Effectively Creating Weakly Labeled Training Examples via Approximate Domain Knowledge
One of the challenges to information extraction is the requirement of human annotated examples, commonly called gold-standard examples. Many successful approaches alleviate this problem by employing some form of distant supervision, i.e., look into knowledge bases such as Freebase as a source of sup...
Saved in:
Published in | Inductive Logic Programming Vol. 9046; pp. 92 - 107 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2015
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783319237077 3319237071 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-23708-4_7 |
Cover
Loading…
Abstract | One of the challenges to information extraction is the requirement of human annotated examples, commonly called gold-standard examples. Many successful approaches alleviate this problem by employing some form of distant supervision, i.e., look into knowledge bases such as Freebase as a source of supervision to create more examples. While this is perfectly reasonable, most distant supervision methods rely on a hand-coded background knowledge that explicitly looks for patterns in text. For example, they assume all sentences containing Person X and Person Y are positive examples of the relation married(X, Y). In this work, we take a different approach – we infer weakly supervised examples for relations from models learned by using knowledge outside the natural language task. We argue that this method creates more robust examples that are particularly useful when learning the entire information-extraction model (the structure and parameters). We demonstrate on three domains that this form of weak supervision yields superior results when learning structure compared to using distant supervision labels or a smaller set of gold-standard labels. |
---|---|
AbstractList | One of the challenges to information extraction is the requirement of human annotated examples, commonly called gold-standard examples. Many successful approaches alleviate this problem by employing some form of distant supervision, i.e., look into knowledge bases such as Freebase as a source of supervision to create more examples. While this is perfectly reasonable, most distant supervision methods rely on a hand-coded background knowledge that explicitly looks for patterns in text. For example, they assume all sentences containing Person X and Person Y are positive examples of the relation married(X, Y). In this work, we take a different approach – we infer weakly supervised examples for relations from models learned by using knowledge outside the natural language task. We argue that this method creates more robust examples that are particularly useful when learning the entire information-extraction model (the structure and parameters). We demonstrate on three domains that this form of weak supervision yields superior results when learning structure compared to using distant supervision labels or a smaller set of gold-standard labels. |
Author | Kersting, Kristian Khot, Tushar Natarajan, Sriraam Shavlik, Jude Picado, Jose Re, Christopher |
Author_xml | – sequence: 1 givenname: Sriraam surname: Natarajan fullname: Natarajan, Sriraam email: natarasr@indiana.edu – sequence: 2 givenname: Jose surname: Picado fullname: Picado, Jose – sequence: 3 givenname: Tushar surname: Khot fullname: Khot, Tushar – sequence: 4 givenname: Kristian surname: Kersting fullname: Kersting, Kristian – sequence: 5 givenname: Christopher surname: Re fullname: Re, Christopher – sequence: 6 givenname: Jude surname: Shavlik fullname: Shavlik, Jude |
BookMark | eNqNkM9OwzAMhwMMRBl7Ai59gYBTp0lznMb4IyZxGXCM0jQdZV1b2jLG25NtcODGyfLP_izrOyODqq4cIRcMLhmAvFIyoUiRKRqhhIRyLQ_IyKfos13ED0nABGMUkaujPzMpByQAhIgqyfGEBApR-EESnZJR170BAIuVijkE5Hma5872xdqVX-GkdaYvqkX44szS9zOTutJl4bw1RbXNpxuzakrXhevChOOmaetNsTK9C6_rlV8JH6r60wMLd06Oc1N2bvRTh-TpZjqf3NHZ4-39ZDyjC8Skp0kKMs_TjBlreBaB5RlklmUWLPIszVUCGXJkFhW3aSTzBBSkNhfcmFikAoeE7e92TesfdK1O63rZaQZ661F7Kxq196J30rT36BncM_799w_X9dptIeuqvjWlfTVN79pOi0iJOBY6Uf4U_peKYyUgjn6pb6qMhZk |
ContentType | Book Chapter |
Copyright | Springer International Publishing Switzerland 2015 |
Copyright_xml | – notice: Springer International Publishing Switzerland 2015 |
DBID | FFUUA |
DEWEY | 005.115 |
DOI | 10.1007/978-3-319-23708-4_7 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISBN | 9783319237084 331923708X |
EISSN | 1611-3349 |
Editor | Davis, Jesse Ramon, Jan |
Editor_xml | – sequence: 1 fullname: Davis, Jesse – sequence: 2 fullname: Ramon, Jan |
EndPage | 107 |
ExternalDocumentID | EBC6296556_89_103 EBC5596052_89_103 |
GroupedDBID | 0D6 0DA 38. AABBV AAGZE AAZAK AAZUS ABBVZ ABFTD ABMNI ACKNT ACRRC AEDXK AEJLV AEKFX AETDV AEZAY ALMA_UNASSIGNED_HOLDINGS APFYR AZZ BBABE CZZ FFUUA I4C IEZ IY- LDH SBO SFQCF TMQGW TPJZQ TSXQS TWXRB Z83 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS P2P RSU ~02 |
ID | FETCH-LOGICAL-g338t-8b07ffbd1aca4d20c4d0dc1dc0c34dbf980d3431c394cb27f8090bcf64aa56b63 |
ISBN | 9783319237077 3319237071 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:03:17 EDT 2025 Mon Apr 07 01:55:03 EDT 2025 Thu May 29 00:28:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | QA8.9-QA10.3Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g338t-8b07ffbd1aca4d20c4d0dc1dc0c34dbf980d3431c394cb27f8090bcf64aa56b63 |
OCLC | 933623782 |
PQID | EBC5596052_89_103 |
PageCount | 16 |
ParticipantIDs | springer_books_10_1007_978_3_319_23708_4_7 proquest_ebookcentralchapters_6296556_89_103 proquest_ebookcentralchapters_5596052_89_103 |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 24th International Conference, ILP 2014, Nancy, France, September 14-16, 2014, Revised Selected Papers |
PublicationTitle | Inductive Logic Programming |
PublicationYear | 2015 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard |
SSID | ssj0001599540 ssj0002792 |
Score | 1.9897096 |
Snippet | One of the challenges to information extraction is the requirement of human annotated examples, commonly called gold-standard examples. Many successful... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 92 |
SubjectTerms | Artificial intelligence Computer programming / software development Distant Supervision Freebase Gold Standard Examples Markov Logic Networks (MLN) Mathematical theory of computation Weak Supervision |
Title | Effectively Creating Weakly Labeled Training Examples via Approximate Domain Knowledge |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5596052&ppg=103 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6296556&ppg=103 http://link.springer.com/10.1007/978-3-319-23708-4_7 |
Volume | 9046 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa65QIcgAXEWz5wogQ5sfM6cECoaLV099Rd9hbZjrPbRW2lJEUr_gx_lZnYTtOChJZL1EZW43om42_GM98Q8pblEbw0hgcmi2QgKlkFSuRpgAH_nBnAGB0D38lpcnQmji_ii9Ho1yBradOqD_rnX-tK_keqcA_kilWyt5Bs_6NwAz6DfOEKEobrHvjdDbO6dEGkasXEH-yXrDHlHzOtln4vwgivbGUtr12Ms17UUi57W4i1JGt_CNDb3at1Z5Xnm-ZK1ltrDBhxsWsVhrpmKZBhKsiV3KHQ1eXkm5Hf4ftMKtjZSmRR73pRTKY3EhmJm8mPhUQQXK9vFgCbDWD5JQyZfPVRPmvwkIi5-ThzRx2n67bLIJv4bhTeOA2jF2G8F73w0cu9-Oc2BLfj7nKOeDRlrvGLK_sCkw5OkbWSxlrxBLkZueVCdZbZdtxze7zrtPvH9jHMGMHqLnxYFogiPSAHaRaPyZ1P0-PZ-TaIh3RtSJbjtn5kY7THVnZOWEzk5xxauqftf-g5sCzN8d4TdzyevUP6DvvMH5L7WA9DsVAFFu8RGZnVIXng15-69T8k9056BuDmMTkf6AT1OkGtTlCnE9TrBPU6QUEn6EAnqNUJ2uvEE3L2ZTr_fBS4Hh7BJedZG2SKpVWlylBqKcqIaVGyUoelZpqLUlV5xkoOIFbzXGgVpVXGcqZ0lQgp40Ql_CkZr9Yr84xQUfKoMkqFElnaKvCEGYBpIzR4yFVszHPy3q9Y0WUauPRmbdenKcB5Buc9KrK8CBn_5_AkypM4Tvrh77wQChzdFJ7wG4RX8AKEV3TCK0B4L24z-CW5u30zXpFxW2_Ma0C6rXrj9O03zOmlKQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Inductive+Logic+Programming&rft.au=Natarajan%2C+Sriraam&rft.au=Picado%2C+Jose&rft.au=Khot%2C+Tushar&rft.au=Kersting%2C+Kristian&rft.atitle=Effectively+Creating+Weakly+Labeled+Training+Examples+via+Approximate+Domain+Knowledge&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2015-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319237077&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=92&rft.epage=107&rft_id=info:doi/10.1007%2F978-3-319-23708-4_7 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5596052-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6296556-l.jpg |