Strong Surface‐Bound Sulfur in Carbon Nanotube Bridged Hierarchical Mo2C‐Based MXene Nanosheets for Lithium–Sulfur Batteries
In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface a...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
18.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo2C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging. The strong surface‐bound sulfur in the hierarchical Mo2C‐CNTs host can lead to a superior electrochemical performance in lithium–sulfur batteries. A large reversible capacity of ≈925 mAh g−1 is observed after 250 cycles at a current density of 0.1 C (1 C = 1675 mAh g−1) with good rate capability. Notably, the electrodes with high loading amounts of sulfur can also deliver good electrochemical performances, i.e., initial reversible capacities of ≈1314 mAh g−1 (2.4 mAh cm−2), ≈1068 mAh g−1 (3.7 mAh cm−2), and ≈959 mAh g−1 (5.3 mAh cm−2) at various areal loading amounts of sulfur (1.8, 3.5, and 5.6 mg cm−2) are also observed, respectively.
Mo2C‐based MXene nanosheets composited with carbon nanotubes are synthesized and used as sulfur host in lithium–sulfur (Li–S) batteries. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs, leading to a superior electrochemical performance in Li–S batteries. |
---|---|
AbstractList | In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo2C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging. The strong surface‐bound sulfur in the hierarchical Mo2C‐CNTs host can lead to a superior electrochemical performance in lithium–sulfur batteries. A large reversible capacity of ≈925 mAh g−1 is observed after 250 cycles at a current density of 0.1 C (1 C = 1675 mAh g−1) with good rate capability. Notably, the electrodes with high loading amounts of sulfur can also deliver good electrochemical performances, i.e., initial reversible capacities of ≈1314 mAh g−1 (2.4 mAh cm−2), ≈1068 mAh g−1 (3.7 mAh cm−2), and ≈959 mAh g−1 (5.3 mAh cm−2) at various areal loading amounts of sulfur (1.8, 3.5, and 5.6 mg cm−2) are also observed, respectively. In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo2C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging. The strong surface‐bound sulfur in the hierarchical Mo2C‐CNTs host can lead to a superior electrochemical performance in lithium–sulfur batteries. A large reversible capacity of ≈925 mAh g−1 is observed after 250 cycles at a current density of 0.1 C (1 C = 1675 mAh g−1) with good rate capability. Notably, the electrodes with high loading amounts of sulfur can also deliver good electrochemical performances, i.e., initial reversible capacities of ≈1314 mAh g−1 (2.4 mAh cm−2), ≈1068 mAh g−1 (3.7 mAh cm−2), and ≈959 mAh g−1 (5.3 mAh cm−2) at various areal loading amounts of sulfur (1.8, 3.5, and 5.6 mg cm−2) are also observed, respectively. Mo2C‐based MXene nanosheets composited with carbon nanotubes are synthesized and used as sulfur host in lithium–sulfur (Li–S) batteries. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs, leading to a superior electrochemical performance in Li–S batteries. |
Author | Guo, Chao‐Fei Lv, Li‐Ping Wang, Yong Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Li‐Ping surname: Lv fullname: Lv, Li‐Ping organization: Shanghai University – sequence: 2 givenname: Chao‐Fei surname: Guo fullname: Guo, Chao‐Fei organization: Shanghai University – sequence: 3 givenname: Weiwei surname: Sun fullname: Sun, Weiwei organization: Shanghai University – sequence: 4 givenname: Yong orcidid: 0000-0003-3489-7672 surname: Wang fullname: Wang, Yong email: yongwang@shu.edu.cn organization: Shanghai University |
BookMark | eNo9UE1PAjEQbYwmAnr13MQzOG3Z7u5RiIrJogc08bYp7BRKlhbb3RhuxF9g4j_kl7gI4TTzMu8j89rk3DqLhNww6DEAfhdWZdnjwBLoC5GckRaTTHRlwtPz087gkrRDWAIIxvtxi3xPKu_snE5qr9UMd9ufgatt0eBS154aS4fKT52lL8q6qp4iHXhTzLGgI4Ne-dnCzFRJx44P91oVmsv4Ay3-C8ICsQpUO08zUy1Mvdptf4_WA1VV6A2GK3KhVRnw-jg75P3x4W046mavT8_D-6w7b95JupgCFFwKrWIllU6LRMTAZhFoAREgB6mjqWYco1hhPy2iWEwTIVBJrlAKFB1ye_Bde_dZY6jypau9bSJzzmQCMpUsbljpgfVlStzka29Wym9yBvm-5Hxfcn4qOZ-Ms-yExB-RD3is |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/smll.201804338 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL201804338 |
Genre | article |
GrantInformation_xml | – fundername: Shanghai Municipal Education Commission funderid: QD2016027; 16CG46 – fundername: Shanghai Municipal Science and Technology Commission funderid: 15520720600; 16YF1404200; 17010500300 – fundername: National Natural Science Foundation of China funderid: 51603119 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-g3388-e900d263fa7a6af9d83701c50f3050e206f5bf12e57ae49d573b833ea62ae63e3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Fri Jul 25 12:08:48 EDT 2025 Wed Jan 22 16:23:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3388-e900d263fa7a6af9d83701c50f3050e206f5bf12e57ae49d573b833ea62ae63e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3489-7672 |
PQID | 2168069617 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2168069617 wiley_primary_10_1002_smll_201804338_SMLL201804338 |
PublicationCentury | 2000 |
PublicationDate | January 18, 2019 |
PublicationDateYYYYMMDD | 2019-01-18 |
PublicationDate_xml | – month: 01 year: 2019 text: January 18, 2019 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2015; 2 2017; 7 2017; 1 2015; 6 2013; 1 2011; 2 2018; 303 2018; 427 2017; 27 2017; 46 2015; 54 2017; 23 2016; 10 2016; 222 2014; 26 2019; 16 2016; 205 2015; 108 2016; 326 2017; 29 2015; 9 2016; 16 2016; 120 2016; 362 2011; 133 2017; 338 2016; 55 2016; 99 2015; 293 2016; 6 2018; 8 2012; 134 2013; 13 2017; 13 2002; 43 2014; 16 2016; 353 2011; 23 2007; 61 2017; 121 2018; 12 2016; 28 2014; 7 2016; 26 2016; 8 2017; 327 |
References_xml | – volume: 46 start-page: 5237 year: 2017 publication-title: Chem. Soc. Rev. – volume: 61 start-page: 4815 year: 2007 publication-title: Mater. Lett. – volume: 134 start-page: 18510 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 303 start-page: 276 year: 2018 publication-title: Catal. Today – volume: 8 start-page: 22280 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 133 start-page: 18522 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 20228 year: 2017 publication-title: J. Mater. Chem. A – volume: 10 start-page: 2491 year: 2016 publication-title: ACS Nano – volume: 23 start-page: 4248 year: 2011 publication-title: Adv. Mater. – volume: 338 start-page: 34 year: 2017 publication-title: J. Power Sources – volume: 27 start-page: 1700564 year: 2017 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 440 year: 2016 publication-title: Nano Lett. – volume: 326 start-page: 686 year: 2016 publication-title: J. Power Sources – volume: 5 start-page: 3014 year: 2017 publication-title: J. Mater. Chem. A – volume: 327 start-page: 855 year: 2017 publication-title: Chem. Eng. J. – volume: 120 start-page: 15082 year: 2016 publication-title: J. Phys. Chem. C – volume: 55 start-page: 3982 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 325 year: 2011 publication-title: Nat. Commun. – volume: 26 start-page: 4143 year: 2016 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 1700134 year: 2017 publication-title: Small Methods – volume: 293 start-page: 119 year: 2015 publication-title: J. Power Sources – volume: 2 start-page: 1500048 year: 2015 publication-title: Adv. Mater. Interfaces – volume: 13 start-page: 1701246 year: 2017 publication-title: Small – volume: 6 start-page: 5682 year: 2015 publication-title: Nat. Commun. – volume: 28 start-page: 3937 year: 2016 publication-title: Chem. Mater. – volume: 29 start-page: 1601759 year: 2017 publication-title: Adv. Mater. – volume: 23 start-page: 12613 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 7 start-page: 3381 year: 2014 publication-title: Energy Environ. Sci. – volume: 16 start-page: 344 year: 2019 publication-title: Energy Storage Mater. – volume: 13 start-page: 1701013 year: 2017 publication-title: Small – volume: 29 start-page: 1603040 year: 2017 publication-title: Adv. Mater. – volume: 121 start-page: 1 year: 2017 publication-title: Mater. Sci. Eng., R – volume: 43 start-page: 2292 year: 2002 publication-title: Mater. Trans. – volume: 1 start-page: 11659 year: 2013 publication-title: J. Mater. Chem. A – volume: 353 start-page: 1137 year: 2016 publication-title: Science – volume: 5 start-page: 5222 year: 2017 publication-title: J. Mater. Chem. A – volume: 16 start-page: 7841 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 108 start-page: 147 year: 2015 publication-title: Scr. Mater. – volume: 12 start-page: 2381 year: 2018 publication-title: ACS Nano – volume: 54 start-page: 3907 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 7312 year: 2017 publication-title: ACS Catal. – volume: 427 start-page: 823 year: 2018 publication-title: Appl. Surf. Sci. – volume: 8 start-page: 1702485 year: 2018 publication-title: Adv. Energy Mater. – volume: 222 start-page: 1345 year: 2016 publication-title: Electrochim. Acta – volume: 6 start-page: 98035 year: 2016 publication-title: RSC Adv. – volume: 362 start-page: 406 year: 2016 publication-title: Appl. Surf. Sci. – volume: 99 start-page: 660 year: 2016 publication-title: J. Am. Ceram. Soc. – volume: 26 start-page: 625 year: 2014 publication-title: Adv. Mater. – volume: 9 start-page: 11156 year: 2015 publication-title: ACS Nano – volume: 205 start-page: 46 year: 2016 publication-title: Mater. Sci. Eng., B – volume: 120 start-page: 28432 year: 2016 publication-title: J. Phys. Chem. C – volume: 13 start-page: 1265 year: 2013 publication-title: Nano Lett. – volume: 1 start-page: 6602 year: 2013 publication-title: J. Mater. Chem. A |
SSID | ssj0031247 |
Score | 2.591023 |
Snippet | In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carbon nanotubes Electrochemical analysis hydroxyl functionalization Lithium sulfur batteries Mo2C‐based MXene MXenes Nanosheets Nanotechnology Strong interactions (field theory) Sulfur |
Title | Strong Surface‐Bound Sulfur in Carbon Nanotube Bridged Hierarchical Mo2C‐Based MXene Nanosheets for Lithium–Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201804338 https://www.proquest.com/docview/2168069617 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQEwz8I_7lgdXg2ImTjFCBKtQyUJC6Rb7kDBUlRU2yMCGeAIk35Emwk7YURtji4SLn4rv7bN99R8gxAAeQGDDhp8B8DFMWZRIZIKg4Ba50kyB7rdp3_lU_6M9V8Tf8ELMDN2cZtb92Bq6hOP0mDS2ehu7qwIscBZer9nUJWw4V3cz4o6QNXnV3FRuzmCPemrI2cnH6U_wHvpxHqXWYuVwlejrBJrvk8aQq4SR9-cXd-J8vWCMrEwxKz5pFs04WMN8gy3PMhJvkreeOyO9prxobneLn6_u5679kx0NTjekgpy09hlFOrXcelRUgPa8rvzLaHriS5rrDypB2R6LlZG2ozGi3b_1qLVA8IJYFtXiZdgblw6B6-nz9mLy6Ify0-_ctcnd5cdtqs0m7BnZvpx8xjDnPhJJGh1ppE2eOV8dLA26sT-EouDIBGE9gEGr04ywIJURSolZCo5Iot8liPspxh1BtN4FxAJ4Cgz6ijqUJIXRQTPmax9kuOZj-rmRic0UiPBVxFVtItktErffkuWHsSBpuZpE4jSczjSe9bqczG-39RWifLNlnl3HGvOiALJbjCg8tSinhqF6JX_vW5S8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_CNaCvgAR7eOnTjJgQPdUm1ptge2lfYW7GTcRmyz1SYRglPFEyDxJLwKj9AnwU6yS8sRqQeOtmIr8ng839gz3wC80pppLTCg3M809THMaJQLpBq1jDPNpOoCZA_k8Mh_PwkmK_BzkQvT8UMsL9ycZrTntVNwdyG99Yc1tDqdurcDL3IcXFEfV7mPXz5br616s7djRfya8913h4Mh7QsL0GP7ZUQxZiznUhgVKqlMnDsGGC8LmLG7nyFn0gTaeByDUKEf50EodCQEKskVSoHCznsDbroy4o6uf-fDkrFKWHPZ1nOxVpI6qq8FTyTjW1f_9wqivYyLW8O2ew9-LZaki2f5tNnUejP7-hdb5H-1Zvfhbg-zydtOLx7ACpYP4c4l8sVH8G3sXgGOybiZG5Xhxfn3bVdiyranppmToiQDNdezklgDNKsbjWS7TW7LybBwWdttEZkpGc34wI21aCAno4k1He2A6gSxroh1CUhS1CdFc3px_qOfuuM0LbB6DEfXsghPYLWclfgUiLJ-bhxoT2qDPqKKhQl16NCm9BWL8zXYWOyPtD9WqpR7MmIytqhzDXgr6PSsIyVJO_ppnjoJp0sJp-NRkixb6_8y6CXcGh6OkjTZO9h_Brdtvwuwo160Aav1vMHnFpTV-kWrBgQ-Xvce-g03tUJ7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48F9RKOADHN06duIkBw50l9WW7laIpdLegp2M24htttokQnCqeAIkXoRX4RX6JNhJdmk5IvXA0VHGimY8nm_i8TcAL7RmWgsMKPdTTX0MUxplAqlGLeNUM6naAtkDOTz0306D6Rr8XN6FafkhVj_cnGc0-7Vz8NPM7PwhDS1PZu7owIscBVfUlVXu45fPNmkrX-31rYVfcj5486E3pF1fAXpk34woxoxlXAqjQiWViTNHAOOlATN28TPkTJpAG49jECr04ywIhY6EQCW5QilQ2HmvwXVfstg1i-i_XxFWCRstm3YuNkhSx_S1pIlkfOfy914CtBdhcRPXBnfg11IjbTnLp-260tvp17_IIv8nld2F2x3IJq9br7gHa1jch1sXqBcfwLeJOwM4IpN6YVSK52ffd12DKTuemXpB8oL01ELPC2LDz7yqNZLd5mpbRoa5u7PdtJCZkfGc95ysxQIZGU9t4GgEymPEqiQ2ISCjvDrO65Pzsx_d1C2jaY7lQzi8EiVswHoxL_AREGWz3DjQntQGfUQVCxPq0GFN6SsWZ5uwtVweSbeplAn3ZMRkbDHnJvDGzslpS0mStOTTPHEWTlYWTibj0Wg1evwvQs_hxrv-IBntHew_gZv2sauuo160BevVosanFpFV-lnjBAQ-XvUS-g0V3EEq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+Surface%E2%80%90Bound+Sulfur+in+Carbon+Nanotube+Bridged+Hierarchical+Mo2C%E2%80%90Based+MXene+Nanosheets+for+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%E2%80%90Ping+Lv&rft.au=Chao%E2%80%90Fei+Guo&rft.au=Sun%2C+Weiwei&rft.au=Wang%2C+Yong&rft.date=2019-01-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=3&rft_id=info:doi/10.1002%2Fsmll.201804338&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |