MOFs‐Based Heterogeneous Catalysts: New Opportunities for Energy‐Related CO2 Conversion
Metal–organic frameworks (MOFs) with high surface area and tunable chemical structures have attracted tremendous attention. Recently, the utilization of solar energy for CO2 conversion to produce valuable chemicals or fuels has become extremely appealing. The interior of MOFs can be designed to have...
Saved in:
Published in | Advanced energy materials Vol. 8; no. 32 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
15.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.201801587 |
Cover
Loading…
Abstract | Metal–organic frameworks (MOFs) with high surface area and tunable chemical structures have attracted tremendous attention. Recently, the utilization of solar energy for CO2 conversion to produce valuable chemicals or fuels has become extremely appealing. The interior of MOFs can be designed to have defects, heteroatoms and embedded nanoscale metal catalysts for the development of CO2 conversion. In this review, the recent development of MOFs‐based catalysts for CO2 conversion reactions, including photocatalysis and electrocatalysis are summarized. In particular, the preparation and mechanism of CO2 conversion‐based MOFs are discussed. The examples are expected to provide deeper understanding in preparing highly active and stable MOFs‐based CO2 conversion materials.
Recent studies of metal–organic frameworks (MOFs)‐based materials for CO2 conversion are comprehensively summarized in this review. Incorporating precious metal nanoparticles/metal complexes into MOFs, will provide great opportunities for CO2 conversion. Moreover, mechanisms of CO2 conversion are introduced. Guidelines are provided for researchers to pursue deeper understanding in preparing active and stable MOFs‐based CO2 conversion materials. |
---|---|
AbstractList | Metal–organic frameworks (MOFs) with high surface area and tunable chemical structures have attracted tremendous attention. Recently, the utilization of solar energy for CO2 conversion to produce valuable chemicals or fuels has become extremely appealing. The interior of MOFs can be designed to have defects, heteroatoms and embedded nanoscale metal catalysts for the development of CO2 conversion. In this review, the recent development of MOFs‐based catalysts for CO2 conversion reactions, including photocatalysis and electrocatalysis are summarized. In particular, the preparation and mechanism of CO2 conversion‐based MOFs are discussed. The examples are expected to provide deeper understanding in preparing highly active and stable MOFs‐based CO2 conversion materials. Metal–organic frameworks (MOFs) with high surface area and tunable chemical structures have attracted tremendous attention. Recently, the utilization of solar energy for CO2 conversion to produce valuable chemicals or fuels has become extremely appealing. The interior of MOFs can be designed to have defects, heteroatoms and embedded nanoscale metal catalysts for the development of CO2 conversion. In this review, the recent development of MOFs‐based catalysts for CO2 conversion reactions, including photocatalysis and electrocatalysis are summarized. In particular, the preparation and mechanism of CO2 conversion‐based MOFs are discussed. The examples are expected to provide deeper understanding in preparing highly active and stable MOFs‐based CO2 conversion materials. Recent studies of metal–organic frameworks (MOFs)‐based materials for CO2 conversion are comprehensively summarized in this review. Incorporating precious metal nanoparticles/metal complexes into MOFs, will provide great opportunities for CO2 conversion. Moreover, mechanisms of CO2 conversion are introduced. Guidelines are provided for researchers to pursue deeper understanding in preparing active and stable MOFs‐based CO2 conversion materials. |
Author | Lei, Zhendong Chen, Wenqian Qiu, Wenhui Horike, Satoshi Xue, Yuancheng Zhang, Yong Tang, Liang |
Author_xml | – sequence: 1 givenname: Zhendong surname: Lei fullname: Lei, Zhendong organization: National University of Singapore – sequence: 2 givenname: Yuancheng surname: Xue fullname: Xue, Yuancheng organization: Shanghai University – sequence: 3 givenname: Wenqian surname: Chen fullname: Chen, Wenqian email: wenqianchen@shu.edu.cn organization: Shanghai University – sequence: 4 givenname: Wenhui surname: Qiu fullname: Qiu, Wenhui organization: Southern University of Science and Technology – sequence: 5 givenname: Yong surname: Zhang fullname: Zhang, Yong organization: National University of Singapore – sequence: 6 givenname: Satoshi surname: Horike fullname: Horike, Satoshi organization: Kyoto University – sequence: 7 givenname: Liang orcidid: 0000-0001-9079-2942 surname: Tang fullname: Tang, Liang email: tang1liang@shu.edu.cn organization: Shanghai University |
BookMark | eNo9kE1Lw0AQhhepYK29eg54ju5HPna91dBaoW1AvXlYNsmkpKS7cTex5OZP8Df6S0ypdC7zDrzvDPNco5E2GhC6JfieYEwfFOj9PcWEYxLy-AKNSUQCP-IBHp01o1do6twODxUIghkbo491unC_3z9PykHhLaEFa7agwXTOS1Sr6t617tHbwMFLm8bYttNVW4HzSmO9uQa77Yf0K9SqHfJJSr3E6C-wrjL6Bl2WqnYw_e8T9LaYvydLf5U-vySzlb9ljMc-FCrKc8qLsihoIFQcZ1EpIAhJUMZQ5nmYDSKLWAYFEWGWFVk-PMMF5zkRbILuTlsbaz47cK3cmc7q4aCkhDGGqQjJ4BIn16GqoZeNrfbK9pJgecQnj_jkGZ-czTfr88T-AM_hasY |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201801587 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM201801587 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Program for Changjiang Scholars and Innovative Research Team in University funderid: IRT_17R71 – fundername: State Environmental Protection Key Laboratory of Integrated Surface Water‐Groundwater Pollution Control – fundername: National Natural Science Foundation of China funderid: 41573096; 21707064 – fundername: Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control funderid: 2017B030301012 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-g3387-eda6cc28dfdd249a77b6f9e4514f7efcc5b4f7b63bed195bbdbc6838988c193 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:28:42 EDT 2025 Wed Jan 22 16:42:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g3387-eda6cc28dfdd249a77b6f9e4514f7efcc5b4f7b63bed195bbdbc6838988c193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9079-2942 |
PQID | 2133302951 |
PQPubID | 886389 |
PageCount | 31 |
ParticipantIDs | proquest_journals_2133302951 wiley_primary_10_1002_aenm_201801587_AENM201801587 |
PublicationCentury | 2000 |
PublicationDate | November 15, 2018 |
PublicationDateYYYYMMDD | 2018-11-15 |
PublicationDate_xml | – month: 11 year: 2018 text: November 15, 2018 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 3 2013; 1 2012; 124 1991; 11 2008; 37 2014; 26 2013; 125 2017; 391 2016; 2016 2012; 12 2013; 5 2017; 158 2013; 6 2014; 136 2018; 47 2014; 20 2018; 9 1986; 108 2018; 8 2015; 137 2006; 25 2000; 405 2017; 78 2014; 16 1985 2012; 25 2017; 200 2014; 95 2012; 22 2014; 123 2017; 326 2004; 43 2010; 329 2015; 51 2018; 349 2015; 54 1991 2016; 18 2012; 35 2016; 16 2011; 133 2016; 680 2016; 12 2014; 43 2017; 139 2016; 4 2010; 43 2016; 6 2018; 17 2016; 7 1989; 50 2012; 112 2004; 432 2017; 58 2018; 99 2016; 28 2003; 133–134 2016; 8 2017; 425 2018; 14 2011; 143 2012; 41 2014; 31 2017; 5 2012; 162 2017; 7 2017; 8 2013; 25 2017; 3 2017; 4 2009; 42 2013; 203 2017; 46 1999; 121 2016; 189 2016; 343 2011; 11 2017; 194 2005; 26 2008; 2 2017; 9 2012; 51 2016; 183 2013; 19 2010; 65 2015; 292 2001; 294 2014; 5 2014; 4 2014; 2 2013; 13 2015; 179 2015; 44 2017; 34 2017; 121 2014; 6 2014; 53 2014; 514 2015; 162 2011; 333 2007; 129 2015; 6 2015; 5 2018; 140 2015; 3 2011 1987; 91 2013; 308 2011; 40 2015; 285 2017; 29 2009; 131 2017; 210 1999; 8 2015; 7 1972; 238 2014; 152–153 2016; 55 2015; 25 2015; 27 2012; 1 2017; 17 2007; 2007 2017; 16 2017; 10 2017; 13 2015; 21 2010; 132 2016; 65 2010; 254 2011; 44 2013; 135 2002; 209 2016; 138 2014 2014; 74 2003; 423 2015; 1083 2003; 300 2009; 148 |
References_xml | – year: 2011 – volume: 7 start-page: 4893 year: 2017 publication-title: Catal. Sci. Technol. – volume: 34 start-page: 713 year: 2017 publication-title: Ultrason. Sonochem. – volume: 11 start-page: 1935 year: 2011 publication-title: J. Nanosci. Nanotechnol. – volume: 432 start-page: 268 year: 2004 publication-title: Nature – volume: 343 start-page: 115 year: 2016 publication-title: J. Catal. – volume: 136 start-page: 8839 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 7645 year: 2016 publication-title: Nano Lett. – volume: 139 start-page: 17747 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 4429 year: 1987 publication-title: J. Phys. Chem. – volume: 285 start-page: 11 year: 2015 publication-title: Coord. Chem. Rev. – volume: 65 start-page: 590 year: 2010 publication-title: Chem. Eng. Sci. – volume: 7 start-page: 1700518 year: 2017 publication-title: Adv. Energy Mater. – volume: 132 start-page: 121 year: 2010 publication-title: Microporous Mesoporous Mater. – volume: 148 start-page: 221 year: 2009 publication-title: Catal. Today – volume: 25 start-page: 70 year: 2012 publication-title: Electrochem. Commun. – volume: 5 start-page: 6852 year: 2015 publication-title: ACS Catal. – volume: 2007 start-page: 3927 year: 2007 publication-title: Eur. J. Inorg. Chem. – volume: 5 start-page: 5486 year: 2015 publication-title: ACS Catal. – volume: 238 start-page: 37 year: 1972 publication-title: Nature – year: 2014 – volume: 40 start-page: 2508 year: 2011 publication-title: Chem. Soc. Rev. – volume: 349 start-page: 603 year: 2018 publication-title: Chem. Eng. J. – volume: 4 start-page: 4254 year: 2014 publication-title: ACS Catal. – volume: 139 start-page: 17305 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 13440 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 7651 year: 2018 publication-title: RSC Adv. – volume: 4 start-page: 15320 year: 2016 publication-title: J. Mater. Chem. A – volume: 5 start-page: 3808 year: 2014 publication-title: Chem. Sci. – volume: 99 start-page: 349 year: 2018 publication-title: Mater. Res. Bull. – volume: 308 start-page: 168 year: 2013 publication-title: J. Catal. – volume: 13 start-page: 1602583 year: 2017 publication-title: Small – volume: 13 start-page: 2286 year: 2013 publication-title: Cryst. Growth Des. – volume: 41 start-page: 2036 year: 2012 publication-title: Chem. Soc. Rev. – start-page: 6 year: 2014 – volume: 112 start-page: 724 year: 2012 publication-title: Chem. Rev. – volume: 78 start-page: 416 year: 2017 publication-title: J. Taiwan Inst. Chem. Eng. – volume: 95 start-page: 346 year: 2014 publication-title: Chemosphere – volume: 17 start-page: 156 year: 2017 publication-title: Cryst. Growth Des. – volume: 5 start-page: 107 year: 2014 publication-title: Chem. Sci. – volume: 8 start-page: 259 year: 1999 publication-title: Top. Catal. – volume: 14 start-page: 1802045 year: 2018 publication-title: Small – volume: 43 start-page: 1166 year: 2010 publication-title: Acc. Chem. Res. – volume: 4 start-page: 345 year: 2017 publication-title: Mater. Horiz. – volume: 158 start-page: 539 year: 2017 publication-title: Chem. Eng. Sci. – volume: 74 start-page: 439 year: 2014 publication-title: Energy – volume: 8 start-page: 1801193 year: 2018 publication-title: Adv. Energy Mater. – volume: 136 start-page: 15861 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 6302 year: 2015 publication-title: ACS Catal. – volume: 343 start-page: 86 year: 2016 publication-title: J. Catal. – volume: 131 start-page: 8784 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 6298 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 194 start-page: 110 year: 2017 publication-title: Mater. Lett. – volume: 16 start-page: 284 year: 2016 publication-title: Clim. Policy – volume: 405 start-page: 929 year: 2000 publication-title: Nature – volume: 136 start-page: 5460 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 9688 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 3364 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 162 start-page: 494 year: 2015 publication-title: Appl. Catal., B – volume: 5 start-page: 24867 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1600423 year: 2016 publication-title: Adv. Energy Mater. – volume: 4 start-page: 2657 year: 2016 publication-title: J. Mater. Chem. A – volume: 203 start-page: 154 year: 2013 publication-title: J. Solid State Chem. – volume: 26 start-page: 4607 year: 2014 publication-title: Adv. Mater. – volume: 391 start-page: 572 year: 2017 publication-title: Appl. Surf. Sci. – volume: 136 start-page: 13319 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 208 year: 2006 publication-title: Environ. Prog. Sustainable Energy – volume: 44 start-page: 957 year: 2011 publication-title: Acc. Chem. Res. – volume: 133 start-page: 13445 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 425 start-page: 107 year: 2017 publication-title: Appl. Surf. Sci. – volume: 2 start-page: 13509 year: 2014 publication-title: J. Mater. Chem. A – volume: 16 start-page: 14656 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 55 start-page: 2697 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 5735 year: 2015 publication-title: Chem. Commun. – volume: 326 start-page: 1145 year: 2017 publication-title: Chem. Eng. J. – volume: 183 start-page: 47 year: 2016 publication-title: Appl. Catal. B – volume: 8 start-page: 6712 year: 2016 publication-title: Nanoscale – volume: 12 start-page: 6309 year: 2016 publication-title: Small – volume: 135 start-page: 14488 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 1682 year: 2005 publication-title: Bull. Korean Chem. Soc. – volume: 162 start-page: 36 year: 2012 publication-title: Microporous Mesoporous Mater. – volume: 8 start-page: 1407 year: 2017 publication-title: Nat. Commun. – volume: 121 start-page: 10068 year: 1999 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 1034 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 149 year: 1991 publication-title: Catal. Lett. – volume: 6 start-page: 325 year: 2014 publication-title: Nat. Chem. – volume: 4 start-page: 1600371 year: 2017 publication-title: Adv. Sci. – volume: 6 start-page: 3437 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 3610 year: 2018 publication-title: Catal. Sci. Technol. – volume: 1 start-page: 11563 year: 2013 publication-title: J. Mater. Chem. A – volume: 44 start-page: 5981 year: 2015 publication-title: Chem. Soc. Rev. – volume: 21 start-page: 2364 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 3 start-page: e1700921 year: 2017 publication-title: Sci. Adv. – volume: 514 start-page: 482 year: 2014 publication-title: Nature – volume: 210 start-page: 131 year: 2017 publication-title: Applied Catal., B – volume: 10 start-page: 1100 year: 2017 publication-title: ChemSusChem – volume: 7 start-page: 266 year: 2016 publication-title: Chem. Sci. – volume: 54 start-page: 6821 year: 2015 publication-title: Inorg. Chem. – volume: 51 start-page: 16549 year: 2015 publication-title: Chem. Commun. – volume: 140 start-page: 5037 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: H17 year: 2012 publication-title: ECS Electrochem. Lett. – volume: 54 start-page: 153 year: 2015 publication-title: Ind. Eng. Chem. Res. – volume: 329 start-page: 1330 year: 2010 publication-title: Science – volume: 209 start-page: 6 year: 2002 publication-title: J. Catal. – volume: 189 start-page: 181 year: 2016 publication-title: Appl. Catal., B – volume: 35 start-page: 1085 year: 2012 publication-title: Chem. Eng. Technol. – volume: 200 start-page: 448 year: 2017 publication-title: Appl. Catal., B – volume: 680 start-page: 677 year: 2016 publication-title: J. Alloys Compd. – volume: 54 start-page: 8375 year: 2015 publication-title: Inorg. Chem. – volume: 254 start-page: 2472 year: 2010 publication-title: Coord. Chem. Rev. – volume: 18 start-page: 7563 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 51 start-page: 2645 year: 2015 publication-title: Chem. Commun. – volume: 6 start-page: 5238 year: 2016 publication-title: Catal. Sci. Technol. – volume: 28 start-page: 3703 year: 2016 publication-title: Adv. Mater. – volume: 20 start-page: 4780 year: 2014 publication-title: Chem. ‐ Eur. J. – volume: 40 start-page: 3703 year: 2011 publication-title: Chem. Soc. Rev. – volume: 124 start-page: 3420 year: 2012 publication-title: Angew. Chem. – volume: 16 start-page: 526 year: 2017 publication-title: Nat. Mater. – volume: 26 start-page: 4783 year: 2014 publication-title: Adv. Mater. – volume: 55 start-page: 5414 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 14279 year: 2013 publication-title: Chem. ‐ Eur. J. – volume: 6 start-page: 4073 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 129 start-page: 439 year: 2007 publication-title: J. Biotechnol. – volume: 47 start-page: 4710 year: 2018 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 19 year: 2015 publication-title: Nat. Chem. – volume: 131 start-page: 6326 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2056 year: 2015 publication-title: Chem. Commun. – volume: 29 start-page: 1781 year: 2017 publication-title: J. Appl. Phycol. – volume: 112 start-page: 1105 year: 2012 publication-title: Chem. Rev. – volume: 2 start-page: 9 year: 2008 publication-title: Int. J. Greenhouse Gas Control – volume: 4 start-page: 15126 year: 2016 publication-title: J. Mater. Chem. A – volume: 300 start-page: 1677 year: 2003 publication-title: Science – volume: 17 start-page: 301 year: 2018 publication-title: Nat. Mater. – start-page: 56 year: 1985 publication-title: J. Chem. Soc., Chem. Commun. – volume: 292 start-page: 1 year: 2015 publication-title: Coord. Chem. Rev. – volume: 3 start-page: 490 year: 2013 publication-title: Catal. Sci. Technol. – volume: 22 start-page: 21849 year: 2012 publication-title: J. Mater. Chem. – volume: 42 start-page: 1983 year: 2009 publication-title: Acc. Chem. Res. – volume: 37 start-page: 191 year: 2008 publication-title: Chem. Soc. Rev. – volume: 108 start-page: 7428 year: 1986 publication-title: J. Am. Chem. Soc. – volume: 294 start-page: 1688 year: 2001 publication-title: Science – volume: 1083 start-page: 127 year: 2015 publication-title: J. Mol. Struct. – volume: 2016 start-page: 4358 year: 2016 publication-title: Eur. J. Inorg. Chem. – volume: 12 start-page: 3489 year: 2012 publication-title: Cryst. Growth Des. – volume: 125 start-page: 2519 year: 2013 publication-title: Angew. Chem. – volume: 333 start-page: 988 year: 2011 publication-title: Science – volume: 25 start-page: 5360 year: 2015 publication-title: Adv. Funct. Mater. – volume: 137 start-page: 14129 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 152–153 start-page: 184 year: 2014 publication-title: Appl. Catal., B – volume: 55 start-page: 14310 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 415 year: 2018 publication-title: Nat. Commun. – volume: 58 start-page: 52 year: 2017 publication-title: International Journal of Greenhouse Gas Control – volume: 423 start-page: 705 year: 2003 publication-title: Nature – volume: 121 start-page: 12091 year: 2017 publication-title: J. Phys. Chem. C – volume: 179 start-page: 1 year: 2015 publication-title: Appl. Catal., B – volume: 50 start-page: 265 year: 1989 publication-title: Appl. Catal. – volume: 31 start-page: 121 year: 2014 publication-title: Renewable Sustainable Energy Rev. – volume: 3 start-page: 15764 year: 2015 publication-title: J. Mater. Chem. A – volume: 143 start-page: 37 year: 2011 publication-title: Microporous Mesoporous Mater. – volume: 27 start-page: 7248 year: 2015 publication-title: Chem. Mater. – volume: 133 start-page: 12940 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 7968 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 139 start-page: 356 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 1328 year: 1987 publication-title: J. Phys. Chem. – volume: 18 start-page: 4855 year: 2016 publication-title: Green Chem. – year: 1991 – volume: 5 start-page: 3216 year: 2015 publication-title: ACS Catal. – volume: 25 start-page: 2741 year: 2013 publication-title: Chem. Mater. – volume: 133–134 start-page: 431 year: 2003 publication-title: Synth. Met. – volume: 46 start-page: 4774 year: 2017 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 7654 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 2334 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 65 start-page: 2103 year: 2016 publication-title: Russ. Chem. Bull. – volume: 43 start-page: 5982 year: 2014 publication-title: Chem. Soc. Rev. – volume: 123 start-page: 413 year: 2014 publication-title: Clim. Change – volume: 6 start-page: 944 year: 2013 publication-title: ChemSusChem – volume: 140 start-page: 38 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 836 year: 2017 publication-title: Dalton Trans. |
SSID | ssj0000491033 |
Score | 2.6037197 |
SecondaryResourceType | review_article |
Snippet | Metal–organic frameworks (MOFs) with high surface area and tunable chemical structures have attracted tremendous attention. Recently, the utilization of solar... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carbon dioxide Catalysis Catalysts electrocatalysis energy products kinetics Metal-organic frameworks metal–organic frameworks (MOFs) Organic chemistry photocatalysis Solar energy conversion |
Title | MOFs‐Based Heterogeneous Catalysts: New Opportunities for Energy‐Related CO2 Conversion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201801587 https://www.proquest.com/docview/2133302951 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHBC2I0oL2wNXU3rWddW8hTVUh0gi1VQMcrH257cUtJEaCEz8B8RP7S5h9eGMLVEEvljX2OvLMl52Hvhkj9KqKecG4olGVpXmUcppHXOY04ilX4H4JlZVJFKdH-eFp-naezQeDXx3WUrMUr-X3v_aV3MWqIAO7mi7Z_7BseCgI4BzsC0ewMBz_ycbT2cEisBXegD9S4EZAUVewQhtu69gUZ74tlpb3ZqiMs2sTbze1naNqKYYT2_wXnmLJcabqOyOmG_CrK6d1Q9hRyxrQrm0QQl73rituj2UIfLzQ5ksh56143tja6YcGVsOlIB_7_pAzXX_uYPX9ZeOlF81ltzaRMNOk57oz_XYKzj_Kma9g6q7MDWlq92DWgVp7t91Qg6_6Y6t3o2O5rs08gQQcbeY9d2-mdrgzu_1eNwJ4cjQN1--hdQKpB2z266P96bvjULmDnCqJqe3caF-vnQYak93-j_Tylm72Y8OXk0fooc878MiB6DEa6HoDPehMo9xEnwycbn78tEDCPSDhAKQ9DDDCPRhhgBF2MILVHkAYAIRXAHqCjg8mJ-PDyH97IzqnZtyyVtww6pmqlIIMnQ-HIq8KnUJ8XQ11JWUm4ETkVGiVFJkQSkjQBCsYk5ATPEVr9VWtnyFcyYzEUos04yJNFIS_MueMFIqBb2E03kI7rYZK_9dalCShlMYEov8tRKzWyms3fKV0Y7ZJafRcBj2XPdM9v8uibXR_BeEdtLb80ugXEHAuxUuPgN84uXwx |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOFs%E2%80%90Based+Heterogeneous+Catalysts%3A+New+Opportunities+for+Energy%E2%80%90Related+CO2+Conversion&rft.jtitle=Advanced+energy+materials&rft.au=Lei%2C+Zhendong&rft.au=Xue%2C+Yuancheng&rft.au=Chen%2C+Wenqian&rft.au=Qiu%2C+Wenhui&rft.date=2018-11-15&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201801587&rft.externalDBID=10.1002%252Faenm.201801587&rft.externalDocID=AENM201801587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |