Approaching the Downsizing Limit of Maricite NaFePO4 toward High‐Performance Cathode for Sodium‐Ion Batteries
Maricite NaFePO4 nanodots with minimized sizes (≈1.6 nm) uniformly embedded in porous N‐doped carbon nanofibers (designated as NaFePO4@C) are first prepared by electrospinning for maximized Na‐storage performance. The obtained flexible NaFePO4@C fiber membrane adherent on aluminum foil is directly u...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 30 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
25.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Maricite NaFePO4 nanodots with minimized sizes (≈1.6 nm) uniformly embedded in porous N‐doped carbon nanofibers (designated as NaFePO4@C) are first prepared by electrospinning for maximized Na‐storage performance. The obtained flexible NaFePO4@C fiber membrane adherent on aluminum foil is directly used as binder‐free cathode for sodium‐ion batteries, revealing that the ultrasmall nanosize effect as well as a high‐potential desodiation process can transform the generally perceived electrochemically inactive maricite NaFePO4 into a highly active amorphous phase; meanwhile, remarkable electrochemical performance in terms of high reversible capacity (145 mA h g−1 at 0.2 C), high rate capability (61 mA h g−1 at 50 C), and unprecedentedly high cyclic stability (≈89% capacity retention over 6300 cycles) is achieved. Furthermore, the soft package Na‐ion full battery constructed by the NaFePO4@C nanofibers cathode and the pure carbon nanofibers anode displays a promising energy density of 168.1 Wh kg−1 and a notable capacity retention of 87% after 200 cycles. The distinctive 3D network structure of very fine NaFePO4 nanoparticles homogeneously encapsulated in interconnected porous N‐doped carbon nanofibers, can effectively improve the active materials' utilization rate, facilitate the electrons/Na+ ions transport, and strengthen the electrode stability upon prolonged cycling, leading to the fascinating Na‐storage performance.
Maricite NaFePO4 nanodots with minimized sizes (≈1.6 nm) are homogeneously encapsulated in porous N‐doped carbon nanofibers by electrospinning. When evaluated as binder‐free cathode for Na‐ion batteries, the ultrasmall nanosize effect with a high‐potential desodiation process successfully transforms the generally perceived electrochemically inactive maricite NaFePO4 into a highly active amorphous phase, rendering high reversible capacity, exceptional rate‐capability, and unprecedentedly long cycle‐life. |
---|---|
AbstractList | Maricite NaFePO4 nanodots with minimized sizes (≈1.6 nm) uniformly embedded in porous N‐doped carbon nanofibers (designated as NaFePO4@C) are first prepared by electrospinning for maximized Na‐storage performance. The obtained flexible NaFePO4@C fiber membrane adherent on aluminum foil is directly used as binder‐free cathode for sodium‐ion batteries, revealing that the ultrasmall nanosize effect as well as a high‐potential desodiation process can transform the generally perceived electrochemically inactive maricite NaFePO4 into a highly active amorphous phase; meanwhile, remarkable electrochemical performance in terms of high reversible capacity (145 mA h g−1 at 0.2 C), high rate capability (61 mA h g−1 at 50 C), and unprecedentedly high cyclic stability (≈89% capacity retention over 6300 cycles) is achieved. Furthermore, the soft package Na‐ion full battery constructed by the NaFePO4@C nanofibers cathode and the pure carbon nanofibers anode displays a promising energy density of 168.1 Wh kg−1 and a notable capacity retention of 87% after 200 cycles. The distinctive 3D network structure of very fine NaFePO4 nanoparticles homogeneously encapsulated in interconnected porous N‐doped carbon nanofibers, can effectively improve the active materials' utilization rate, facilitate the electrons/Na+ ions transport, and strengthen the electrode stability upon prolonged cycling, leading to the fascinating Na‐storage performance. Maricite NaFePO4 nanodots with minimized sizes (≈1.6 nm) uniformly embedded in porous N‐doped carbon nanofibers (designated as NaFePO4@C) are first prepared by electrospinning for maximized Na‐storage performance. The obtained flexible NaFePO4@C fiber membrane adherent on aluminum foil is directly used as binder‐free cathode for sodium‐ion batteries, revealing that the ultrasmall nanosize effect as well as a high‐potential desodiation process can transform the generally perceived electrochemically inactive maricite NaFePO4 into a highly active amorphous phase; meanwhile, remarkable electrochemical performance in terms of high reversible capacity (145 mA h g−1 at 0.2 C), high rate capability (61 mA h g−1 at 50 C), and unprecedentedly high cyclic stability (≈89% capacity retention over 6300 cycles) is achieved. Furthermore, the soft package Na‐ion full battery constructed by the NaFePO4@C nanofibers cathode and the pure carbon nanofibers anode displays a promising energy density of 168.1 Wh kg−1 and a notable capacity retention of 87% after 200 cycles. The distinctive 3D network structure of very fine NaFePO4 nanoparticles homogeneously encapsulated in interconnected porous N‐doped carbon nanofibers, can effectively improve the active materials' utilization rate, facilitate the electrons/Na+ ions transport, and strengthen the electrode stability upon prolonged cycling, leading to the fascinating Na‐storage performance. Maricite NaFePO4 nanodots with minimized sizes (≈1.6 nm) are homogeneously encapsulated in porous N‐doped carbon nanofibers by electrospinning. When evaluated as binder‐free cathode for Na‐ion batteries, the ultrasmall nanosize effect with a high‐potential desodiation process successfully transforms the generally perceived electrochemically inactive maricite NaFePO4 into a highly active amorphous phase, rendering high reversible capacity, exceptional rate‐capability, and unprecedentedly long cycle‐life. |
Author | Wang, Fanfan Jiao, Lifang Liu, Xiaobin Liu, Yongchang Fan, Li‐Zhen Zhang, Ning |
Author_xml | – sequence: 1 givenname: Yongchang orcidid: 0000-0003-1998-9309 surname: Liu fullname: Liu, Yongchang organization: Nankai University – sequence: 2 givenname: Ning orcidid: 0000-0002-6176-7278 surname: Zhang fullname: Zhang, Ning organization: Hebei University – sequence: 3 givenname: Fanfan surname: Wang fullname: Wang, Fanfan organization: University of Science and Technology Beijing – sequence: 4 givenname: Xiaobin surname: Liu fullname: Liu, Xiaobin organization: University of Science and Technology Beijing – sequence: 5 givenname: Lifang orcidid: 0000-0002-4676-997X surname: Jiao fullname: Jiao, Lifang organization: Nankai University – sequence: 6 givenname: Li‐Zhen orcidid: 0000-0003-2270-4458 surname: Fan fullname: Fan, Li‐Zhen email: fanlizhen@ustb.edu.cn organization: University of Science and Technology Beijing |
BookMark | eNo9kM9OAjEQhxuDiYBePTfxvNg_u-3uEUGEBIREDt6asm3ZEnYL3RKCJx_BZ_RJXILhNPObfJnJfB3QqlylAXjEqIcRIs9SmbJHEE4RzjC_AW3MMIsoImnr2uPPO9Cp6w1CmHMat8G-v9t5J_PCVmsYCg2H7ljV9uscp7a0AToDZ9Lb3AYN3-VIL-YxDO4ovYJjuy5-v38W2hvnS1nlGg5kKJzSsBnAD6fsoWyAiavgiwxBe6vre3Br5LbWD_-1C5aj1-VgHE3nb5NBfxqtKU15JLOEy4QxlmSGq1xShlKGDVXSxFQnK5NznJmUG4VJgjlCfEUyHGcqSU2iJO2Cp8va5r39QddBbNzBV81FQRCnhJGUpQ2VXaij3eqT2HlbSn8SGImzUnFWKq5KRX84ml0T_QPvEHCw |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201801917 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM201801917 |
Genre | article |
GrantInformation_xml | – fundername: National Postdoctoral Program for Innovative Talents funderid: BX201600014 – fundername: 111 Project funderid: B12015 – fundername: Natural Scientific Foundation of China funderid: 51532002 – fundername: National Basic Research Program of China funderid: 2018YFB0104300 – fundername: China Postdoctoral Science Foundation funderid: 2016M600042 – fundername: Beijing Natural Science Foundation funderid: L172023 – fundername: Fundamental Research Funds for the Central Universities funderid: FRF‐TP‐16‐078A1 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-g3387-a957a566659f7dca360861f3daf43e5bfc719f87fd12517007b29149d58f5da3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 02:14:59 EDT 2025 Wed Aug 20 07:24:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3387-a957a566659f7dca360861f3daf43e5bfc719f87fd12517007b29149d58f5da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2270-4458 0000-0002-6176-7278 0000-0003-1998-9309 0000-0002-4676-997X |
PQID | 2073262868 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2073262868 wiley_primary_10_1002_adfm_201801917_ADFM201801917 |
PublicationCentury | 2000 |
PublicationDate | July 25, 2018 |
PublicationDateYYYYMMDD | 2018-07-25 |
PublicationDate_xml | – month: 07 year: 2018 text: July 25, 2018 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2013 2015 2016; 5 7 4 2016; 6 2017; 4 2015 2016 2017; 27 16 7 2013 2015 2013 2015; 23 54 6 27 2012 2014 2014 2017; 48 7 5 17 2015 2017; 27 7 2017 2012 2014; 9 12 14 2007; 111 2015; 11 2015 2017 2015 2015 2011; 25 5 54 27 23 2014 2012 2017; 114 5 7 2013 2014; 7 6 2012 2017; 2 1 2014 2017; 4 7 2013 2014 2013 2017 2013; 3 14 135 29 25 2013; 7 2007 2012 2013; 6 22 23 2015; 8 2016; 8 2017; 9 2005 2013; 43 1 |
References_xml | – volume: 114 5 7 start-page: 11636 5884 1602898 year: 2014 2012 2017 publication-title: Chem. Rev. Energy Environ. Sci. Adv. Energy Mater. – volume: 9 12 14 start-page: e414 5664 3539 year: 2017 2012 2014 publication-title: NPG Asia Mater. Nano Lett. Nano Lett. – volume: 23 54 6 27 start-page: 947 3431 2338 7861 year: 2013 2015 2013 2015 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. Energy Environ. Sci. Adv. Mater. – volume: 3 14 135 29 25 start-page: 444 2175 13870 1701968 3480 year: 2013 2014 2013 2017 2013 publication-title: Adv. Energy Mater. Nano Lett. J. Am. Chem. Soc. Adv. Mater. Chem. Mater. – volume: 27 7 start-page: 5343 1700274 year: 2015 2017 publication-title: Adv. Mater. Adv. Energy Mater. – volume: 5 start-page: 16616 year: 2017 publication-title: J. Mater. Chem. A – volume: 11 start-page: 3822 year: 2015 publication-title: Small – volume: 8 start-page: 15422 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 170 year: 2017 publication-title: Energy Storage Mater. – volume: 111 start-page: 14925 year: 2007 publication-title: J. Phys. Chem. C – volume: 25 5 54 27 23 start-page: 4994 8752 5894 6928 3155 year: 2015 2017 2015 2015 2011 publication-title: Adv. Funct. Mater. J. Mater. Chem. A Angew. Chem., Int. Ed. Adv. Mater. Adv. Mater. – volume: 27 16 7 start-page: 6702 3321 1700087 year: 2015 2016 2017 publication-title: Adv. Mater. Nano Lett. Adv. Energy Mater. – volume: 6 22 23 start-page: 749 149 1147 year: 2007 2012 2013 publication-title: Nat. Mater. Electrochem. Commun. Adv. Funct. Mater. – volume: 4 start-page: 1600243 year: 2017 publication-title: Adv. Sci. – volume: 6 start-page: 1502217 year: 2016 publication-title: Adv. Energy Mater. – volume: 48 7 5 17 start-page: 6544 1643 5280 4713 year: 2012 2014 2014 2017 publication-title: Chem. Commun. Energy Environ. Sci. Nat. Commun. Nano Lett. – volume: 9 start-page: 16280 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 2 1 start-page: 710 986 year: 2012 2017 publication-title: Adv. Energy Mater. Sustainable Energy Fuels – volume: 4 7 start-page: 1400554 1601792 year: 2014 2017 publication-title: Adv. Energy Mater. Adv. Energy Mater. – volume: 8 start-page: 540 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 start-page: 11004 year: 2013 publication-title: ACS Nano – volume: 5 7 4 start-page: 780 17977 4882 year: 2013 2015 2016 publication-title: Nanoscale ACS Appl. Mater. Interfaces J. Mater. Chem. A – volume: 43 1 start-page: 1731 9484 year: 2005 2013 publication-title: Carbon J. Mater. Chem. A – volume: 7 6 start-page: 6378 5081 year: 2013 2014 publication-title: ACS Nano Nanoscale |
SSID | ssj0017734 |
Score | 2.6301515 |
Snippet | Maricite NaFePO4 nanodots with minimized sizes (≈1.6 nm) uniformly embedded in porous N‐doped carbon nanofibers (designated as NaFePO4@C) are first prepared by... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Aluminum Batteries binder‐free cathodes Carbon fibers carbon nanofibers Cathodes Downsizing Electrochemical analysis electrospinning Flux density Foils Materials science NaFePO4 nanodots Nanofibers Sodium-ion batteries Stability |
Title | Approaching the Downsizing Limit of Maricite NaFePO4 toward High‐Performance Cathode for Sodium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201801917 https://www.proquest.com/docview/2073262868 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YvejBtxFFsgevBbt9LHskIkEjSAQTbs0-DTFSFbhw8if4G_0lzrQ8Peqt03STdnZ3-s10vq-EXAqpVBhr4TmlFVJypCdUaDzra-G44MwIZCO32nHzKbzrR_0VFn-uD7EouOHOyOI1bnCpRpWlaKg0DpnkPoRYSDkgCGPDFqKix4V-lM95_lk59rHBy-_PVRuvWGV9-Bq-XEWp2WumsUfk_Abz7pKX8mSsynr6S7vxP0-wT3ZnGJTW8kVzQDbs8JDsrCgTHpH32kxrHCwKGJHWsQo9mKKZcaJo6mgL8mwNkJW2ZcN2HkI6znpwKfaOfH9-dZacBIpEw9RYCidoNzWDyStccJsOaa7vCen6Mek1bnrXTW_2dwbvOUBBXikiLgEMxhFMqtEyiCE78l1gpAsDGymnuS9clTuDGIoDFlFMQD5moqqLjAxOyOYwHdpTQnXALEweKr3JkDurAEPKwFgBqSPTJi6Q4nxyktkOGyUMYhNDXm21QFjm5eQt1-dIciVmlqB_k4V_k1q90VpYZ38ZdE628RhLuywqks3xx8ReACYZqxLZqtVb991Stv5-AFT-3fc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThsxEB5RONAeKG1B_JX60B4XWO-P40MPEWmUAEkRpFJulr22UYTItk0iBKc-Ao_Cq_AKPElndjfh51iJQ4-2dle7Hnvm8-x8nwE-S21MnGYy8CYzRMnRgTSxDVyYSS-k4FYSG7nTTVs_4oN-0p-D2ykXptSHmCXcaGUU_poWOCWkdx9UQ7X1RCUP0cfinqOqqzx0V5e4axt9bTfQxF84b37r7beC6mCB4CwiLVktE6ERx6QJvo_NdJQisA99ZLWPI5cYn4lQ-prwlsK_wDBquMSthE1qPrE6wse-ggU6RZzU-hsnM8GqUIjyP3YaUkVZ2J_KRO7x3aev-wTQPobFRVxrvoW76YiU5SznO5Ox2cmun4lF_k9DtgxLFchm9XJVvIM5N3wPbx5JL36AX_VKTB1bDEEwa1CafXBNzYL0xXLPOhqjBGJy1tVNd_w9ZuOiyJhRccz9n5vjB9IFIyZlbh3DDnaa28HkAi9o50NWCpgO3GgFei_xyaswP8yHbg1YFnEXRilJ2elYeGcQJOvIOol7Y57ZdB22ppNBVS5kpDg6X07E4do68MKq6mcpQKJKqWmuyJxqZk5VbzQ7s9bGv9z0CRZbvc6ROmp3DzfhNfVTHpsnWzA__j1xHxGAjc12MecZqBeeMH8BdQw4XA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61RaraAz_9UQsL9QGOaRvnx-sDhxUh2qXdZQVF2ptlx3a1QmwKuytETzwCb8Kr8Aw8CTNJdttyrNRDj7aSKPHYM984830GeCm1MXFayMCbwhAlRwfSxDZwYSG9kIJbSWzk_iDtforfjZLRCvxecGFqfYjlhhutjMpf0wK_sP7oSjRUW09M8hBdLKYcTVnlifvxHZO26etehhZ-xXn-9uxNN2jOFQjOI5KS1TIRGmFMmuDr2EJHKeL60EdW-zhyifGFCKVvC28p-guMooZLzCRs0vaJ1RE-dhUexOmxpLMisg9LvapQiPo3dhpSQVk4WqhEHvOjm697A89eR8VVWMsfwZ_FgNTVLJ8P5zNzWFz-pxV5j0bsMTxsIDbr1GviCay4yRZsXhNe3IavnUZKHVsMITDLaJN9fEnNivLFSs_6GmMEInI20Lkbvo_ZrCoxZlQa8_fnr-EV5YIRj7K0jmEH-1ja8fwLXtArJ6yWLx276Q6c3cUn78LapJy4PWBFxF0YpSRkp2PhnUGIrCPrJGbGvLDpPrQWc0E1DmSqOLpeTrTh9j7wyqjqopYfUbXQNFdkTrU0p-pkeX_Zenqbmw5gfZjl6rQ3OHkGG9RNm9g8acHa7NvcPUf0NTMvqhnPQN3xfPkHcaY3Cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approaching+the+Downsizing+Limit+of+Maricite+NaFePO4+toward+High%E2%80%90Performance+Cathode+for+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Yongchang&rft.au=Zhang%2C+Ning&rft.au=Wang%2C+Fanfan&rft.au=Liu%2C+Xiaobin&rft.date=2018-07-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=30&rft_id=info:doi/10.1002%2Fadfm.201801917&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |