Tuning the Kinetics of Zinc‐Ion Insertion/Extraction in V2O5 by In Situ Polyaniline Intercalation Enables Improved Aqueous Zinc‐Ion Storage Performance

Rechargeable zinc‐ion batteries (ZIBs) are emerging as a promising alternative for Li‐ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy i...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 26
Main Authors Liu, Sucheng, Zhu, He, Zhang, Binghao, Li, Gen, Zhu, Hekang, Ren, Yang, Geng, Hongbo, Yang, Yang, Liu, Qi, Li, Cheng Chao
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2020
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable zinc‐ion batteries (ZIBs) are emerging as a promising alternative for Li‐ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. In this way, a remarkably enlarged interlayer distance (13.90 Å) can be constructed alternatively between the VO layers, offering expediting channels for facile Zn2+ diffusion. Importantly, the electrostatic interactions between the Zn2+ and the host O2−, which is another key factor in hindering the Zn2+ diffusion kinetics, can be effectively blocked by the unique π‐conjugated structure of PANI. As a result, the PANI‐intercalated V2O5 exhibits a stable and highly reversible electrochemical reaction during repetitive Zn2+ insertion and extraction, as demonstrated by in situ synchrotron X‐ray diffraction and Raman studies. Further first‐principles calculations clearly reveal a remarkably lowered binding energy between Zn2+ and host O2−, which explains the favorable kinetics in PANI‐intercalated V2O5. Benefitting from the above, the overall electrochemical performance of PANI‐intercalated V2O5 electrode is remarkable improved, exhibiting excellent high rate capability of 197.1 mAh g−1 at current density of 20 A g−1 with capacity retention of 97.6% over 2000 cycles. An in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. PANI not only expands the diffusion channels for facilitating Zn2+ diffusion, but also maintains the structural stability as interlayer pillars. Especially, its unique π‐conjugated structure, serving as electron‐reservoir, simultaneously shields the electrostatic interactions between Zn2+ and V2O5 host.
AbstractList Rechargeable zinc‐ion batteries (ZIBs) are emerging as a promising alternative for Li‐ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. In this way, a remarkably enlarged interlayer distance (13.90 Å) can be constructed alternatively between the VO layers, offering expediting channels for facile Zn2+ diffusion. Importantly, the electrostatic interactions between the Zn2+ and the host O2−, which is another key factor in hindering the Zn2+ diffusion kinetics, can be effectively blocked by the unique π‐conjugated structure of PANI. As a result, the PANI‐intercalated V2O5 exhibits a stable and highly reversible electrochemical reaction during repetitive Zn2+ insertion and extraction, as demonstrated by in situ synchrotron X‐ray diffraction and Raman studies. Further first‐principles calculations clearly reveal a remarkably lowered binding energy between Zn2+ and host O2−, which explains the favorable kinetics in PANI‐intercalated V2O5. Benefitting from the above, the overall electrochemical performance of PANI‐intercalated V2O5 electrode is remarkable improved, exhibiting excellent high rate capability of 197.1 mAh g−1 at current density of 20 A g−1 with capacity retention of 97.6% over 2000 cycles.
Rechargeable zinc-ion batteries (ZIBs) are emerging as a promising alternative for Li-ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. In this way, a remarkably enlarged interlayer distance (13.90 Å) can be constructed alternatively between the V-O layers, offering expediting channels for facile Zn2+ diffusion. Importantly, the electrostatic interactions between the Zn2+ and the host O2-, which is another key factor in hindering the Zn2+ diffusion kinetics, can be effectively blocked by the unique π-conjugated structure of PANI. As a result, the PANI-intercalated V2O5 exhibits a stable and highly reversible electrochemical reaction during repetitive Zn2+ insertion and extraction, as demonstrated by in situ synchrotron X-ray diffraction and Raman studies. Further first-principles calculations clearly reveal a remarkably lowered binding energy between Zn2+ and host O2-, which explains the favorable kinetics in PANI-intercalated V2O5. Benefitting from the above, the overall electrochemical performance of PANI-intercalated V2O5 electrode is remarkable improved, exhibiting excellent high rate capability of 197.1 mAh g-1 at current density of 20 A g-1 with capacity retention of 97.6% over 2000 cycles.
Rechargeable zinc‐ion batteries (ZIBs) are emerging as a promising alternative for Li‐ion batteries. However, the developed cathodes suffer from sluggish Zn2+ diffusion kinetics, leading to poor rate capability and inadequate cycle life. Herein, an in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. In this way, a remarkably enlarged interlayer distance (13.90 Å) can be constructed alternatively between the VO layers, offering expediting channels for facile Zn2+ diffusion. Importantly, the electrostatic interactions between the Zn2+ and the host O2−, which is another key factor in hindering the Zn2+ diffusion kinetics, can be effectively blocked by the unique π‐conjugated structure of PANI. As a result, the PANI‐intercalated V2O5 exhibits a stable and highly reversible electrochemical reaction during repetitive Zn2+ insertion and extraction, as demonstrated by in situ synchrotron X‐ray diffraction and Raman studies. Further first‐principles calculations clearly reveal a remarkably lowered binding energy between Zn2+ and host O2−, which explains the favorable kinetics in PANI‐intercalated V2O5. Benefitting from the above, the overall electrochemical performance of PANI‐intercalated V2O5 electrode is remarkable improved, exhibiting excellent high rate capability of 197.1 mAh g−1 at current density of 20 A g−1 with capacity retention of 97.6% over 2000 cycles. An in situ polyaniline (PANI) intercalation strategy is developed to facilitate the Zn2+ (de)intercalation kinetics in V2O5. PANI not only expands the diffusion channels for facilitating Zn2+ diffusion, but also maintains the structural stability as interlayer pillars. Especially, its unique π‐conjugated structure, serving as electron‐reservoir, simultaneously shields the electrostatic interactions between Zn2+ and V2O5 host.
Author Ren, Yang
Zhang, Binghao
Zhu, He
Geng, Hongbo
Liu, Sucheng
Zhu, Hekang
Li, Gen
Yang, Yang
Liu, Qi
Li, Cheng Chao
Author_xml – sequence: 1
  givenname: Sucheng
  surname: Liu
  fullname: Liu, Sucheng
  organization: Guangdong University of Technology
– sequence: 2
  givenname: He
  surname: Zhu
  fullname: Zhu, He
  organization: City University of Hong Kong
– sequence: 3
  givenname: Binghao
  surname: Zhang
  fullname: Zhang, Binghao
  organization: City University of Hong Kong
– sequence: 4
  givenname: Gen
  surname: Li
  fullname: Li, Gen
  organization: City University of Hong Kong
– sequence: 5
  givenname: Hekang
  surname: Zhu
  fullname: Zhu, Hekang
  organization: City University of Hong Kong
– sequence: 6
  givenname: Yang
  surname: Ren
  fullname: Ren, Yang
  organization: Argonne National Laboratory
– sequence: 7
  givenname: Hongbo
  surname: Geng
  fullname: Geng, Hongbo
  organization: Guangdong University of Technology
– sequence: 8
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Guangdong University of Technology
– sequence: 9
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: City University of Hong Kong
– sequence: 10
  givenname: Cheng Chao
  orcidid: 0000-0003-2434-760X
  surname: Li
  fullname: Li, Cheng Chao
  email: licc@gdut.edu.cn
  organization: Guangdong University of Technology
BackLink https://www.osti.gov/servlets/purl/1756167$$D View this record in Osti.gov
BookMark eNpNkU1PGzEQhq2KSg2UK2erPS-M7fVufIxooFGpQOLjwMXyeifBaGNT20ubW39C7_13_SV1mgpxmpl3Hs2H3n2y54NHQo4YHDMAfmL6tTnmwAEYY-INmTDJWVWDkntkAkrISjX19B3ZT-kRAFQDzYT8vhm98yuaH5B-cR6zs4mGJb133v75-WsRPF34hDG74E_mP3I0dptS5-kdv5S025Q-vXZ5pFdh2BjvhjKlaBmjNYP5B8-96QZMdLF-iuEZezr7NmIY0-st1zlEs0J6hXEZ4tp4i-_J26UZEh7-jwfk9mx-c_q5urg8X5zOLqqVEEpUAqBmfNor6AAt5wokdl2Ntu5N3alGtaYTzVQUzUhVagXLRraiVy3HkosD8mE3N6TsdLIuo32wwXu0WbNWNqxpC_RxB5UXyvUp68cwRl_u0rxmUyUlb6FQakd9dwNu9FN0axM3moHeWqS3FukXi_Ts09fZSyX-An_Si30
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID 7SR
8BQ
8FD
JG9
OIOZB
OTOTI
DOI 10.1002/adma.202001113
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1756167
ADMA202001113
Genre article
GrantInformation_xml – fundername: Argonne National Laboratory
  funderid: DE‐AC02‐06CH11357
– fundername: Pearl River Talent Program of Guangdong Province
  funderid: 2017GC010030
– fundername: Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme
– fundername: Shenzhen–Hong Kong Innovation Circle Category D Project
  funderid: SGDX2019081623240948
– fundername: National Natural Science Foundation of China
  funderid: 51971066; 51771058
– fundername: City University of Hong Kong
  funderid: 9610399
– fundername: U.S. Department of Energy
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-g3393-3004128d90b0ec22905ebb4ec4da4b9697ab3683bb4a5996990f6573d972e90f3
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Thu May 18 22:26:50 EDT 2023
Sun Jul 13 05:15:38 EDT 2025
Wed Jan 22 16:33:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3393-3004128d90b0ec22905ebb4ec4da4b9697ab3683bb4a5996990f6573d972e90f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-06CH11357; DE‐AC02‐06CH11357
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
ORCID 0000-0003-2434-760X
000000032434760X
OpenAccessLink https://www.osti.gov/servlets/purl/1756167
PQID 2418955270
PQPubID 2045203
PageCount 10
ParticipantIDs osti_scitechconnect_1756167
proquest_journals_2418955270
wiley_primary_10_1002_adma_202001113_ADMA202001113
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 1993; 7
2017; 7
1959; 63
2017; 8
2017; 41
2019; 11
2016; 305
2019; 12
2017; 46
2019; 58
1989; 111
2019; 19
1996; 143
2012; 488
2017; 9
2017; 117
2012; 51
2018; 7
2018; 9
2018; 8
2018; 3
2019; 60
2013; 12
2018; 30
2008; 20
1996; 8
2017; 339
2019; 7
2011; 334
2018; 28
2015; 5
2019; 3
2011; 2
2013; 49
2019; 31
2015; 51
1996; 360
2006; 18
2017; 29
2016; 15
2014; 114
2018; 18
2016; 1
2015; 27
2013; 138
2007; 111
2016; 138
2018; 11
2018; 54
2018; 10
2016; 22
2018; 57
References_xml – volume: 41
  start-page: 3634
  year: 2017
  publication-title: New J. Chem.
– volume: 7
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 171
  year: 2019
  publication-title: Nano Energy
– volume: 15
  start-page: 169
  year: 2016
  publication-title: Nat. Mater.
– volume: 488
  start-page: 294
  year: 2012
  publication-title: Nature
– volume: 27
  start-page: 3609
  year: 2015
  publication-title: Chem. Mater.
– volume: 9
  start-page: 1656
  year: 2018
  publication-title: Nat. Commun.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 9
  start-page: 5100
  year: 2018
  publication-title: Nat. Commun.
– volume: 7
  start-page: 940
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 1758
  year: 2018
  publication-title: Nano Lett.
– volume: 111
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 138
  start-page: 319
  year: 2013
  publication-title: Mater. Chem. Phys.
– volume: 7
  start-page: 5612
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 58
  start-page: 2760
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  start-page: 1684
  year: 2017
  publication-title: Chem. Mater.
– volume: 51
  start-page: 9265
  year: 2015
  publication-title: Chem. Commun.
– volume: 7
  start-page: 593
  year: 1993
  publication-title: J. Chem. Soc., Chem. Commun.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 9
  start-page: 2906
  year: 2018
  publication-title: Nat. Commun.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 143
  start-page: L181
  year: 1996
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 583
  year: 2016
  publication-title: Nano Energy
– volume: 339
  start-page: 161
  year: 2017
  publication-title: J. Hazard. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 3529
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 9977
  year: 2013
  publication-title: Chem. Commun.
– volume: 3
  start-page: 2480
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 550
  year: 2011
  publication-title: Nat. Commun.
– volume: 54
  start-page: 4457
  year: 2018
  publication-title: Chem. Commun.
– volume: 305
  start-page: 22
  year: 2016
  publication-title: J. Power Sources
– volume: 111
  start-page: 4139
  year: 1989
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2620
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 19
  start-page: 3199
  year: 2019
  publication-title: Nano Lett.
– volume: 63
  start-page: 1381
  year: 1959
  publication-title: J. Phys. Chem.
– volume: 8
  start-page: 1992
  year: 1996
  publication-title: Chem. Mater.
– volume: 29
  start-page: 4874
  year: 2017
  publication-title: Chem. Mater.
– volume: 18
  start-page: 2787
  year: 2006
  publication-title: Chem. Mater.
– volume: 8
  start-page: 405
  year: 2017
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 30
  start-page: 3690
  year: 2018
  publication-title: Chem. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 360
  start-page: 175
  year: 1996
  publication-title: J. Mol. Struct.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3157
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 30
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 117
  start-page: 4287
  year: 2017
  publication-title: Chem. Rev.
– volume: 20
  start-page: 1916
  year: 2008
  publication-title: Chem. Mater.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 3943
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 933
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 2273
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 518
  year: 2013
  publication-title: Nat. Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
SSID ssj0009606
Score 2.7115216
Snippet Rechargeable zinc‐ion batteries (ZIBs) are emerging as a promising alternative for Li‐ion batteries. However, the developed cathodes suffer from sluggish Zn2+...
Rechargeable zinc-ion batteries (ZIBs) are emerging as a promising alternative for Li-ion batteries. However, the developed cathodes suffer from sluggish Zn2+...
SourceID osti
proquest
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Diffusion barriers
Diffusion layers
Diffusion rate
Electrochemical analysis
electrostatic interactions
Insertion
insertion/extraction kinetics
Intercalation
Interlayers
Ion storage
Lithium-ion batteries
MATERIALS SCIENCE
polyaniline
Polyanilines
Reaction kinetics
Rechargeable batteries
Storage batteries
Vanadium pentoxide
Zinc
zinc‐ion batteries
Title Tuning the Kinetics of Zinc‐Ion Insertion/Extraction in V2O5 by In Situ Polyaniline Intercalation Enables Improved Aqueous Zinc‐Ion Storage Performance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202001113
https://www.proquest.com/docview/2418955270
https://www.osti.gov/servlets/purl/1756167
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMetilN7APpAbJdWc-g1bDZ2Hj6u6CJoVYrKQ4iLFTs2WlEliE0k6Kkfofd-u36Sztj7giPcEkdWnMyM_dfY_pmxTxmNAUmRRpWxJhKOp1EhXRXlZernmdxQe9rnUXZwJr5cpBcru_gDH2KRcKPI8P01BXipp4MlNLSsPDcoCaelYydMC7ZIFf1Y8qNInnvYHjZBZqKYUxvjZPCwOnbIDYbUA5m5Klb9aLO_wcp5O8Mik-vdrtW75tcjhONzPmSTrc-kKIyC77xmL2z9hr1aARS-ZX9PO8qbAKpE-IrFxHSGxsHlpDb_fv85bGo4rGk-H607GN-1t2GbBExqOE--p6Dv8TmcTNoOjpuf92U9oeaCT0Oic3ivgLHfvjWFkN-wFYzw1zTddPUtJy266pWF4-U-h3fsbH98uncQzY5ziK44lzwKbK-ikrGOrSHOfGq1FtaIqhRaZjIvNc8KjmUlQWNwnHRZmvNK5onFa77F1uqmttsMjM3jYSULx20u6Pz2BF3KOCmc0KlxvMf6ZE6FKoJQuIbWDJlWoVTKhlneYztzK6tZxE4VKplCEo4u7rHEm0vdBN6HCmTnRJGh1MJQavT522hx9_4plfrsJV2H1b87bK297ewH1Dit_uj9-D9GY_Xz
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctKAfogTdiaYE5cE03GzsPH1d0q136oKJbhLhYsWNXK1BSdROJcuIjcOfb8UmYsfdVjnBLHFlxMmP7r_H4Z8beZDQHJEUaVcaaSDieRoV0VZSXqV9ncgPtaZ8n2fhcvPuULrMJaS9M4EOsAm7UM_x4TR2cAtL9NTW0rDw4KAnHpd9md-hYb8Ln739YE6RIoHvcHjZCZqJYchvjpH-zPg7JDXaqG0JzU676-ebgAdPLloY0ky97Xav3zPe_II7_9SkP2f2FGoVhcJ9H7JatH7PtDUbhE_Zr2lHoBFAowiEWE9YZGgefZ7X5_ePnpKlhUtOSPhq4P_rWXoWdEjCr4WPyPgV9jc_hbNZ2cNp8vS7rGbUXfCQS_cM7Boz8Dq45hBCHrWCI_6bp5ptvOWvRWy8snK63Ojxl5wej6dtxtDjRIbrgXPIo4L2KSsY6toZQ86nVWlgjqlJomcm81DwrOJaVxI3BqdJlac4rmScWr_kztlU3tX3OwNg8HlSycNzmgo5wT9CrjJPCCZ0ax3tsh-ypUEgQDddQ2pBpFaqlbJDlPba7NLNadNq5QjFTSCLSxT2WeHupy4D8UAHunCgylFoZSg33j4eruxf_Uuk1uzueHh-po8nJ4Q67R-UhGXiXbbVXnX2JkqfVr7xT_wGmQfoP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMctKBKCA2_E0gI-cE03GztOfFyxu-pSKCvaooqLFb-qFSipuolEOfERuPPt-CTM2PsqR7gljqw4mRn7L9vzMyGvBY4BWZkn1jiTcM_ypJTeJkWVh3UmP9CB9nkkDk7527P8bCuLP_Ih1hNuGBmhv8YAv7C-v4GGVjZwg7J4WvpNcouLVOLhDaOPG4AU6vNA24M2SMHLFbYxzfrX60OP3EBMXdOZ22o1DDeT-6RaNTTuMvmy37V633z_i-H4P1_ygNxbalE6jM7zkNxw9SNyd4tQ-Jj8Oulw4oSCTKSHUIxQZ9p4-nlem98_fk6bmk5rXNAH8_bH39rLmCdB5zX9lH3Iqb6C5_R43nZ01ny9quo5NpeGeUjwjuAWdBzytxY0TnA4S4fwa5pusf2W4xZ89dzR2SbR4Qk5nYxP3hwky_McknPGJEsi3Ku0MtWpMwiaz53W3BluK66lkEWlmSgZlFVIjYGB0ou8YFYWmYNr9pTs1E3tnhFqXJEOrCw9cwXHA9wz8CnjJfdc58azHtlFcyqQEcjCNbhpyLQKtJIYiKJH9lZWVsuQXSiQMqVEHl3aI1kwl7qIwA8V0c6ZQkOptaHUcPR-uL57_i-VXpHbs9FEvZseHe6SO1gcdwLvkZ32snMvQO-0-mVw6T-_xfi-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Kinetics+of+Zinc%E2%80%90Ion+Insertion%2FExtraction+in+V2O5+by+In+Situ+Polyaniline+Intercalation+Enables+Improved+Aqueous+Zinc%E2%80%90Ion+Storage+Performance&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Sucheng&rft.au=Zhu%2C+He&rft.au=Zhang%2C+Binghao&rft.au=Li%2C+Gen&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=26&rft_id=info:doi/10.1002%2Fadma.202001113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon