SnO2 as Advanced Anode of Alkali‐Ion Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility
Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g− based on the reactions o...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 6 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g− based on the reactions of SnO2 + 4Li+ + 4e− ↔ Sn + 2Li2O and Sn + 4.4Li+ + 4.4e− ↔ Li4.4Sn. The coarsening of Sn nanoparticles into large particles induced reaction reversibility degradation has been demonstrated as the essential failure mechanism of SnO2 electrodes. Here, three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 are presented. First, encapsulating SnO2 nanoparticles in physical barriers of carbonaceous materials, conductive polymers or inorganic materials can robustly prevent Sn coarsening among the wrapped SnO2 nanoparticles. Second, constructing hierarchical, porous or hollow structured SnO2 particles with stable void boundaries can hinder Sn coarsening between the void‐divided SnO2 subunits. Third, fabricating SnO2‐based heterogeneous composites consisting of metals, metal oxides or metal sulfides can introduce abundant heterophase interfaces in cycled electrodes that impede Sn coarsening among the isolated SnO2 crystalline domains. Finally, a perspective on the future prospect of the structural/compositional designs of SnO2 as anode of alkali‐ion batteries is highlighted.
Three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 as anodes of alkali‐ion batteries are presented, i.e., homogenously encapsulating SnO2 nanoparticles in robust physical barriers, constructing hierarchical/porous/hollow‐structured SnO2 architectures with stable void boundaries, and fabricating SnO2‐based heterogenous composites for introducing abundant heterophase interfaces. |
---|---|
AbstractList | Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g− based on the reactions of SnO2 + 4Li+ + 4e− ↔ Sn + 2Li2O and Sn + 4.4Li+ + 4.4e− ↔ Li4.4Sn. The coarsening of Sn nanoparticles into large particles induced reaction reversibility degradation has been demonstrated as the essential failure mechanism of SnO2 electrodes. Here, three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 are presented. First, encapsulating SnO2 nanoparticles in physical barriers of carbonaceous materials, conductive polymers or inorganic materials can robustly prevent Sn coarsening among the wrapped SnO2 nanoparticles. Second, constructing hierarchical, porous or hollow structured SnO2 particles with stable void boundaries can hinder Sn coarsening between the void‐divided SnO2 subunits. Third, fabricating SnO2‐based heterogeneous composites consisting of metals, metal oxides or metal sulfides can introduce abundant heterophase interfaces in cycled electrodes that impede Sn coarsening among the isolated SnO2 crystalline domains. Finally, a perspective on the future prospect of the structural/compositional designs of SnO2 as anode of alkali‐ion batteries is highlighted. Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g− based on the reactions of SnO2 + 4Li+ + 4e− ↔ Sn + 2Li2O and Sn + 4.4Li+ + 4.4e− ↔ Li4.4Sn. The coarsening of Sn nanoparticles into large particles induced reaction reversibility degradation has been demonstrated as the essential failure mechanism of SnO2 electrodes. Here, three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 are presented. First, encapsulating SnO2 nanoparticles in physical barriers of carbonaceous materials, conductive polymers or inorganic materials can robustly prevent Sn coarsening among the wrapped SnO2 nanoparticles. Second, constructing hierarchical, porous or hollow structured SnO2 particles with stable void boundaries can hinder Sn coarsening between the void‐divided SnO2 subunits. Third, fabricating SnO2‐based heterogeneous composites consisting of metals, metal oxides or metal sulfides can introduce abundant heterophase interfaces in cycled electrodes that impede Sn coarsening among the isolated SnO2 crystalline domains. Finally, a perspective on the future prospect of the structural/compositional designs of SnO2 as anode of alkali‐ion batteries is highlighted. Three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 as anodes of alkali‐ion batteries are presented, i.e., homogenously encapsulating SnO2 nanoparticles in robust physical barriers, constructing hierarchical/porous/hollow‐structured SnO2 architectures with stable void boundaries, and fabricating SnO2‐based heterogenous composites for introducing abundant heterophase interfaces. |
Author | Yuan, Kunjie Lin, Zhiqun Wang, Shun Zhao, Shiqiang Sewell, Christopher D. Wang, Zewei Jia, Songru Liu, Ruiping Jin, Huile Liu, Xueqin He, Yanjie |
Author_xml | – sequence: 1 givenname: Shiqiang surname: Zhao fullname: Zhao, Shiqiang organization: China University of Geosciences – sequence: 2 givenname: Christopher D. surname: Sewell fullname: Sewell, Christopher D. organization: Georgia Institute of Technology – sequence: 3 givenname: Ruiping surname: Liu fullname: Liu, Ruiping organization: Georgia Institute of Technology – sequence: 4 givenname: Songru surname: Jia fullname: Jia, Songru organization: China University of Geosciences – sequence: 5 givenname: Zewei surname: Wang fullname: Wang, Zewei organization: Georgia Institute of Technology – sequence: 6 givenname: Yanjie surname: He fullname: He, Yanjie organization: Georgia Institute of Technology – sequence: 7 givenname: Kunjie surname: Yuan fullname: Yuan, Kunjie organization: Georgia Institute of Technology – sequence: 8 givenname: Huile surname: Jin fullname: Jin, Huile organization: Wenzhou University – sequence: 9 givenname: Shun surname: Wang fullname: Wang, Shun email: shunwang@wzu.edu.cn organization: Wenzhou University – sequence: 10 givenname: Xueqin surname: Liu fullname: Liu, Xueqin email: liuxq@cug.edu.cn organization: China University of Geosciences – sequence: 11 givenname: Zhiqun orcidid: 0000-0003-3158-9340 surname: Lin fullname: Lin, Zhiqun email: zhiqun.lin@mse.gatech.edu organization: Georgia Institute of Technology |
BookMark | eNo9kcFuEzEQhi1UJErplbMlrk2xPbubNbdtFGikQlECXFdee9y4bOxg7xbtjUfg0XgGngSnRZnL_KOZ-Wak_yU58cEjIa85u-SMibcK_e5SMC6ZqMr5M3LKK17MqrpgJ0cN4gU5T-me5SgkZwCn5M_G3wqqEm3Mg_IaDW18MEiDpU3_XfXu76_fq-DplRoGjA7TO7ryW9e5wfk7uvF0EVRM6A9VN9FFVPaxsw7dmAb6eTslp1Wf92PejumCfgvO0KsweqMOvAuqvKHXmOlhv1UJMz9rqzQmakOkm3GfD2ex7FEPMegt7h6Ra1R6cPm3NT5kcv6pd8P0ijy3qk94_j-fka_vl18W17Ob2w-rRXMzuwOo5zMpSlPWYC0WtdQSOi6MhsqCNiiBq2qOcy1LLiwHlF2lC8EAQXIoSsWthjPy5om7j-HHiGlo78MYfT7ZCiiFrIDzOk_Jp6mfrsep3Ue3U3FqOWsPrrUH19qja22z_PTxWME_TeWTvA |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201902657 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM201902657 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Natural Science Foundation of Beijing Municipality funderid: 2162037; L182062 – fundername: National Natural Science Foundation of China funderid: 21905208; 51902297; 51872209; 61728403; 51772219 – fundername: Beijing Nova Program funderid: Z171100001117077 – fundername: Zhejiang Provincial Natural Science Foundation funderid: LZ18E030001; LZ17E020002 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-g3387-925d583ffe489c93b12dc36f3cde931a67e7c9512f13e9b6c4203e391345a1fc3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:22:23 EDT 2025 Wed Jan 22 16:34:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g3387-925d583ffe489c93b12dc36f3cde931a67e7c9512f13e9b6c4203e391345a1fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3158-9340 |
PQID | 2352963118 |
PQPubID | 886389 |
PageCount | 41 |
ParticipantIDs | proquest_journals_2352963118 wiley_primary_10_1002_aenm_201902657_AENM201902657 |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 2018; 440 2017; 82 2016; 307 2019; 11 2019; 10 2018; 448 2019; 13 2015; 145 2016; 309 2016; 30 2016; 2016 2017; 396 2017; 710 2000; 407 2015; 137 2015; 138 2000; 12 2019; 21 2018; 217 2018; 332 2013; 238 2019; 29 2018; 219 2019; 833 2008; 20 2008; 112 2012; 22 2007; 17 2016; 19 2019; 31 2016; 209 2018; 347 2013; 87 2018; 229 2018; 108 2016; 327 2013; 106 2016; 10 2016; 688 2011; 6 2016; 16 2017; 258 2011; 133 2016; 12 2017; 139 2016; 4 2016; 6 2016; 1 2016; 3 2018; 359 2001; 97–98 2019; 48 2017; 56 2018; 95 2016; 214 2018; 99 2016; 28 2016; 27 2016; 8 2016; 25 2016; 9 2019; 297 2016; 22 2010; 56 2015; 184 2013; 29 2010; 55 2015; 182 2015; 183 2013; 25 2016; 109 2013; 23 2019; 59 2019; 58 2018; 400 2005; 139 2016; 102 2017; 350 2017; 230 2017; 357 2017; 358 2017; 238 2017; 118 2015; 173 2014; 1 2014; 5 2014; 4 2014; 2 2013; 13 2015; 299 2017; 32 2016; 353 2017; 242 2014; 8 2017; 124 2012; 219 2014; 53 2015; 284 2015; 280 2015; 5 2015; 3 2017; 27 2017; 23 2006; 18 2017; 29 2017; 691 2017; 330 2015; 9 2015; 8 2015; 7 2016; 120 2016; 361 2015; 151 2018; 559 2017; 17 2017; 10 2017; 13 2019; 533 2009; 9 2019; 414 2019; 415 2017; 224 2017; 225 2007; 46 2018; 57 2018; 282 2014; 26 2009; 113 2019; 568 2014; 253 2018; 45 2011; 196 2014; 132 2013; 8 2018; 44 2013; 5 2018; 43 2018; 290 2013; 6 2018; 47 2013; 9 2014; 20 2018; 6 2018; 9 2018; 8 2010; 20 2018; 3 2010; 114 2014; 16 2014; 14 2007; 7 2016; 154 2017; 320 2014; 10 2019; 9 2018; 28 2019; 4 2019; 6 2015; 51 2019; 2 2017; 412 2016; 163 2018; 18 2010; 46 2019; 570 2018; 11 2018; 10 2012; 116 2014; 147 2018; 14 2018; 13 2017; 5 2018; 361 2017; 7 2017; 2 2018; 127 2018; 129 2015; 31 2017; 191 2011; 11 2012; 59 2019; 361 2017; 9 2019; 363 2018; 373 2018; 376 2015; 41 2018; 379 2019; 355 2011; 21 2012; 66 2016; 195 2018; 262 2015; 15 2015; 16 2009; 21 2015; 18 2018; 388 2008; 18 2015; 11 2015; 10 2004; 108 2016; 55 2017; 96 2012; 2 2015; 27 2018; 277 2015; 21 2011; 47 2012; 7 2019; 372 2011; 184 |
References_xml | – volume: 559 start-page: 467 year: 2018 publication-title: Nature – volume: 10 start-page: 8712 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 1877 year: 2013 publication-title: Small – volume: 361 start-page: 777 year: 2018 publication-title: Science – volume: 6 start-page: 2900 year: 2013 publication-title: Energy Environ. Sci. – volume: 217 start-page: 276 year: 2018 publication-title: Mater. Lett. – volume: 10 start-page: 2966 year: 2017 publication-title: Nano Res. – volume: 4 start-page: 312 year: 2019 publication-title: Nat. Rev. Mater. – volume: 18 start-page: 455 year: 2008 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 435 year: 2017 publication-title: Energy Environ. Sci. – volume: 20 start-page: 3987 year: 2008 publication-title: Adv. Mater. – volume: 139 start-page: 250 year: 2005 publication-title: J. Power Sources – volume: 9 start-page: 5299 year: 2015 publication-title: ACS Nano – volume: 57 start-page: 102 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 151 start-page: 8 year: 2015 publication-title: Electrochim. Acta – volume: 5 start-page: 4035 year: 2014 publication-title: Nat. Commun. – volume: 10 start-page: 4370 year: 2018 publication-title: Nanoscale – volume: 32 start-page: 397 year: 2017 publication-title: Nano Energy – volume: 6 start-page: 87 year: 2013 publication-title: Energy Environ. Sci. – volume: 59 start-page: 160 year: 2012 publication-title: Electrochim. Acta – volume: 29 start-page: 8 year: 2013 publication-title: Electrochem. Commun. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 106 start-page: 143 year: 2013 publication-title: Electrochim. Acta – volume: 691 start-page: 34 year: 2017 publication-title: J. Alloys Compd. – volume: 284 start-page: 154 year: 2015 publication-title: J. Power Sources – volume: 11 start-page: 2942 year: 2011 publication-title: Cryst. Growth Des. – volume: 299 start-page: 398 year: 2015 publication-title: J. Power Sources – volume: 19 start-page: 234 year: 2016 publication-title: Nano Energy – volume: 414 start-page: 233 year: 2019 publication-title: J. Power Sources – volume: 5 year: 2013 publication-title: Nanoscale – volume: 6 start-page: 2182 year: 2019 publication-title: ChemElectroChem – volume: 388 start-page: 11 year: 2018 publication-title: J. Power Sources – volume: 17 start-page: 3959 year: 2017 publication-title: Nano Lett. – volume: 27 start-page: 2682 year: 2016 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 262 start-page: 1 year: 2018 publication-title: Electrochim. Acta – volume: 230 start-page: 212 year: 2017 publication-title: Electrochim. Acta – volume: 11 start-page: 789 year: 2019 publication-title: Nat. Chem. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 18 start-page: 459 year: 2018 publication-title: Chem. Rec. – volume: 2016 start-page: 1950 year: 2016 publication-title: Eur. J. Inorg. Chem. – volume: 7 start-page: 3041 year: 2007 publication-title: Nano Lett. – volume: 4 start-page: 105 year: 2014 publication-title: Nano Energy – volume: 27 start-page: 5343 year: 2015 publication-title: Adv. Mater. – volume: 112 year: 2008 publication-title: J. Phys. Chem. C – volume: 11 start-page: 1301 year: 2018 publication-title: Nano Res. – volume: 26 start-page: 123 year: 2014 publication-title: Chem. Mater. – volume: 219 start-page: 19 year: 2018 publication-title: Mater. Lett. – volume: 96 start-page: 405 year: 2017 publication-title: Mater. Res. Bull. – volume: 13 start-page: 1711 year: 2013 publication-title: Nano Lett. – volume: 57 start-page: 5449 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 3544 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 124 year: 2016 publication-title: Nano Energy – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 108 year: 2004 publication-title: J. Phys. Chem. B – volume: 290 start-page: 312 year: 2018 publication-title: Electrochim. Acta – volume: 8 start-page: 1660 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 109 start-page: 248 year: 2016 publication-title: Acta Mater. – volume: 332 start-page: 237 year: 2018 publication-title: Chem. Eng. J. – volume: 373 start-page: 11 year: 2018 publication-title: J. Power Sources – volume: 15 start-page: 369 year: 2015 publication-title: Nano Energy – volume: 9 start-page: 8674 year: 2017 publication-title: Nanoscale – volume: 133 start-page: 4738 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 1437 year: 2010 publication-title: Chem. Commun. – volume: 13 start-page: 5203 year: 2013 publication-title: Nano Lett. – volume: 13 year: 2017 publication-title: Small – volume: 45 start-page: 255 year: 2018 publication-title: Nano Energy – volume: 7 start-page: 3164 year: 2015 publication-title: Nanoscale – volume: 6 start-page: 7206 year: 2018 publication-title: J. Mater. Chem. A – volume: 12 start-page: 2557 year: 2000 publication-title: Chem. Mater. – volume: 225 start-page: 322 year: 2017 publication-title: Electrochim. Acta – volume: 214 start-page: 156 year: 2016 publication-title: Electrochim. Acta – volume: 30 start-page: 885 year: 2016 publication-title: Nano Energy – volume: 412 start-page: 170 year: 2017 publication-title: Appl. Surf. Sci. – volume: 5 start-page: 9055 year: 2015 publication-title: Sci. Rep. – volume: 376 start-page: 1 year: 2018 publication-title: J. Power Sources – volume: 8 start-page: 426 year: 2013 publication-title: Nat. Nanotechnol. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 440 start-page: 91 year: 2018 publication-title: Appl. Surf. Sci. – volume: 43 start-page: 11 year: 2018 publication-title: Nano Energy – volume: 330 start-page: 453 year: 2017 publication-title: Chem. Eng. J. – volume: 56 start-page: 314 year: 2010 publication-title: Electrochim. Acta – volume: 209 start-page: 700 year: 2016 publication-title: Electrochim. Acta – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 214 start-page: 1 year: 2016 publication-title: Electrochim. Acta – volume: 2 start-page: 95 year: 2012 publication-title: Adv. Energy Mater. – volume: 10 year: 2016 publication-title: ACS Nano – volume: 183 start-page: 78 year: 2015 publication-title: Electrochim. Acta – volume: 147 start-page: 720 year: 2014 publication-title: Electrochim. Acta – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 2004 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 229 start-page: 910 year: 2018 publication-title: Appl. Energy – volume: 7 start-page: 414 year: 2012 publication-title: Nano Today – volume: 8 start-page: 196 year: 2014 publication-title: Nano Energy – volume: 10 start-page: 2224 year: 2019 publication-title: Nat. Commun. – volume: 196 year: 2011 publication-title: J. Power Sources – volume: 9 start-page: 402 year: 2018 publication-title: Nat. Commun. – volume: 2 start-page: 529 year: 2014 publication-title: J. Mater. Chem. A – volume: 3 start-page: 98 year: 2016 publication-title: Energy Storage Mater. – volume: 25 start-page: 154 year: 2016 publication-title: Nano Energy – volume: 253 start-page: 9 year: 2014 publication-title: J. Power Sources – volume: 47 start-page: 5205 year: 2011 publication-title: Chem. Commun. – volume: 10 start-page: 980 year: 2015 publication-title: Nat. Nanotechnol. – volume: 21 start-page: 647 year: 2019 publication-title: J. Energy Storage – volume: 16 start-page: 4501 year: 2016 publication-title: Nano Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 31 start-page: 1521 year: 2015 publication-title: Acta Phys.‐Chim. Sin. – volume: 154 start-page: 54 year: 2016 publication-title: Chem. Eng. Sci. – volume: 5 start-page: 6054 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 355 start-page: 986 year: 2019 publication-title: Chem. Eng. J. – volume: 102 start-page: 32 year: 2016 publication-title: Carbon – volume: 10 start-page: 2515 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 127 start-page: 627 year: 2018 publication-title: Carbon – volume: 13 start-page: 9607 year: 2019 publication-title: ACS Nano – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 363 start-page: 838 year: 2019 publication-title: Science – volume: 327 start-page: 21 year: 2016 publication-title: J. Power Sources – volume: 688 start-page: 908 year: 2016 publication-title: J. Alloys Compd. – volume: 4 start-page: 6268 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 96 start-page: 443 year: 2017 publication-title: Mater. Res. Bull. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 67 year: 2013 publication-title: Electrochem. Commun. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 2920 year: 2016 publication-title: RSC Adv. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 21 start-page: 2868 year: 2009 publication-title: Chem. Mater. – volume: 3 start-page: 1627 year: 2018 publication-title: ACS Energy Lett. – volume: 19 start-page: 511 year: 2016 publication-title: Nano Energy – volume: 9 start-page: 612 year: 2009 publication-title: Nano Lett. – volume: 25 start-page: 2589 year: 2013 publication-title: Adv. Mater. – volume: 18 start-page: 232 year: 2015 publication-title: Nano Energy – volume: 13 start-page: 3666 year: 2019 publication-title: ACS Nano – volume: 238 start-page: 168 year: 2017 publication-title: Electrochim. Acta – volume: 372 start-page: 269 year: 2019 publication-title: Chem. Eng. J. – volume: 21 start-page: 2299 year: 2009 publication-title: Adv. Mater. – volume: 139 start-page: 2164 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 106 year: 2018 publication-title: Mater. Res. Bull. – volume: 184 start-page: 2877 year: 2011 publication-title: J. Solid State Chem. – volume: 16 start-page: 2570 year: 2014 publication-title: J. Nanopart. Res. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 347 start-page: 552 year: 2018 publication-title: Chem. Eng. J. – volume: 11 start-page: 1321 year: 2018 publication-title: ChemSusChem – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 231 year: 2015 publication-title: Mater. Lett. – volume: 22 start-page: 2766 year: 2012 publication-title: J. Mater. Chem. – volume: 9 start-page: 9620 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 3093 year: 2013 publication-title: Nano Lett. – volume: 13 start-page: 7536 year: 2019 publication-title: ACS Nano – volume: 710 start-page: 323 year: 2017 publication-title: J. Alloys Compd. – volume: 8 start-page: 131 year: 2015 publication-title: ChemSusChem – volume: 9 start-page: 595 year: 2016 publication-title: Energy Environ. Sci. – volume: 3 start-page: 2985 year: 2015 publication-title: J. Mater. Chem. A – volume: 282 start-page: 38 year: 2018 publication-title: Electrochim. Acta – volume: 359 start-page: 1463 year: 2018 publication-title: Science – volume: 25 start-page: 2152 year: 2013 publication-title: Adv. Mater. – volume: 14 year: 2018 publication-title: Small – volume: 1 start-page: 108 year: 2014 publication-title: ChemElectroChem – volume: 23 start-page: 3570 year: 2013 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 432 year: 2015 publication-title: Small – volume: 13 start-page: 303 year: 2018 publication-title: Energy Storage Mater. – volume: 120 start-page: 3669 year: 2016 publication-title: J. Phys. Chem. C – volume: 20 start-page: 841 year: 2014 publication-title: Ionics – volume: 396 start-page: 269 year: 2017 publication-title: Appl. Surf. Sci. – volume: 570 start-page: E65 year: 2019 publication-title: Nature – volume: 400 start-page: 485 year: 2018 publication-title: J. Power Sources – volume: 27 start-page: 4594 year: 2015 publication-title: Chem. Mater. – volume: 55 start-page: 3408 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 129 start-page: 342 year: 2018 publication-title: Carbon – volume: 99 start-page: 196 year: 2018 publication-title: Mater. Res. Bull. – volume: 17 start-page: 2772 year: 2007 publication-title: Adv. Funct. Mater. – volume: 182 start-page: 1060 year: 2015 publication-title: Electrochim. Acta – volume: 358 start-page: 506 year: 2017 publication-title: Science – volume: 21 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 118 start-page: 172 year: 2017 publication-title: Energy – volume: 379 start-page: 191 year: 2018 publication-title: J. Power Sources – volume: 353 start-page: 1268 year: 2016 publication-title: Science – volume: 59 start-page: 229 year: 2019 publication-title: Nano Energy – volume: 568 start-page: 325 year: 2019 publication-title: Nature – volume: 44 start-page: 5569 year: 2018 publication-title: Ceram. Int. – volume: 14 start-page: 4852 year: 2014 publication-title: Nano Lett. – volume: 151 start-page: 203 year: 2015 publication-title: Electrochim. Acta – volume: 21 start-page: 3202 year: 2009 publication-title: Chem. Mater. – volume: 20 start-page: 9707 year: 2010 publication-title: J. Mater. Chem. – volume: 253 start-page: 251 year: 2014 publication-title: J. Power Sources – volume: 361 start-page: 1 year: 2016 publication-title: Appl. Surf. Sci. – volume: 13 start-page: 830 year: 2019 publication-title: ACS Nano – volume: 66 start-page: 204 year: 2012 publication-title: Electrochim. Acta – volume: 533 start-page: 733 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 357 start-page: 279 year: 2017 publication-title: Science – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 55 start-page: 5485 year: 2010 publication-title: Electrochim. Acta – volume: 320 start-page: 405 year: 2017 publication-title: Chem. Eng. J. – volume: 191 start-page: 169 year: 2017 publication-title: Mater. Lett. – volume: 145 start-page: 104 year: 2015 publication-title: Mater. Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 46 start-page: 750 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 1082 year: 2015 publication-title: Chem. Mater. – volume: 297 start-page: 879 year: 2019 publication-title: Electrochim. Acta – volume: 21 start-page: 9912 year: 2011 publication-title: J. Mater. Chem. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 2536 year: 2009 publication-title: Adv. Mater. – volume: 361 start-page: 329 year: 2019 publication-title: Chem. Eng. J. – volume: 114 year: 2010 publication-title: J. Phys. Chem. C – volume: 2 start-page: 861 year: 2017 publication-title: Nat. Energy – volume: 87 start-page: 844 year: 2013 publication-title: Electrochim. Acta – volume: 137 start-page: 8372 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 6329 year: 2017 publication-title: ACS Omega – volume: 18 start-page: 2325 year: 2006 publication-title: Adv. Mater. – volume: 21 start-page: 2439 year: 2011 publication-title: Adv. Funct. Mater. – volume: 415 start-page: 126 year: 2019 publication-title: J. Power Sources – volume: 3 start-page: 1068 year: 2015 publication-title: J. Mater. Chem. A – volume: 10 start-page: 2017 year: 2017 publication-title: Energy Environ. Sci. – volume: 20 start-page: 4055 year: 2014 publication-title: Chem. ‐ Eur. J. – volume: 7 start-page: 2444 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 1945 year: 2016 publication-title: Small – volume: 5 start-page: 9164 year: 2015 publication-title: Sci. Rep. – volume: 2 start-page: 111 year: 2017 publication-title: ACS Energy Lett. – volume: 277 start-page: 100 year: 2018 publication-title: Electrochim. Acta – volume: 97–98 start-page: 223 year: 2001 publication-title: J. Power Sources – volume: 124 start-page: 565 year: 2017 publication-title: Carbon – volume: 224 start-page: 608 year: 2017 publication-title: Electrochim. Acta – volume: 82 start-page: 159 year: 2017 publication-title: Electrochem. Commun. – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 448 start-page: 389 year: 2018 publication-title: Appl. Surf. Sci. – volume: 163 start-page: A540 year: 2016 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 2728 year: 2016 publication-title: ACS Nano – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 309 start-page: 238 year: 2016 publication-title: J. Power Sources – volume: 41 start-page: 9527 year: 2015 publication-title: Ceram. Int. – volume: 48 start-page: 504 year: 2019 publication-title: Dalton Trans. – volume: 10 start-page: 53 year: 2014 publication-title: Nano Energy – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 184 start-page: 219 year: 2015 publication-title: Electrochim. Acta – volume: 5 start-page: 1629 year: 2017 publication-title: J. Mater. Chem. A – volume: 350 start-page: 1 year: 2017 publication-title: J. Power Sources – volume: 58 start-page: 5266 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 258 start-page: 1140 year: 2017 publication-title: Electrochim. Acta – volume: 57 start-page: 8901 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 242 start-page: 400 year: 2017 publication-title: Electrochim. Acta – volume: 6 start-page: 2278 year: 2011 publication-title: Chem. ‐ Asian J. – volume: 238 start-page: 464 year: 2013 publication-title: J. Power Sources – volume: 173 start-page: 476 year: 2015 publication-title: Electrochim. Acta – volume: 195 start-page: 208 year: 2016 publication-title: Electrochim. Acta – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 196 start-page: 8701 year: 2011 publication-title: J. Power Sources – volume: 16 start-page: 399 year: 2015 publication-title: Nano Energy – volume: 214 start-page: 31 year: 2016 publication-title: Electrochim. Acta – volume: 115 year: 2011 publication-title: J. Phys. Chem. C – volume: 5 start-page: 8480 year: 2013 publication-title: Nanoscale – volume: 6 start-page: 7257 year: 2018 publication-title: J. Mater. Chem. C – volume: 407 start-page: 496 year: 2000 publication-title: Nature – volume: 18 start-page: 645 year: 2006 publication-title: Adv. Mater. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 56 start-page: 1869 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 833 start-page: 113 year: 2019 publication-title: J. Electroanal. Chem. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 23 start-page: 1107 year: 2017 publication-title: Microsc. Microanal. – volume: 280 start-page: 119 year: 2015 publication-title: Powder Technol. – volume: 113 year: 2009 publication-title: J. Phys. Chem. C – volume: 116 start-page: 4000 year: 2012 publication-title: J. Phys. Chem. C – volume: 21 start-page: 4120 year: 2011 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 422 year: 2018 publication-title: J. Electron. Mater. – volume: 51 start-page: 5728 year: 2015 publication-title: Chem. Commun. – volume: 307 start-page: 634 year: 2016 publication-title: J. Power Sources – volume: 7 start-page: 3276 year: 2017 publication-title: Sci. Rep. – volume: 22 start-page: 4915 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 95 start-page: 67 year: 2018 publication-title: Inorg. Chem. Commun. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 132 start-page: 483 year: 2014 publication-title: Electrochim. Acta – volume: 219 start-page: 199 year: 2012 publication-title: J. Power Sources |
SSID | ssj0000491033 |
Score | 2.5974495 |
SecondaryResourceType | review_article |
Snippet | Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | alkali‐ion batteries Anodes Barriers Boundaries Carbonaceous materials Conducting polymers Electrode materials Electrodes Failure mechanisms Flux density heterophase interface Inorganic materials Lithium Metal oxides Metal sulfides Nanoparticles physical barrier Storage batteries Storage capacity Structural hierarchy Tin dioxide tin dioxide (SnO2) void boundary |
Title | SnO2 as Advanced Anode of Alkali‐Ion Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902657 https://www.proquest.com/docview/2352963118 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF616QWEEL-iUNAcuLUu9q7t2NzSNiitSJHiFvVm-WedWCC7JPEBTjwCj8Yz8CTM7no3NiAEvVjW-k_OfPHOzH7zDSEv08QT82xhpe6QWS53XLG-m1peVqD7nvAwdEWB8_Tcn1y6Z1fe1db2nQ5rqVmnh9mXP9aV3MSqOIZ2FVWy_2FZc1McwH20L27Rwrj9JxtH1TsqGsWM9EI-BvO5TAKMPn5AB9swGU7RxkpJs1QcuNNqUaalpDxHouwPw1suMyTojR4vk0IemdVps1rL9jjSlEfJcqk7Z7-vy3z_SPZkkvdsSaATwa6prxc4N6pkYyEpX4LLGDVCVBl3xqrzTqalCma87Vc-45IjIum6vdVm835cVSqil61-3k7aW6Z8o0X5CfE-N3kjrknfHRGF_ZNDQ0MqG4mxRnTwNledKQJxVFfzZdNNi2AMbBuKifqSo99h-UGbPOXdMaUPZT7_dgfmfscRMNPkb7OMUq1NeCWkDNCjor4S2e7LeZszvb-fq9SHx-dTc3yb7FCMeuiA7IxOpm8jkzTEcM6xmSwa0a-nhUht-qr_kF7I1A28pOd0cY_cbUMeGCn83idbvHpAbneEMB-S7wLJkKxAWxokkqEuQCH5x9dviGEwGH4NGwRDVMEGwZB-Bo1gUAgGjWDQCD4AgV_Y4PcAEL3QQS9s0AuIXtDohV_QCxq90EPvI3L5ZnxxPLHaXiPWnAl56ZB6uRewouBuEGYhSx2aZ8wvWJbzkDmJP-TDDKMRWjiMh6mfudRmnAneipc4RcYek0FVV_wJgSzxQzvI_GTIczejCc6IXh4UQRBSWem9S_a0YeL2Y7KKKRMECIbh_i6h0ljxtZKbiZWwOI2FeWNj3riHmKc3uegZubX55-yRwXrZ8OfoYq_TFy3wfgJLedIk |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SnO2+as+Advanced+Anode+of+Alkali%E2%80%90Ion+Batteries%3A+Inhibiting+Sn+Coarsening+by+Crafting+Robust+Physical+Barriers%2C+Void+Boundaries%2C+and+Heterophase+Interfaces+for+Superior+Electrochemical+Reaction+Reversibility&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Shiqiang&rft.au=Sewell%2C+Christopher+D.&rft.au=Liu%2C+Ruiping&rft.au=Jia%2C+Songru&rft.date=2020-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201902657&rft.externalDBID=10.1002%252Faenm.201902657&rft.externalDocID=AENM201902657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |