SnO2 as Advanced Anode of Alkali‐Ion Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility

Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g− based on the reactions o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 6
Main Authors Zhao, Shiqiang, Sewell, Christopher D., Liu, Ruiping, Jia, Songru, Wang, Zewei, He, Yanjie, Yuan, Kunjie, Jin, Huile, Wang, Shun, Liu, Xueqin, Lin, Zhiqun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g− based on the reactions of SnO2 + 4Li+ + 4e− ↔ Sn + 2Li2O and Sn + 4.4Li+ + 4.4e− ↔ Li4.4Sn. The coarsening of Sn nanoparticles into large particles induced reaction reversibility degradation has been demonstrated as the essential failure mechanism of SnO2 electrodes. Here, three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 are presented. First, encapsulating SnO2 nanoparticles in physical barriers of carbonaceous materials, conductive polymers or inorganic materials can robustly prevent Sn coarsening among the wrapped SnO2 nanoparticles. Second, constructing hierarchical, porous or hollow structured SnO2 particles with stable void boundaries can hinder Sn coarsening between the void‐divided SnO2 subunits. Third, fabricating SnO2‐based heterogeneous composites consisting of metals, metal oxides or metal sulfides can introduce abundant heterophase interfaces in cycled electrodes that impede Sn coarsening among the isolated SnO2 crystalline domains. Finally, a perspective on the future prospect of the structural/compositional designs of SnO2 as anode of alkali‐ion batteries is highlighted. Three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 as anodes of alkali‐ion batteries are presented, i.e., homogenously encapsulating SnO2 nanoparticles in robust physical barriers, constructing hierarchical/porous/hollow‐structured SnO2 architectures with stable void boundaries, and fabricating SnO2‐based heterogenous composites for introducing abundant heterophase interfaces.
AbstractList Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g− based on the reactions of SnO2 + 4Li+ + 4e− ↔ Sn + 2Li2O and Sn + 4.4Li+ + 4.4e− ↔ Li4.4Sn. The coarsening of Sn nanoparticles into large particles induced reaction reversibility degradation has been demonstrated as the essential failure mechanism of SnO2 electrodes. Here, three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 are presented. First, encapsulating SnO2 nanoparticles in physical barriers of carbonaceous materials, conductive polymers or inorganic materials can robustly prevent Sn coarsening among the wrapped SnO2 nanoparticles. Second, constructing hierarchical, porous or hollow structured SnO2 particles with stable void boundaries can hinder Sn coarsening between the void‐divided SnO2 subunits. Third, fabricating SnO2‐based heterogeneous composites consisting of metals, metal oxides or metal sulfides can introduce abundant heterophase interfaces in cycled electrodes that impede Sn coarsening among the isolated SnO2 crystalline domains. Finally, a perspective on the future prospect of the structural/compositional designs of SnO2 as anode of alkali‐ion batteries is highlighted.
Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g− based on the reactions of SnO2 + 4Li+ + 4e− ↔ Sn + 2Li2O and Sn + 4.4Li+ + 4.4e− ↔ Li4.4Sn. The coarsening of Sn nanoparticles into large particles induced reaction reversibility degradation has been demonstrated as the essential failure mechanism of SnO2 electrodes. Here, three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 are presented. First, encapsulating SnO2 nanoparticles in physical barriers of carbonaceous materials, conductive polymers or inorganic materials can robustly prevent Sn coarsening among the wrapped SnO2 nanoparticles. Second, constructing hierarchical, porous or hollow structured SnO2 particles with stable void boundaries can hinder Sn coarsening between the void‐divided SnO2 subunits. Third, fabricating SnO2‐based heterogeneous composites consisting of metals, metal oxides or metal sulfides can introduce abundant heterophase interfaces in cycled electrodes that impede Sn coarsening among the isolated SnO2 crystalline domains. Finally, a perspective on the future prospect of the structural/compositional designs of SnO2 as anode of alkali‐ion batteries is highlighted. Three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 as anodes of alkali‐ion batteries are presented, i.e., homogenously encapsulating SnO2 nanoparticles in robust physical barriers, constructing hierarchical/porous/hollow‐structured SnO2 architectures with stable void boundaries, and fabricating SnO2‐based heterogenous composites for introducing abundant heterophase interfaces.
Author Yuan, Kunjie
Lin, Zhiqun
Wang, Shun
Zhao, Shiqiang
Sewell, Christopher D.
Wang, Zewei
Jia, Songru
Liu, Ruiping
Jin, Huile
Liu, Xueqin
He, Yanjie
Author_xml – sequence: 1
  givenname: Shiqiang
  surname: Zhao
  fullname: Zhao, Shiqiang
  organization: China University of Geosciences
– sequence: 2
  givenname: Christopher D.
  surname: Sewell
  fullname: Sewell, Christopher D.
  organization: Georgia Institute of Technology
– sequence: 3
  givenname: Ruiping
  surname: Liu
  fullname: Liu, Ruiping
  organization: Georgia Institute of Technology
– sequence: 4
  givenname: Songru
  surname: Jia
  fullname: Jia, Songru
  organization: China University of Geosciences
– sequence: 5
  givenname: Zewei
  surname: Wang
  fullname: Wang, Zewei
  organization: Georgia Institute of Technology
– sequence: 6
  givenname: Yanjie
  surname: He
  fullname: He, Yanjie
  organization: Georgia Institute of Technology
– sequence: 7
  givenname: Kunjie
  surname: Yuan
  fullname: Yuan, Kunjie
  organization: Georgia Institute of Technology
– sequence: 8
  givenname: Huile
  surname: Jin
  fullname: Jin, Huile
  organization: Wenzhou University
– sequence: 9
  givenname: Shun
  surname: Wang
  fullname: Wang, Shun
  email: shunwang@wzu.edu.cn
  organization: Wenzhou University
– sequence: 10
  givenname: Xueqin
  surname: Liu
  fullname: Liu, Xueqin
  email: liuxq@cug.edu.cn
  organization: China University of Geosciences
– sequence: 11
  givenname: Zhiqun
  orcidid: 0000-0003-3158-9340
  surname: Lin
  fullname: Lin, Zhiqun
  email: zhiqun.lin@mse.gatech.edu
  organization: Georgia Institute of Technology
BookMark eNo9kcFuEzEQhi1UJErplbMlrk2xPbubNbdtFGikQlECXFdee9y4bOxg7xbtjUfg0XgGngSnRZnL_KOZ-Wak_yU58cEjIa85u-SMibcK_e5SMC6ZqMr5M3LKK17MqrpgJ0cN4gU5T-me5SgkZwCn5M_G3wqqEm3Mg_IaDW18MEiDpU3_XfXu76_fq-DplRoGjA7TO7ryW9e5wfk7uvF0EVRM6A9VN9FFVPaxsw7dmAb6eTslp1Wf92PejumCfgvO0KsweqMOvAuqvKHXmOlhv1UJMz9rqzQmakOkm3GfD2ex7FEPMegt7h6Ra1R6cPm3NT5kcv6pd8P0ijy3qk94_j-fka_vl18W17Ob2w-rRXMzuwOo5zMpSlPWYC0WtdQSOi6MhsqCNiiBq2qOcy1LLiwHlF2lC8EAQXIoSsWthjPy5om7j-HHiGlo78MYfT7ZCiiFrIDzOk_Jp6mfrsep3Ue3U3FqOWsPrrUH19qja22z_PTxWME_TeWTvA
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201902657
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM201902657
Genre reviewArticle
GrantInformation_xml – fundername: Natural Science Foundation of Beijing Municipality
  funderid: 2162037; L182062
– fundername: National Natural Science Foundation of China
  funderid: 21905208; 51902297; 51872209; 61728403; 51772219
– fundername: Beijing Nova Program
  funderid: Z171100001117077
– fundername: Zhejiang Provincial Natural Science Foundation
  funderid: LZ18E030001; LZ17E020002
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-g3387-925d583ffe489c93b12dc36f3cde931a67e7c9512f13e9b6c4203e391345a1fc3
ISSN 1614-6832
IngestDate Fri Jul 25 12:22:23 EDT 2025
Wed Jan 22 16:34:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g3387-925d583ffe489c93b12dc36f3cde931a67e7c9512f13e9b6c4203e391345a1fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3158-9340
PQID 2352963118
PQPubID 886389
PageCount 41
ParticipantIDs proquest_journals_2352963118
wiley_primary_10_1002_aenm_201902657_AENM201902657
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2018; 440
2017; 82
2016; 307
2019; 11
2019; 10
2018; 448
2019; 13
2015; 145
2016; 309
2016; 30
2016; 2016
2017; 396
2017; 710
2000; 407
2015; 137
2015; 138
2000; 12
2019; 21
2018; 217
2018; 332
2013; 238
2019; 29
2018; 219
2019; 833
2008; 20
2008; 112
2012; 22
2007; 17
2016; 19
2019; 31
2016; 209
2018; 347
2013; 87
2018; 229
2018; 108
2016; 327
2013; 106
2016; 10
2016; 688
2011; 6
2016; 16
2017; 258
2011; 133
2016; 12
2017; 139
2016; 4
2016; 6
2016; 1
2016; 3
2018; 359
2001; 97–98
2019; 48
2017; 56
2018; 95
2016; 214
2018; 99
2016; 28
2016; 27
2016; 8
2016; 25
2016; 9
2019; 297
2016; 22
2010; 56
2015; 184
2013; 29
2010; 55
2015; 182
2015; 183
2013; 25
2016; 109
2013; 23
2019; 59
2019; 58
2018; 400
2005; 139
2016; 102
2017; 350
2017; 230
2017; 357
2017; 358
2017; 238
2017; 118
2015; 173
2014; 1
2014; 5
2014; 4
2014; 2
2013; 13
2015; 299
2017; 32
2016; 353
2017; 242
2014; 8
2017; 124
2012; 219
2014; 53
2015; 284
2015; 280
2015; 5
2015; 3
2017; 27
2017; 23
2006; 18
2017; 29
2017; 691
2017; 330
2015; 9
2015; 8
2015; 7
2016; 120
2016; 361
2015; 151
2018; 559
2017; 17
2017; 10
2017; 13
2019; 533
2009; 9
2019; 414
2019; 415
2017; 224
2017; 225
2007; 46
2018; 57
2018; 282
2014; 26
2009; 113
2019; 568
2014; 253
2018; 45
2011; 196
2014; 132
2013; 8
2018; 44
2013; 5
2018; 43
2018; 290
2013; 6
2018; 47
2013; 9
2014; 20
2018; 6
2018; 9
2018; 8
2010; 20
2018; 3
2010; 114
2014; 16
2014; 14
2007; 7
2016; 154
2017; 320
2014; 10
2019; 9
2018; 28
2019; 4
2019; 6
2015; 51
2019; 2
2017; 412
2016; 163
2018; 18
2010; 46
2019; 570
2018; 11
2018; 10
2012; 116
2014; 147
2018; 14
2018; 13
2017; 5
2018; 361
2017; 7
2017; 2
2018; 127
2018; 129
2015; 31
2017; 191
2011; 11
2012; 59
2019; 361
2017; 9
2019; 363
2018; 373
2018; 376
2015; 41
2018; 379
2019; 355
2011; 21
2012; 66
2016; 195
2018; 262
2015; 15
2015; 16
2009; 21
2015; 18
2018; 388
2008; 18
2015; 11
2015; 10
2004; 108
2016; 55
2017; 96
2012; 2
2015; 27
2018; 277
2015; 21
2011; 47
2012; 7
2019; 372
2011; 184
References_xml – volume: 559
  start-page: 467
  year: 2018
  publication-title: Nature
– volume: 10
  start-page: 8712
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 1877
  year: 2013
  publication-title: Small
– volume: 361
  start-page: 777
  year: 2018
  publication-title: Science
– volume: 6
  start-page: 2900
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 217
  start-page: 276
  year: 2018
  publication-title: Mater. Lett.
– volume: 10
  start-page: 2966
  year: 2017
  publication-title: Nano Res.
– volume: 4
  start-page: 312
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 18
  start-page: 455
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 435
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 20
  start-page: 3987
  year: 2008
  publication-title: Adv. Mater.
– volume: 139
  start-page: 250
  year: 2005
  publication-title: J. Power Sources
– volume: 9
  start-page: 5299
  year: 2015
  publication-title: ACS Nano
– volume: 57
  start-page: 102
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 151
  start-page: 8
  year: 2015
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 4035
  year: 2014
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4370
  year: 2018
  publication-title: Nanoscale
– volume: 32
  start-page: 397
  year: 2017
  publication-title: Nano Energy
– volume: 6
  start-page: 87
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 59
  start-page: 160
  year: 2012
  publication-title: Electrochim. Acta
– volume: 29
  start-page: 8
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 106
  start-page: 143
  year: 2013
  publication-title: Electrochim. Acta
– volume: 691
  start-page: 34
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 284
  start-page: 154
  year: 2015
  publication-title: J. Power Sources
– volume: 11
  start-page: 2942
  year: 2011
  publication-title: Cryst. Growth Des.
– volume: 299
  start-page: 398
  year: 2015
  publication-title: J. Power Sources
– volume: 19
  start-page: 234
  year: 2016
  publication-title: Nano Energy
– volume: 414
  start-page: 233
  year: 2019
  publication-title: J. Power Sources
– volume: 5
  year: 2013
  publication-title: Nanoscale
– volume: 6
  start-page: 2182
  year: 2019
  publication-title: ChemElectroChem
– volume: 388
  start-page: 11
  year: 2018
  publication-title: J. Power Sources
– volume: 17
  start-page: 3959
  year: 2017
  publication-title: Nano Lett.
– volume: 27
  start-page: 2682
  year: 2016
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 262
  start-page: 1
  year: 2018
  publication-title: Electrochim. Acta
– volume: 230
  start-page: 212
  year: 2017
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 789
  year: 2019
  publication-title: Nat. Chem.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 459
  year: 2018
  publication-title: Chem. Rec.
– volume: 2016
  start-page: 1950
  year: 2016
  publication-title: Eur. J. Inorg. Chem.
– volume: 7
  start-page: 3041
  year: 2007
  publication-title: Nano Lett.
– volume: 4
  start-page: 105
  year: 2014
  publication-title: Nano Energy
– volume: 27
  start-page: 5343
  year: 2015
  publication-title: Adv. Mater.
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 1301
  year: 2018
  publication-title: Nano Res.
– volume: 26
  start-page: 123
  year: 2014
  publication-title: Chem. Mater.
– volume: 219
  start-page: 19
  year: 2018
  publication-title: Mater. Lett.
– volume: 96
  start-page: 405
  year: 2017
  publication-title: Mater. Res. Bull.
– volume: 13
  start-page: 1711
  year: 2013
  publication-title: Nano Lett.
– volume: 57
  start-page: 5449
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 3544
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 124
  year: 2016
  publication-title: Nano Energy
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 290
  start-page: 312
  year: 2018
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 1660
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 109
  start-page: 248
  year: 2016
  publication-title: Acta Mater.
– volume: 332
  start-page: 237
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 373
  start-page: 11
  year: 2018
  publication-title: J. Power Sources
– volume: 15
  start-page: 369
  year: 2015
  publication-title: Nano Energy
– volume: 9
  start-page: 8674
  year: 2017
  publication-title: Nanoscale
– volume: 133
  start-page: 4738
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 1437
  year: 2010
  publication-title: Chem. Commun.
– volume: 13
  start-page: 5203
  year: 2013
  publication-title: Nano Lett.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 45
  start-page: 255
  year: 2018
  publication-title: Nano Energy
– volume: 7
  start-page: 3164
  year: 2015
  publication-title: Nanoscale
– volume: 6
  start-page: 7206
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 2557
  year: 2000
  publication-title: Chem. Mater.
– volume: 225
  start-page: 322
  year: 2017
  publication-title: Electrochim. Acta
– volume: 214
  start-page: 156
  year: 2016
  publication-title: Electrochim. Acta
– volume: 30
  start-page: 885
  year: 2016
  publication-title: Nano Energy
– volume: 412
  start-page: 170
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 9055
  year: 2015
  publication-title: Sci. Rep.
– volume: 376
  start-page: 1
  year: 2018
  publication-title: J. Power Sources
– volume: 8
  start-page: 426
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 440
  start-page: 91
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 43
  start-page: 11
  year: 2018
  publication-title: Nano Energy
– volume: 330
  start-page: 453
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 314
  year: 2010
  publication-title: Electrochim. Acta
– volume: 209
  start-page: 700
  year: 2016
  publication-title: Electrochim. Acta
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 214
  start-page: 1
  year: 2016
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 95
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 183
  start-page: 78
  year: 2015
  publication-title: Electrochim. Acta
– volume: 147
  start-page: 720
  year: 2014
  publication-title: Electrochim. Acta
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 2004
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 229
  start-page: 910
  year: 2018
  publication-title: Appl. Energy
– volume: 7
  start-page: 414
  year: 2012
  publication-title: Nano Today
– volume: 8
  start-page: 196
  year: 2014
  publication-title: Nano Energy
– volume: 10
  start-page: 2224
  year: 2019
  publication-title: Nat. Commun.
– volume: 196
  year: 2011
  publication-title: J. Power Sources
– volume: 9
  start-page: 402
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  start-page: 529
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 98
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 25
  start-page: 154
  year: 2016
  publication-title: Nano Energy
– volume: 253
  start-page: 9
  year: 2014
  publication-title: J. Power Sources
– volume: 47
  start-page: 5205
  year: 2011
  publication-title: Chem. Commun.
– volume: 10
  start-page: 980
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 21
  start-page: 647
  year: 2019
  publication-title: J. Energy Storage
– volume: 16
  start-page: 4501
  year: 2016
  publication-title: Nano Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 31
  start-page: 1521
  year: 2015
  publication-title: Acta Phys.‐Chim. Sin.
– volume: 154
  start-page: 54
  year: 2016
  publication-title: Chem. Eng. Sci.
– volume: 5
  start-page: 6054
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 355
  start-page: 986
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 102
  start-page: 32
  year: 2016
  publication-title: Carbon
– volume: 10
  start-page: 2515
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 127
  start-page: 627
  year: 2018
  publication-title: Carbon
– volume: 13
  start-page: 9607
  year: 2019
  publication-title: ACS Nano
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 363
  start-page: 838
  year: 2019
  publication-title: Science
– volume: 327
  start-page: 21
  year: 2016
  publication-title: J. Power Sources
– volume: 688
  start-page: 908
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 6268
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 96
  start-page: 443
  year: 2017
  publication-title: Mater. Res. Bull.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 67
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 2920
  year: 2016
  publication-title: RSC Adv.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 21
  start-page: 2868
  year: 2009
  publication-title: Chem. Mater.
– volume: 3
  start-page: 1627
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 19
  start-page: 511
  year: 2016
  publication-title: Nano Energy
– volume: 9
  start-page: 612
  year: 2009
  publication-title: Nano Lett.
– volume: 25
  start-page: 2589
  year: 2013
  publication-title: Adv. Mater.
– volume: 18
  start-page: 232
  year: 2015
  publication-title: Nano Energy
– volume: 13
  start-page: 3666
  year: 2019
  publication-title: ACS Nano
– volume: 238
  start-page: 168
  year: 2017
  publication-title: Electrochim. Acta
– volume: 372
  start-page: 269
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 2299
  year: 2009
  publication-title: Adv. Mater.
– volume: 139
  start-page: 2164
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 106
  year: 2018
  publication-title: Mater. Res. Bull.
– volume: 184
  start-page: 2877
  year: 2011
  publication-title: J. Solid State Chem.
– volume: 16
  start-page: 2570
  year: 2014
  publication-title: J. Nanopart. Res.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 347
  start-page: 552
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 1321
  year: 2018
  publication-title: ChemSusChem
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  start-page: 231
  year: 2015
  publication-title: Mater. Lett.
– volume: 22
  start-page: 2766
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 9620
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 3093
  year: 2013
  publication-title: Nano Lett.
– volume: 13
  start-page: 7536
  year: 2019
  publication-title: ACS Nano
– volume: 710
  start-page: 323
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 8
  start-page: 131
  year: 2015
  publication-title: ChemSusChem
– volume: 9
  start-page: 595
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 2985
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 282
  start-page: 38
  year: 2018
  publication-title: Electrochim. Acta
– volume: 359
  start-page: 1463
  year: 2018
  publication-title: Science
– volume: 25
  start-page: 2152
  year: 2013
  publication-title: Adv. Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 1
  start-page: 108
  year: 2014
  publication-title: ChemElectroChem
– volume: 23
  start-page: 3570
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 432
  year: 2015
  publication-title: Small
– volume: 13
  start-page: 303
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 120
  start-page: 3669
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 20
  start-page: 841
  year: 2014
  publication-title: Ionics
– volume: 396
  start-page: 269
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 570
  start-page: E65
  year: 2019
  publication-title: Nature
– volume: 400
  start-page: 485
  year: 2018
  publication-title: J. Power Sources
– volume: 27
  start-page: 4594
  year: 2015
  publication-title: Chem. Mater.
– volume: 55
  start-page: 3408
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 129
  start-page: 342
  year: 2018
  publication-title: Carbon
– volume: 99
  start-page: 196
  year: 2018
  publication-title: Mater. Res. Bull.
– volume: 17
  start-page: 2772
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 182
  start-page: 1060
  year: 2015
  publication-title: Electrochim. Acta
– volume: 358
  start-page: 506
  year: 2017
  publication-title: Science
– volume: 21
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 118
  start-page: 172
  year: 2017
  publication-title: Energy
– volume: 379
  start-page: 191
  year: 2018
  publication-title: J. Power Sources
– volume: 353
  start-page: 1268
  year: 2016
  publication-title: Science
– volume: 59
  start-page: 229
  year: 2019
  publication-title: Nano Energy
– volume: 568
  start-page: 325
  year: 2019
  publication-title: Nature
– volume: 44
  start-page: 5569
  year: 2018
  publication-title: Ceram. Int.
– volume: 14
  start-page: 4852
  year: 2014
  publication-title: Nano Lett.
– volume: 151
  start-page: 203
  year: 2015
  publication-title: Electrochim. Acta
– volume: 21
  start-page: 3202
  year: 2009
  publication-title: Chem. Mater.
– volume: 20
  start-page: 9707
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 253
  start-page: 251
  year: 2014
  publication-title: J. Power Sources
– volume: 361
  start-page: 1
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 830
  year: 2019
  publication-title: ACS Nano
– volume: 66
  start-page: 204
  year: 2012
  publication-title: Electrochim. Acta
– volume: 533
  start-page: 733
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 357
  start-page: 279
  year: 2017
  publication-title: Science
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 55
  start-page: 5485
  year: 2010
  publication-title: Electrochim. Acta
– volume: 320
  start-page: 405
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 191
  start-page: 169
  year: 2017
  publication-title: Mater. Lett.
– volume: 145
  start-page: 104
  year: 2015
  publication-title: Mater. Lett.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 46
  start-page: 750
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 1082
  year: 2015
  publication-title: Chem. Mater.
– volume: 297
  start-page: 879
  year: 2019
  publication-title: Electrochim. Acta
– volume: 21
  start-page: 9912
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 2536
  year: 2009
  publication-title: Adv. Mater.
– volume: 361
  start-page: 329
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 114
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 861
  year: 2017
  publication-title: Nat. Energy
– volume: 87
  start-page: 844
  year: 2013
  publication-title: Electrochim. Acta
– volume: 137
  start-page: 8372
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 6329
  year: 2017
  publication-title: ACS Omega
– volume: 18
  start-page: 2325
  year: 2006
  publication-title: Adv. Mater.
– volume: 21
  start-page: 2439
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 415
  start-page: 126
  year: 2019
  publication-title: J. Power Sources
– volume: 3
  start-page: 1068
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 2017
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 20
  start-page: 4055
  year: 2014
  publication-title: Chem. ‐ Eur. J.
– volume: 7
  start-page: 2444
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 1945
  year: 2016
  publication-title: Small
– volume: 5
  start-page: 9164
  year: 2015
  publication-title: Sci. Rep.
– volume: 2
  start-page: 111
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 277
  start-page: 100
  year: 2018
  publication-title: Electrochim. Acta
– volume: 97–98
  start-page: 223
  year: 2001
  publication-title: J. Power Sources
– volume: 124
  start-page: 565
  year: 2017
  publication-title: Carbon
– volume: 224
  start-page: 608
  year: 2017
  publication-title: Electrochim. Acta
– volume: 82
  start-page: 159
  year: 2017
  publication-title: Electrochem. Commun.
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 448
  start-page: 389
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 163
  start-page: A540
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 2728
  year: 2016
  publication-title: ACS Nano
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 309
  start-page: 238
  year: 2016
  publication-title: J. Power Sources
– volume: 41
  start-page: 9527
  year: 2015
  publication-title: Ceram. Int.
– volume: 48
  start-page: 504
  year: 2019
  publication-title: Dalton Trans.
– volume: 10
  start-page: 53
  year: 2014
  publication-title: Nano Energy
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 184
  start-page: 219
  year: 2015
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 1629
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 350
  start-page: 1
  year: 2017
  publication-title: J. Power Sources
– volume: 58
  start-page: 5266
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 258
  start-page: 1140
  year: 2017
  publication-title: Electrochim. Acta
– volume: 57
  start-page: 8901
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 242
  start-page: 400
  year: 2017
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 2278
  year: 2011
  publication-title: Chem. ‐ Asian J.
– volume: 238
  start-page: 464
  year: 2013
  publication-title: J. Power Sources
– volume: 173
  start-page: 476
  year: 2015
  publication-title: Electrochim. Acta
– volume: 195
  start-page: 208
  year: 2016
  publication-title: Electrochim. Acta
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 196
  start-page: 8701
  year: 2011
  publication-title: J. Power Sources
– volume: 16
  start-page: 399
  year: 2015
  publication-title: Nano Energy
– volume: 214
  start-page: 31
  year: 2016
  publication-title: Electrochim. Acta
– volume: 115
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 8480
  year: 2013
  publication-title: Nanoscale
– volume: 6
  start-page: 7257
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 407
  start-page: 496
  year: 2000
  publication-title: Nature
– volume: 18
  start-page: 645
  year: 2006
  publication-title: Adv. Mater.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 56
  start-page: 1869
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 833
  start-page: 113
  year: 2019
  publication-title: J. Electroanal. Chem.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 23
  start-page: 1107
  year: 2017
  publication-title: Microsc. Microanal.
– volume: 280
  start-page: 119
  year: 2015
  publication-title: Powder Technol.
– volume: 113
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 116
  start-page: 4000
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 21
  start-page: 4120
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 422
  year: 2018
  publication-title: J. Electron. Mater.
– volume: 51
  start-page: 5728
  year: 2015
  publication-title: Chem. Commun.
– volume: 307
  start-page: 634
  year: 2016
  publication-title: J. Power Sources
– volume: 7
  start-page: 3276
  year: 2017
  publication-title: Sci. Rep.
– volume: 22
  start-page: 4915
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 95
  start-page: 67
  year: 2018
  publication-title: Inorg. Chem. Commun.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 132
  start-page: 483
  year: 2014
  publication-title: Electrochim. Acta
– volume: 219
  start-page: 199
  year: 2012
  publication-title: J. Power Sources
SSID ssj0000491033
Score 2.5974495
SecondaryResourceType review_article
Snippet Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms alkali‐ion batteries
Anodes
Barriers
Boundaries
Carbonaceous materials
Conducting polymers
Electrode materials
Electrodes
Failure mechanisms
Flux density
heterophase interface
Inorganic materials
Lithium
Metal oxides
Metal sulfides
Nanoparticles
physical barrier
Storage batteries
Storage capacity
Structural hierarchy
Tin dioxide
tin dioxide (SnO2)
void boundary
Title SnO2 as Advanced Anode of Alkali‐Ion Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902657
https://www.proquest.com/docview/2352963118
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF616QWEEL-iUNAcuLUu9q7t2NzSNiitSJHiFvVm-WedWCC7JPEBTjwCj8Yz8CTM7no3NiAEvVjW-k_OfPHOzH7zDSEv08QT82xhpe6QWS53XLG-m1peVqD7nvAwdEWB8_Tcn1y6Z1fe1db2nQ5rqVmnh9mXP9aV3MSqOIZ2FVWy_2FZc1McwH20L27Rwrj9JxtH1TsqGsWM9EI-BvO5TAKMPn5AB9swGU7RxkpJs1QcuNNqUaalpDxHouwPw1suMyTojR4vk0IemdVps1rL9jjSlEfJcqk7Z7-vy3z_SPZkkvdsSaATwa6prxc4N6pkYyEpX4LLGDVCVBl3xqrzTqalCma87Vc-45IjIum6vdVm835cVSqil61-3k7aW6Z8o0X5CfE-N3kjrknfHRGF_ZNDQ0MqG4mxRnTwNledKQJxVFfzZdNNi2AMbBuKifqSo99h-UGbPOXdMaUPZT7_dgfmfscRMNPkb7OMUq1NeCWkDNCjor4S2e7LeZszvb-fq9SHx-dTc3yb7FCMeuiA7IxOpm8jkzTEcM6xmSwa0a-nhUht-qr_kF7I1A28pOd0cY_cbUMeGCn83idbvHpAbneEMB-S7wLJkKxAWxokkqEuQCH5x9dviGEwGH4NGwRDVMEGwZB-Bo1gUAgGjWDQCD4AgV_Y4PcAEL3QQS9s0AuIXtDohV_QCxq90EPvI3L5ZnxxPLHaXiPWnAl56ZB6uRewouBuEGYhSx2aZ8wvWJbzkDmJP-TDDKMRWjiMh6mfudRmnAneipc4RcYek0FVV_wJgSzxQzvI_GTIczejCc6IXh4UQRBSWem9S_a0YeL2Y7KKKRMECIbh_i6h0ljxtZKbiZWwOI2FeWNj3riHmKc3uegZubX55-yRwXrZ8OfoYq_TFy3wfgJLedIk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SnO2+as+Advanced+Anode+of+Alkali%E2%80%90Ion+Batteries%3A+Inhibiting+Sn+Coarsening+by+Crafting+Robust+Physical+Barriers%2C+Void+Boundaries%2C+and+Heterophase+Interfaces+for+Superior+Electrochemical+Reaction+Reversibility&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Shiqiang&rft.au=Sewell%2C+Christopher+D.&rft.au=Liu%2C+Ruiping&rft.au=Jia%2C+Songru&rft.date=2020-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201902657&rft.externalDBID=10.1002%252Faenm.201902657&rft.externalDocID=AENM201902657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon