017; 29 2016; 15 2014; 114 2018; 18 2016; 1 2015; 27 2013; 138 2007; 111 2016; 138 2018; 11 2018; 54 2018; 10 2016; 22 2018; 57 |
References_xml | – volume: 41 start-page: 3634 year: 2017 publication-title: New J. Chem. – volume: 7 year: 2018 publication-title: J. Mater. Chem. A – volume: 60 start-page: 171 year: 2019 publication-title: Nano Energy – volume: 15 start-page: 169 year: 2016 publication-title: Nat. Mater. – volume: 488 start-page: 294 year: 2012 publication-title: Nature – volume: 27 start-page: 3609 year: 2015 publication-title: Chem. Mater. – volume: 9 start-page: 1656 year: 2018 publication-title: Nat. Commun. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 9 start-page: 5100 year: 2018 publication-title: Nat. Commun. – volume: 7 start-page: 940 year: 2019 publication-title: J. Mater. Chem. A – volume: 18 start-page: 1758 year: 2018 publication-title: Nano Lett. – volume: 111 year: 2007 publication-title: J. Phys. Chem. C – volume: 138 start-page: 319 year: 2013 publication-title: Mater. Chem. Phys. – volume: 7 start-page: 5612 year: 2019 publication-title: J. Mater. Chem. A – volume: 58 start-page: 2760 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 29 start-page: 1684 year: 2017 publication-title: Chem. Mater. – volume: 51 start-page: 9265 year: 2015 publication-title: Chem. Commun. – volume: 7 start-page: 593 year: 1993 publication-title: J. Chem. Soc., Chem. Commun. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 9 start-page: 2906 year: 2018 publication-title: Nat. Commun. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 143 start-page: L181 year: 1996 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 583 year: 2016 publication-title: Nano Energy – volume: 339 start-page: 161 year: 2017 publication-title: J. Hazard. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 3529 year: 2017 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 9977 year: 2013 publication-title: Chem. Commun. – volume: 3 start-page: 2480 year: 2018 publication-title: ACS Energy Lett. – volume: 2 start-page: 550 year: 2011 publication-title: Nat. Commun. – volume: 54 start-page: 4457 year: 2018 publication-title: Chem. Commun. – volume: 305 start-page: 22 year: 2016 publication-title: J. Power Sources – volume: 111 start-page: 4139 year: 1989 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2620 year: 2018 publication-title: ACS Energy Lett. – volume: 19 start-page: 3199 year: 2019 publication-title: Nano Lett. – volume: 63 start-page: 1381 year: 1959 publication-title: J. Phys. Chem. – volume: 8 start-page: 1992 year: 1996 publication-title: Chem. Mater. – volume: 29 start-page: 4874 year: 2017 publication-title: Chem. Mater. – volume: 18 start-page: 2787 year: 2006 publication-title: Chem. Mater. – volume: 8 start-page: 405 year: 2017 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 30 start-page: 3690 year: 2018 publication-title: Chem. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 360 start-page: 175 year: 1996 publication-title: J. Mol. Struct. – volume: 3 year: 2019 publication-title: Small Methods – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 3157 year: 2018 publication-title: Energy Environ. Sci. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 11 start-page: 30 year: 2018 publication-title: Energy Storage Mater. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 117 start-page: 4287 year: 2017 publication-title: Chem. Rev. – volume: 20 start-page: 1916 year: 2008 publication-title: Chem. Mater. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 3943 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 933 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 2273 year: 2019 publication-title: Energy Environ. Sci. – volume: 12 start-page: 518 year: 2013 publication-title: Nat. Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces |
SSID | ssj0009606 |
Score | 2.7115216 |
Snippet | Rechargeable zinc‐ion batteries (ZIBs) are emerging as a promising alternative for Li‐ion batteries. However, the developed cathodes suffer from sluggish Zn2+... Rechargeable zinc-ion batteries (ZIBs) are emerging as a promising alternative for Li-ion batteries. However, the developed cathodes suffer from sluggish Zn2+... |
SourceID | osti proquest wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
SubjectTerms | Diffusion barriers Diffusion layers Diffusion rate Electrochemical analysis electrostatic interactions Insertion insertion/extraction kinetics Intercalation Interlayers Ion storage Lithium-ion batteries MATERIALS SCIENCE polyaniline Polyanilines Reaction kinetics Rechargeable batteries Storage batteries Vanadium pentoxide Zinc zinc‐ion batteries |
Title | Tuning the Kinetics of Zinc‐Ion Insertion/Extraction in V2O5 by In Situ Polyaniline Intercalation Enables Improved Aqueous Zinc‐Ion Storage Performance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202001113 https://www.proquest.com/docview/2418955270 https://www.osti.gov/servlets/purl/1756167 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMetilN7APpAbJdWc-g1bDZ2Hj6u6CJoVYrKQ4iLFTs2WlEliE0k6Kkfofd-u36Sztj7giPcEkdWnMyM_dfY_pmxTxmNAUmRRpWxJhKOp1EhXRXlZernmdxQe9rnUXZwJr5cpBcru_gDH2KRcKPI8P01BXipp4MlNLSsPDcoCaelYydMC7ZIFf1Y8qNInnvYHjZBZqKYUxvjZPCwOnbIDYbUA5m5Klb9aLO_wcp5O8Mik-vdrtW75tcjhONzPmSTrc-kKIyC77xmL2z9hr1aARS-ZX9PO8qbAKpE-IrFxHSGxsHlpDb_fv85bGo4rGk-H607GN-1t2GbBExqOE--p6Dv8TmcTNoOjpuf92U9oeaCT0Oic3ivgLHfvjWFkN-wFYzw1zTddPUtJy266pWF4-U-h3fsbH98uncQzY5ziK44lzwKbK-ikrGOrSHOfGq1FtaIqhRaZjIvNc8KjmUlQWNwnHRZmvNK5onFa77F1uqmttsMjM3jYSULx20u6Pz2BF3KOCmc0KlxvMf6ZE6FKoJQuIbWDJlWoVTKhlneYztzK6tZxE4VKplCEo4u7rHEm0vdBN6HCmTnRJGh1MJQavT522hx9_4plfrsJV2H1b87bK297ewH1Dit_uj9-D9GY_Xz |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctKAfogTdiaYE5cE03GzsPH1d0q136oKJbhLhYsWNXK1BSdROJcuIjcOfb8UmYsfdVjnBLHFlxMmP7r_H4Z8beZDQHJEUaVcaaSDieRoV0VZSXqV9ncgPtaZ8n2fhcvPuULrMJaS9M4EOsAm7UM_x4TR2cAtL9NTW0rDw4KAnHpd9md-hYb8Ln739YE6RIoHvcHjZCZqJYchvjpH-zPg7JDXaqG0JzU676-ebgAdPLloY0ky97Xav3zPe_II7_9SkP2f2FGoVhcJ9H7JatH7PtDUbhE_Zr2lHoBFAowiEWE9YZGgefZ7X5_ePnpKlhUtOSPhq4P_rWXoWdEjCr4WPyPgV9jc_hbNZ2cNp8vS7rGbUXfCQS_cM7Boz8Dq45hBCHrWCI_6bp5ptvOWvRWy8snK63Ojxl5wej6dtxtDjRIbrgXPIo4L2KSsY6toZQ86nVWlgjqlJomcm81DwrOJaVxI3BqdJlac4rmScWr_kztlU3tX3OwNg8HlSycNzmgo5wT9CrjJPCCZ0ax3tsh-ypUEgQDddQ2pBpFaqlbJDlPba7NLNadNq5QjFTSCLSxT2WeHupy4D8UAHunCgylFoZSg33j4eruxf_Uuk1uzueHh-po8nJ4Q67R-UhGXiXbbVXnX2JkqfVr7xT_wGmQfoP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctKBKCA2_E0gI-cE03GztOfFyxu-pSKCvaooqLFb-qFSipuolEOfERuPPt-CTM2PsqR7gljqw4mRn7L9vzMyGvBY4BWZkn1jiTcM_ypJTeJkWVh3UmP9CB9nkkDk7527P8bCuLP_Ih1hNuGBmhv8YAv7C-v4GGVjZwg7J4WvpNcouLVOLhDaOPG4AU6vNA24M2SMHLFbYxzfrX60OP3EBMXdOZ22o1DDeT-6RaNTTuMvmy37V633z_i-H4P1_ygNxbalE6jM7zkNxw9SNyd4tQ-Jj8Oulw4oSCTKSHUIxQZ9p4-nlem98_fk6bmk5rXNAH8_bH39rLmCdB5zX9lH3Iqb6C5_R43nZ01ny9quo5NpeGeUjwjuAWdBzytxY0TnA4S4fwa5pusf2W4xZ89dzR2SbR4Qk5nYxP3hwky_McknPGJEsi3Ku0MtWpMwiaz53W3BluK66lkEWlmSgZlFVIjYGB0ou8YFYWmYNr9pTs1E3tnhFqXJEOrCw9cwXHA9wz8CnjJfdc58azHtlFcyqQEcjCNbhpyLQKtJIYiKJH9lZWVsuQXSiQMqVEHl3aI1kwl7qIwA8V0c6ZQkOptaHUcPR-uL57_i-VXpHbs9FEvZseHe6SO1gcdwLvkZ32snMvQO-0-mVw6T-_xfi- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Kinetics+of+Zinc%E2%80%90Ion+Insertion%2FExtraction+in+V2O5+by+In+Situ+Polyaniline+Intercalation+Enables+Improved+Aqueous+Zinc%E2%80%90Ion+Storage+Performance&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Sucheng&rft.au=Zhu%2C+He&rft.au=Zhang%2C+Binghao&rft.au=Li%2C+Gen&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=26&rft_id=info:doi/10.1002%2Fadma.202001113&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |