One‐Source Strategy Boosting Dopant‐Free Hole Transporting Layers for Highly Efficient and Stable CsPbI2Br Perovskite Solar Cells
All‐inorganic perovskites have emerged as promising photovoltaic materials due to their superior thermal stability compared to their organic–inorganic hybrid counterparts. However, the inferior film quality and doped hole transport layer (HTL) have a strong tendency to degrade the perovskite under h...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 21 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All‐inorganic perovskites have emerged as promising photovoltaic materials due to their superior thermal stability compared to their organic–inorganic hybrid counterparts. However, the inferior film quality and doped hole transport layer (HTL) have a strong tendency to degrade the perovskite under high temperatures or harsh operating conditions. To solve these problems, a one‐source strategy using the same polymer donor material (PDM) to simultaneously dope CsPbI2Br perovskite films via antisolvent engineering and fabricating the HTL is proposed. The doping assists perovskite film growth and forms a top–down gradient distribution, generating CsPbI2Br with enlarged grain size and reduced defect density. The PDM as the HTL suppresses the energy barrier and forms favorable electrical contacts for hole extraction, and assemble into a fingerprint‐like morphology that improves the conductivity, facilitating the creation of a dopant‐free HTL. Based on this one‐source strategy using PBDB‐T as PDM, the CsPbI2Br perovskite solar cell with a dopant‐free HTL achieves a power conversion efficiency (PCE) of 16.40%, which is one of the highest PCEs reported among all‐inorganic CsPbI2Br pero‐SCs with a dopant‐free HTL. Importantly, the devices exhibit the highest thermal stability at 85 °C and operational stability under continuous illumination even with Ag as the top electrode and present good universality.
A one‐source strategy using the same polymer donor material to simultaneously dope CsPbI2Br perovskite films by antisolvent engineering and fabricating the hole transport layer is proposed. The perovskite solar cell (pero‐SC) based on this one‐source strategy exhibits a remarkable power conversion efficiency of 16.40% and possesses excellent thermal stability and operational stability at the same time. |
---|---|
AbstractList | All‐inorganic perovskites have emerged as promising photovoltaic materials due to their superior thermal stability compared to their organic–inorganic hybrid counterparts. However, the inferior film quality and doped hole transport layer (HTL) have a strong tendency to degrade the perovskite under high temperatures or harsh operating conditions. To solve these problems, a one‐source strategy using the same polymer donor material (PDM) to simultaneously dope CsPbI2Br perovskite films via antisolvent engineering and fabricating the HTL is proposed. The doping assists perovskite film growth and forms a top–down gradient distribution, generating CsPbI2Br with enlarged grain size and reduced defect density. The PDM as the HTL suppresses the energy barrier and forms favorable electrical contacts for hole extraction, and assemble into a fingerprint‐like morphology that improves the conductivity, facilitating the creation of a dopant‐free HTL. Based on this one‐source strategy using PBDB‐T as PDM, the CsPbI2Br perovskite solar cell with a dopant‐free HTL achieves a power conversion efficiency (PCE) of 16.40%, which is one of the highest PCEs reported among all‐inorganic CsPbI2Br pero‐SCs with a dopant‐free HTL. Importantly, the devices exhibit the highest thermal stability at 85 °C and operational stability under continuous illumination even with Ag as the top electrode and present good universality. All‐inorganic perovskites have emerged as promising photovoltaic materials due to their superior thermal stability compared to their organic–inorganic hybrid counterparts. However, the inferior film quality and doped hole transport layer (HTL) have a strong tendency to degrade the perovskite under high temperatures or harsh operating conditions. To solve these problems, a one‐source strategy using the same polymer donor material (PDM) to simultaneously dope CsPbI2Br perovskite films via antisolvent engineering and fabricating the HTL is proposed. The doping assists perovskite film growth and forms a top–down gradient distribution, generating CsPbI2Br with enlarged grain size and reduced defect density. The PDM as the HTL suppresses the energy barrier and forms favorable electrical contacts for hole extraction, and assemble into a fingerprint‐like morphology that improves the conductivity, facilitating the creation of a dopant‐free HTL. Based on this one‐source strategy using PBDB‐T as PDM, the CsPbI2Br perovskite solar cell with a dopant‐free HTL achieves a power conversion efficiency (PCE) of 16.40%, which is one of the highest PCEs reported among all‐inorganic CsPbI2Br pero‐SCs with a dopant‐free HTL. Importantly, the devices exhibit the highest thermal stability at 85 °C and operational stability under continuous illumination even with Ag as the top electrode and present good universality. A one‐source strategy using the same polymer donor material to simultaneously dope CsPbI2Br perovskite films by antisolvent engineering and fabricating the hole transport layer is proposed. The perovskite solar cell (pero‐SC) based on this one‐source strategy exhibits a remarkable power conversion efficiency of 16.40% and possesses excellent thermal stability and operational stability at the same time. |
Author | Li, Yongfang Chen, Weijie Li, Xinqi Wang, Shuhui Xu, Guiying Li, Yaowen Liu, Shuo |
Author_xml | – sequence: 1 givenname: Xinqi surname: Li fullname: Li, Xinqi organization: Soochow University – sequence: 2 givenname: Weijie surname: Chen fullname: Chen, Weijie organization: Soochow University – sequence: 3 givenname: Shuhui surname: Wang fullname: Wang, Shuhui organization: Soochow University – sequence: 4 givenname: Guiying surname: Xu fullname: Xu, Guiying organization: Soochow University – sequence: 5 givenname: Shuo surname: Liu fullname: Liu, Shuo organization: Soochow University – sequence: 6 givenname: Yaowen orcidid: 0000-0001-7229-582X surname: Li fullname: Li, Yaowen email: ywli@suda.edu.cn organization: Soochow University – sequence: 7 givenname: Yongfang surname: Li fullname: Li, Yongfang organization: Chinese Academy of Sciences |
BookMark | eNo9UE1PwkAU3BhMBPTqeRPP4H6UdnvkU0gwkICJt2bLvq3Fsou7RdObF-_-Rn-JRQyn915m3kxmWqhhrAGEbinpUkLYvVR612WEEUrCOLxATRrSsMMJE43zTp-vUMv7LSE0injQRF8LAz-f3yt7cBvAq9LJErIKD6z1ZW4yPLJ7acqaMXEAeGoLwGsnjd9b94fPZQXOY20dnubZS1Hhsdb5JgdTYmlUrSjT-mfol-mMDRxegrPv_jUvazNbSIeHUBT-Gl1qWXi4-Z9t9DQZr4fTznzxMBv2552McxF2Ys0iEAFNexHQQKuU8wBYHYT2lCBKCBFrEFqJMKJyo5SIOICkSkuWUhKEvI3uTrp7Z98O4MtkWwc3tWXCepzSiLAorlnxifWRF1Ale5fvpKsSSpJjz8mx5-Tcc9IfTR7PF_8FndB4pg |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202010696 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM202010696 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51922074; 22075194; 51673138; 51820105003 – fundername: National Key Research and Development Program of China funderid: 2020YFB1506400 – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China funderid: 20KJA430010 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-g3386-9f27e841b57e14fdb334e277315d80d8889fe8fd8671acdd873eea1dfa2b10463 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 02:21:11 EDT 2025 Wed Jan 22 16:29:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3386-9f27e841b57e14fdb334e277315d80d8889fe8fd8671acdd873eea1dfa2b10463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7229-582X |
PQID | 2531170279 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2531170279 wiley_primary_10_1002_adfm_202010696_ADFM202010696 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2018; 29 2019; 9 2015; 6 2019; 3 2017; 3 2019; 31 2015; 347 2019; 10 2019; 1 2019; 13 2019; 59 2019; 58 2019; 567 2019; 19 2020; 13 2020; 10 2020; 32 2019; 141 1999; 401 2014; 136 2017; 358 2020; 8 2015; 45 2020; 7 2018; 9 2016; 6 2020; 5 2018; 8 2018; 3 2018; 2 2016; 1 2015; 27 2014; 2 2020; 75 2015; 137 2020; 30 2018; 555 2018; 30 2018; 51 2014; 53 2018; 57 |
References_xml | – volume: 19 start-page: 5176 year: 2019 publication-title: Nano Lett. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 57 year: 2018 publication-title: Angew. Chem. – volume: 9 start-page: 4544 year: 2018 publication-title: Nat. Commun. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 7269 year: 2015 publication-title: Nat. Commun. – volume: 3 start-page: 682 year: 2018 publication-title: Nat. Energy – volume: 59 start-page: 553 year: 2019 publication-title: Nano Energy – volume: 9 start-page: 1076 year: 2018 publication-title: Nat. Commun. – volume: 358 start-page: 1192 year: 2017 publication-title: Science – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 75 year: 2020 publication-title: Nano Energy – volume: 2 start-page: 1356 year: 2018 publication-title: Joule – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 45 start-page: 289 year: 2015 publication-title: Crit. Rev. Anal. Chem. – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 3 year: 2018 publication-title: Sol. RRL – volume: 5 start-page: 676 year: 2020 publication-title: ACS Energy Lett. – volume: 8 start-page: 8507 year: 2020 publication-title: J. Mater. Chem. C – volume: 29 year: 2018 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 1971 year: 2020 publication-title: Energy Environ. Sci. – volume: 58 year: 2019 publication-title: Angew. Chem. – volume: 555 start-page: 497 year: 2018 publication-title: Nature – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 51 year: 2018 publication-title: J. Phys. D: Appl. Phys. – volume: 567 start-page: 511 year: 2019 publication-title: Nature – volume: 27 start-page: 562 year: 2015 publication-title: Chem. Mater. – volume: 5 start-page: 1292 year: 2020 publication-title: ACS Energy Lett. – volume: 5 start-page: 8903 year: 2017 publication-title: J. Mater. Chem. A – volume: 9 start-page: 1625 year: 2018 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 3 start-page: 191 year: 2019 publication-title: Joule – volume: 137 start-page: 1790 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 53 start-page: 9898 year: 2014 publication-title: Angew. Chem. – volume: 10 start-page: 4593 year: 2019 publication-title: Nat. Commun. – volume: 6 start-page: 7081 year: 2015 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 401 start-page: 685 year: 1999 publication-title: Nature – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 1 start-page: 620 year: 2019 publication-title: Appl. Sci. – volume: 13 start-page: 460 year: 2019 publication-title: Nat. Photonics |
SSID | ssj0017734 |
Score | 2.5621467 |
Snippet | All‐inorganic perovskites have emerged as promising photovoltaic materials due to their superior thermal stability compared to their organic–inorganic hybrid... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | all‐inorganic perovskite solar cells CsPbI 2Br Donor materials Dopants dopant‐free hole transport layers Electric contacts Energy conversion efficiency Film growth Grain size Materials science Morphology one‐source strategy Perovskites Photovoltaic cells Solar cells stability Thermal stability |
Title | One‐Source Strategy Boosting Dopant‐Free Hole Transporting Layers for Highly Efficient and Stable CsPbI2Br Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202010696 https://www.proquest.com/docview/2531170279 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctVBYYeCOelQfW0Np5uWNpqQpqAVEqdYvs-sxAlaCmRYKJhZ3PyCfBl7ShZYQxsh0lfv7PvvuZkDNeAw1Chg5AIB0k0jlCgHEU3vKuvMDXBgOcuzdBu-9dD_zBQhR_zocoNtxwZGTzNQ5wqdLKDzRUaoOR5HiaG9SQuY0OW6iK7gt-FAvD_Fg5YOjgxQZzamOVV5aLL-nLRZWaLTOtTSLnH5h7lzydTyfqfPj2i934nz_YIhszDUrreafZJisQ75D1BTLhLvm4jeHr_bOXbe3TGcL2lV4kSYp-0rRpbe14YnO0xgC0nYyAFph0TO9IlPLUKmKKniSjV3qZsSrsEkdlrO0bMWSLNtI7dcUvxvQOxslLijvJtIfGNm3AaJTukX7r8qHRdmY3NjiP1tQNnJrhIQiPKT8E5hmtXNcDbluB-VpUtbW2awaE0QjVk0OtRegCSKaN5AoPm919UoqTGA4IrdpsHNhQGy49UZV2egiHvpA-GOVao_SQnMxbLJoNuzTidkZhobW0bTLPqj56zqEdUY5n5hFWelRUelRvtrrF09FfCh2TNY5-LpkT5AkpTcZTOLVCZaLKZLXe7HZ65axTfgN2tuX9 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLagDMDAjbjxwBqoncsd20LVQgsVh8QW2fUzA1WCmhapTCzs_EZ-CX5JG44Rxsh2lPh833vf-0zIEa-ABiFDByCQDirSOUKAcRTe8q68wNcGE5w7l0Hzzju_96dsQsyFyfUhCocbroxsv8YFjg7pky_VUKkNppJjODeoBLNkDq_1zlDVdaEgxcIwDywHDCle7H6q21jmJz_b_7Awv9up2UHTWCZq-ok5v-TxeDRUx72XX-qN__qHFbI0MUNpNZ83q2QG4jWy-E2ccJ28XcXw8fp-k3n36UTFdkxrSZIiVZqeWrgdD22NxgCANpM-0EIpHcvbEq15ao1iimSS_pieZXIV9pSjMtb2jZi1RetpV7V4bUC7MEieU3Qm0xvE27QO_X66Qe4aZ7f1pjO5tMF5sGg3cCqGhyA8pvwQmGe0cl0PuB0G5mtR1hZwVwwIo1FXT_a0FqELIJk2kiuMN7ubpBQnMWwRWrbVOLCeNlx6oiztDhH2fCF9MMq1uHSb7E2HLJqsvDTidlNhoQXbtphnfR895bodUa7QzCPs9Kjo9Kh62ugUTzt_aXRI5pu3nXbUbl1e7JIFjrSXjBO5R0rDwQj2rd0yVAfZzPwElCDohA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIAtHhKCgTfijQfWQOy83BFaovKueEjdIrs-M1AlVVOQYGJh5zfyS_AlbSiMMEa2o8Q-23fnu8-E7PMaaBAycgBC6SCRzhECjKPwlnflh4E2mOB8eRU27_2zdtAey-Iv-RCVww1nRrFe4wTvaXP4DQ2V2mAmOZ7mhrVwkkz7oStQrhs3FUCKRVF5rhwyjPBi7RG20eWHP9v_UDDH1dRin4kXiBx9YRle8njwNFAHnddf8Mb__MIimR8qofSolJolMgHpMpkbQxOukPfrFD7fPm4L3z4dMmxf6HGW5RgoTRvW2E4HtkbcB6DNrAu04qRj-YVEXZ5alZhiKEn3hZ4UsAq7x1GZavtGzNmi9bylTvlxn7agnz3n6Eqmt2ht0zp0u_kquY9P7upNZ3hlg_Ngbd3QqRkegfCZCiJgvtHK83zgdhRYoIWrrbldMyCMRqqe7GgtIg9AMm0kV3ja7K2RqTRLYZ1Q11bjwDracOkLV9r1IeoEQgZglGet0g2yPRqxZDjv8oTbJYVF1tS2xbzo-qRXUjuSks_ME-z0pOr05KgRX1ZPm39ptEdmWo04uTi9Ot8isxxjXoqAyG0yNeg_wY5VWgZqt5DLLwv-5zw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90Source+Strategy+Boosting+Dopant%E2%80%90Free+Hole+Transporting+Layers+for+Highly+Efficient+and+Stable+CsPbI2Br+Perovskite+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Xinqi&rft.au=Chen%2C+Weijie&rft.au=Wang%2C+Shuhui&rft.au=Xu%2C+Guiying&rft.date=2021-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=21&rft_id=info:doi/10.1002%2Fadfm.202010696&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |