Strong Surface‐Bound Sulfur in Carbon Nanotube Bridged Hierarchical Mo2C‐Based MXene Nanosheets for Lithium–Sulfur Batteries

In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface a...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 3
Main Authors Lv, Li‐Ping, Guo, Chao‐Fei, Sun, Weiwei, Wang, Yong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 18.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo2C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging. The strong surface‐bound sulfur in the hierarchical Mo2C‐CNTs host can lead to a superior electrochemical performance in lithium–sulfur batteries. A large reversible capacity of ≈925 mAh g−1 is observed after 250 cycles at a current density of 0.1 C (1 C = 1675 mAh g−1) with good rate capability. Notably, the electrodes with high loading amounts of sulfur can also deliver good electrochemical performances, i.e., initial reversible capacities of ≈1314 mAh g−1 (2.4 mAh cm−2), ≈1068 mAh g−1 (3.7 mAh cm−2), and ≈959 mAh g−1 (5.3 mAh cm−2) at various areal loading amounts of sulfur (1.8, 3.5, and 5.6 mg cm−2) are also observed, respectively. Mo2C‐based MXene nanosheets composited with carbon nanotubes are synthesized and used as sulfur host in lithium–sulfur (Li–S) batteries. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs, leading to a superior electrochemical performance in Li–S batteries.
AbstractList In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo2C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging. The strong surface‐bound sulfur in the hierarchical Mo2C‐CNTs host can lead to a superior electrochemical performance in lithium–sulfur batteries. A large reversible capacity of ≈925 mAh g−1 is observed after 250 cycles at a current density of 0.1 C (1 C = 1675 mAh g−1) with good rate capability. Notably, the electrodes with high loading amounts of sulfur can also deliver good electrochemical performances, i.e., initial reversible capacities of ≈1314 mAh g−1 (2.4 mAh cm−2), ≈1068 mAh g−1 (3.7 mAh cm−2), and ≈959 mAh g−1 (5.3 mAh cm−2) at various areal loading amounts of sulfur (1.8, 3.5, and 5.6 mg cm−2) are also observed, respectively.
In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo2C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging. The strong surface‐bound sulfur in the hierarchical Mo2C‐CNTs host can lead to a superior electrochemical performance in lithium–sulfur batteries. A large reversible capacity of ≈925 mAh g−1 is observed after 250 cycles at a current density of 0.1 C (1 C = 1675 mAh g−1) with good rate capability. Notably, the electrodes with high loading amounts of sulfur can also deliver good electrochemical performances, i.e., initial reversible capacities of ≈1314 mAh g−1 (2.4 mAh cm−2), ≈1068 mAh g−1 (3.7 mAh cm−2), and ≈959 mAh g−1 (5.3 mAh cm−2) at various areal loading amounts of sulfur (1.8, 3.5, and 5.6 mg cm−2) are also observed, respectively. Mo2C‐based MXene nanosheets composited with carbon nanotubes are synthesized and used as sulfur host in lithium–sulfur (Li–S) batteries. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs, leading to a superior electrochemical performance in Li–S batteries.
Author Guo, Chao‐Fei
Lv, Li‐Ping
Wang, Yong
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Li‐Ping
  surname: Lv
  fullname: Lv, Li‐Ping
  organization: Shanghai University
– sequence: 2
  givenname: Chao‐Fei
  surname: Guo
  fullname: Guo, Chao‐Fei
  organization: Shanghai University
– sequence: 3
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  organization: Shanghai University
– sequence: 4
  givenname: Yong
  orcidid: 0000-0003-3489-7672
  surname: Wang
  fullname: Wang, Yong
  email: yongwang@shu.edu.cn
  organization: Shanghai University
BookMark eNo9UE1PAjEQbYwmAnr13MQzOG3Z7u5RiIrJogc08bYp7BRKlhbb3RhuxF9g4j_kl7gI4TTzMu8j89rk3DqLhNww6DEAfhdWZdnjwBLoC5GckRaTTHRlwtPz087gkrRDWAIIxvtxi3xPKu_snE5qr9UMd9ufgatt0eBS154aS4fKT52lL8q6qp4iHXhTzLGgI4Ne-dnCzFRJx44P91oVmsv4Ay3-C8ICsQpUO08zUy1Mvdptf4_WA1VV6A2GK3KhVRnw-jg75P3x4W046mavT8_D-6w7b95JupgCFFwKrWIllU6LRMTAZhFoAREgB6mjqWYco1hhPy2iWEwTIVBJrlAKFB1ye_Bde_dZY6jypau9bSJzzmQCMpUsbljpgfVlStzka29Wym9yBvm-5Hxfcn4qOZ-Ms-yExB-RD3is
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.201804338
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL201804338
Genre article
GrantInformation_xml – fundername: Shanghai Municipal Education Commission
  funderid: QD2016027; 16CG46
– fundername: Shanghai Municipal Science and Technology Commission
  funderid: 15520720600; 16YF1404200; 17010500300
– fundername: National Natural Science Foundation of China
  funderid: 51603119
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-g3388-e900d263fa7a6af9d83701c50f3050e206f5bf12e57ae49d573b833ea62ae63e3
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Jul 25 12:08:48 EDT 2025
Wed Jan 22 16:23:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3388-e900d263fa7a6af9d83701c50f3050e206f5bf12e57ae49d573b833ea62ae63e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3489-7672
PQID 2168069617
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_journals_2168069617
wiley_primary_10_1002_smll_201804338_SMLL201804338
PublicationCentury 2000
PublicationDate January 18, 2019
PublicationDateYYYYMMDD 2019-01-18
PublicationDate_xml – month: 01
  year: 2019
  text: January 18, 2019
  day: 18
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 2
2017; 7
2017; 1
2015; 6
2013; 1
2011; 2
2018; 303
2018; 427
2017; 27
2017; 46
2015; 54
2017; 23
2016; 10
2016; 222
2014; 26
2019; 16
2016; 205
2015; 108
2016; 326
2017; 29
2015; 9
2016; 16
2016; 120
2016; 362
2011; 133
2017; 338
2016; 55
2016; 99
2015; 293
2016; 6
2018; 8
2012; 134
2013; 13
2017; 13
2002; 43
2014; 16
2016; 353
2011; 23
2007; 61
2017; 121
2018; 12
2016; 28
2014; 7
2016; 26
2016; 8
2017; 327
References_xml – volume: 46
  start-page: 5237
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 61
  start-page: 4815
  year: 2007
  publication-title: Mater. Lett.
– volume: 134
  start-page: 18510
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 303
  start-page: 276
  year: 2018
  publication-title: Catal. Today
– volume: 8
  start-page: 22280
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 133
  start-page: 18522
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 20228
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 2491
  year: 2016
  publication-title: ACS Nano
– volume: 23
  start-page: 4248
  year: 2011
  publication-title: Adv. Mater.
– volume: 338
  start-page: 34
  year: 2017
  publication-title: J. Power Sources
– volume: 27
  start-page: 1700564
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 440
  year: 2016
  publication-title: Nano Lett.
– volume: 326
  start-page: 686
  year: 2016
  publication-title: J. Power Sources
– volume: 5
  start-page: 3014
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 327
  start-page: 855
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 120
  start-page: 15082
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 55
  start-page: 3982
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 325
  year: 2011
  publication-title: Nat. Commun.
– volume: 26
  start-page: 4143
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 1700134
  year: 2017
  publication-title: Small Methods
– volume: 293
  start-page: 119
  year: 2015
  publication-title: J. Power Sources
– volume: 2
  start-page: 1500048
  year: 2015
  publication-title: Adv. Mater. Interfaces
– volume: 13
  start-page: 1701246
  year: 2017
  publication-title: Small
– volume: 6
  start-page: 5682
  year: 2015
  publication-title: Nat. Commun.
– volume: 28
  start-page: 3937
  year: 2016
  publication-title: Chem. Mater.
– volume: 29
  start-page: 1601759
  year: 2017
  publication-title: Adv. Mater.
– volume: 23
  start-page: 12613
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 7
  start-page: 3381
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 344
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 13
  start-page: 1701013
  year: 2017
  publication-title: Small
– volume: 29
  start-page: 1603040
  year: 2017
  publication-title: Adv. Mater.
– volume: 121
  start-page: 1
  year: 2017
  publication-title: Mater. Sci. Eng., R
– volume: 43
  start-page: 2292
  year: 2002
  publication-title: Mater. Trans.
– volume: 1
  start-page: 11659
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 353
  start-page: 1137
  year: 2016
  publication-title: Science
– volume: 5
  start-page: 5222
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 7841
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 108
  start-page: 147
  year: 2015
  publication-title: Scr. Mater.
– volume: 12
  start-page: 2381
  year: 2018
  publication-title: ACS Nano
– volume: 54
  start-page: 3907
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 7312
  year: 2017
  publication-title: ACS Catal.
– volume: 427
  start-page: 823
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 1702485
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 222
  start-page: 1345
  year: 2016
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 98035
  year: 2016
  publication-title: RSC Adv.
– volume: 362
  start-page: 406
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 99
  start-page: 660
  year: 2016
  publication-title: J. Am. Ceram. Soc.
– volume: 26
  start-page: 625
  year: 2014
  publication-title: Adv. Mater.
– volume: 9
  start-page: 11156
  year: 2015
  publication-title: ACS Nano
– volume: 205
  start-page: 46
  year: 2016
  publication-title: Mater. Sci. Eng., B
– volume: 120
  start-page: 28432
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 1265
  year: 2013
  publication-title: Nano Lett.
– volume: 1
  start-page: 6602
  year: 2013
  publication-title: J. Mater. Chem. A
SSID ssj0031247
Score 2.591023
Snippet In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Carbon nanotubes
Electrochemical analysis
hydroxyl functionalization
Lithium sulfur batteries
Mo2C‐based MXene
MXenes
Nanosheets
Nanotechnology
Strong interactions (field theory)
Sulfur
Title Strong Surface‐Bound Sulfur in Carbon Nanotube Bridged Hierarchical Mo2C‐Based MXene Nanosheets for Lithium–Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201804338
https://www.proquest.com/docview/2168069617
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQEwz8I_7lgdXg2ImTjFCBKtQyUJC6Rb7kDBUlRU2yMCGeAIk35Emwk7YURtji4SLn4rv7bN99R8gxAAeQGDDhp8B8DFMWZRIZIKg4Ba50kyB7rdp3_lU_6M9V8Tf8ELMDN2cZtb92Bq6hOP0mDS2ehu7qwIscBZer9nUJWw4V3cz4o6QNXnV3FRuzmCPemrI2cnH6U_wHvpxHqXWYuVwlejrBJrvk8aQq4SR9-cXd-J8vWCMrEwxKz5pFs04WMN8gy3PMhJvkreeOyO9prxobneLn6_u5679kx0NTjekgpy09hlFOrXcelRUgPa8rvzLaHriS5rrDypB2R6LlZG2ozGi3b_1qLVA8IJYFtXiZdgblw6B6-nz9mLy6Ify0-_ctcnd5cdtqs0m7BnZvpx8xjDnPhJJGh1ppE2eOV8dLA26sT-EouDIBGE9gEGr04ywIJURSolZCo5Iot8liPspxh1BtN4FxAJ4Cgz6ijqUJIXRQTPmax9kuOZj-rmRic0UiPBVxFVtItktErffkuWHsSBpuZpE4jSczjSe9bqczG-39RWifLNlnl3HGvOiALJbjCg8tSinhqF6JX_vW5S8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_CNaCvgAR7eOnTjJgQPdUm1ptge2lfYW7GTcRmyz1SYRglPFEyDxJLwKj9AnwU6yS8sRqQeOtmIr8ng839gz3wC80pppLTCg3M809THMaJQLpBq1jDPNpOoCZA_k8Mh_PwkmK_BzkQvT8UMsL9ycZrTntVNwdyG99Yc1tDqdurcDL3IcXFEfV7mPXz5br616s7djRfya8913h4Mh7QsL0GP7ZUQxZiznUhgVKqlMnDsGGC8LmLG7nyFn0gTaeByDUKEf50EodCQEKskVSoHCznsDbroy4o6uf-fDkrFKWHPZ1nOxVpI6qq8FTyTjW1f_9wqivYyLW8O2ew9-LZaki2f5tNnUejP7-hdb5H-1Zvfhbg-zydtOLx7ACpYP4c4l8sVH8G3sXgGOybiZG5Xhxfn3bVdiyranppmToiQDNdezklgDNKsbjWS7TW7LybBwWdttEZkpGc34wI21aCAno4k1He2A6gSxroh1CUhS1CdFc3px_qOfuuM0LbB6DEfXsghPYLWclfgUiLJ-bhxoT2qDPqKKhQl16NCm9BWL8zXYWOyPtD9WqpR7MmIytqhzDXgr6PSsIyVJO_ppnjoJp0sJp-NRkixb6_8y6CXcGh6OkjTZO9h_Brdtvwuwo160Aav1vMHnFpTV-kWrBgQ-Xvce-g03tUJ7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48F9RKOADHN06duIkBw50l9WW7laIpdLegp2M24htttokQnCqeAIkXoRX4RX6JNhJdmk5IvXA0VHGimY8nm_i8TcAL7RmWgsMKPdTTX0MUxplAqlGLeNUM6naAtkDOTz0306D6Rr8XN6FafkhVj_cnGc0-7Vz8NPM7PwhDS1PZu7owIscBVfUlVXu45fPNmkrX-31rYVfcj5486E3pF1fAXpk34woxoxlXAqjQiWViTNHAOOlATN28TPkTJpAG49jECr04ywIhY6EQCW5QilQ2HmvwXVfstg1i-i_XxFWCRstm3YuNkhSx_S1pIlkfOfy914CtBdhcRPXBnfg11IjbTnLp-260tvp17_IIv8nld2F2x3IJq9br7gHa1jch1sXqBcfwLeJOwM4IpN6YVSK52ffd12DKTuemXpB8oL01ELPC2LDz7yqNZLd5mpbRoa5u7PdtJCZkfGc95ysxQIZGU9t4GgEymPEqiQ2ISCjvDrO65Pzsx_d1C2jaY7lQzi8EiVswHoxL_AREGWz3DjQntQGfUQVCxPq0GFN6SsWZ5uwtVweSbeplAn3ZMRkbDHnJvDGzslpS0mStOTTPHEWTlYWTibj0Wg1evwvQs_hxrv-IBntHew_gZv2sauuo160BevVosanFpFV-lnjBAQ-XvUS-g0V3EEq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+Surface%E2%80%90Bound+Sulfur+in+Carbon+Nanotube+Bridged+Hierarchical+Mo2C%E2%80%90Based+MXene+Nanosheets+for+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%E2%80%90Ping+Lv&rft.au=Chao%E2%80%90Fei+Guo&rft.au=Sun%2C+Weiwei&rft.au=Wang%2C+Yong&rft.date=2019-01-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=3&rft_id=info:doi/10.1002%2Fsmll.201804338&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon