Tunnel Intergrowth LixMnO2 Nanosheet Arrays as 3D Cathode for High‐Performance All‐Solid‐State Thin Film Lithium Microbatteries
All‐solid‐state thin film lithium batteries (TFBs) are proposed as the ideal power sources for microelectronic devices. However, the high‐temperature (>500 °C) annealing process of cathode films, such as LiCoO2 and LiMn2O4, restricts the on‐chip integration and potential applications of TFBs. Her...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 5 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All‐solid‐state thin film lithium batteries (TFBs) are proposed as the ideal power sources for microelectronic devices. However, the high‐temperature (>500 °C) annealing process of cathode films, such as LiCoO2 and LiMn2O4, restricts the on‐chip integration and potential applications of TFBs. Herein, tunnel structured LixMnO2 nanosheet arrays are fabricated as 3D cathode for TFBs by a facile electrolyte Li+ ion infusion method at very low temperature of 180 °C. Featuring an interesting tunnel intergrowth structure consisting of alternating 1 × 3 and 1 × 2 tunnels, the LixMnO2 cathode shows high specific capacity with good structural stability between 2.0 and 4.3 V (vs. Li+/Li). By utilizing the 3D LixMnO2 cathode, all‐solid‐state LixMnO2/LiPON/Li TFB (3DLMO‐TFB) has been successfully constructed with prominent advantages of greatly enriched cathode/electrolyte interface and shortened Li+ diffusion length in the 3D structure. Consequently, the 3DLMO‐TFB device exhibits large specific capacity (185 mAh g−1 at 50 mA g−1), good rate performance, and excellent cycle performance (81.3% capacity retention after 1000 cycles), outperforming the TFBs using spinel LiMn2O4 thin film cathodes fabricated at high temperature. Importantly, the low‐temperature preparation of high‐performance cathode film enables the fabrication of TFBs on various rigid and flexible substrates, which could greatly expand their potential applications in microelectronics.
Tunnel intergrowth LixMnO2 nanosheet arrays consisting of alternating 1 × 3 and 1 × 2 tunnels are developed by a facile electrolyte Li+ ion infusion method at a low temperature of 180 °C. Benefiting from the stable tunnel structure for the cathode and favorable architecture with abundant 3D cathode/electrolyte interface, the constructed LixMnO2/LiPON/Li thin‐film battery achieves large specific capacity and outstanding cycle life. |
---|---|
AbstractList | All‐solid‐state thin film lithium batteries (TFBs) are proposed as the ideal power sources for microelectronic devices. However, the high‐temperature (>500 °C) annealing process of cathode films, such as LiCoO2 and LiMn2O4, restricts the on‐chip integration and potential applications of TFBs. Herein, tunnel structured LixMnO2 nanosheet arrays are fabricated as 3D cathode for TFBs by a facile electrolyte Li+ ion infusion method at very low temperature of 180 °C. Featuring an interesting tunnel intergrowth structure consisting of alternating 1 × 3 and 1 × 2 tunnels, the LixMnO2 cathode shows high specific capacity with good structural stability between 2.0 and 4.3 V (vs. Li+/Li). By utilizing the 3D LixMnO2 cathode, all‐solid‐state LixMnO2/LiPON/Li TFB (3DLMO‐TFB) has been successfully constructed with prominent advantages of greatly enriched cathode/electrolyte interface and shortened Li+ diffusion length in the 3D structure. Consequently, the 3DLMO‐TFB device exhibits large specific capacity (185 mAh g−1 at 50 mA g−1), good rate performance, and excellent cycle performance (81.3% capacity retention after 1000 cycles), outperforming the TFBs using spinel LiMn2O4 thin film cathodes fabricated at high temperature. Importantly, the low‐temperature preparation of high‐performance cathode film enables the fabrication of TFBs on various rigid and flexible substrates, which could greatly expand their potential applications in microelectronics. All‐solid‐state thin film lithium batteries (TFBs) are proposed as the ideal power sources for microelectronic devices. However, the high‐temperature (>500 °C) annealing process of cathode films, such as LiCoO2 and LiMn2O4, restricts the on‐chip integration and potential applications of TFBs. Herein, tunnel structured LixMnO2 nanosheet arrays are fabricated as 3D cathode for TFBs by a facile electrolyte Li+ ion infusion method at very low temperature of 180 °C. Featuring an interesting tunnel intergrowth structure consisting of alternating 1 × 3 and 1 × 2 tunnels, the LixMnO2 cathode shows high specific capacity with good structural stability between 2.0 and 4.3 V (vs. Li+/Li). By utilizing the 3D LixMnO2 cathode, all‐solid‐state LixMnO2/LiPON/Li TFB (3DLMO‐TFB) has been successfully constructed with prominent advantages of greatly enriched cathode/electrolyte interface and shortened Li+ diffusion length in the 3D structure. Consequently, the 3DLMO‐TFB device exhibits large specific capacity (185 mAh g−1 at 50 mA g−1), good rate performance, and excellent cycle performance (81.3% capacity retention after 1000 cycles), outperforming the TFBs using spinel LiMn2O4 thin film cathodes fabricated at high temperature. Importantly, the low‐temperature preparation of high‐performance cathode film enables the fabrication of TFBs on various rigid and flexible substrates, which could greatly expand their potential applications in microelectronics. Tunnel intergrowth LixMnO2 nanosheet arrays consisting of alternating 1 × 3 and 1 × 2 tunnels are developed by a facile electrolyte Li+ ion infusion method at a low temperature of 180 °C. Benefiting from the stable tunnel structure for the cathode and favorable architecture with abundant 3D cathode/electrolyte interface, the constructed LixMnO2/LiPON/Li thin‐film battery achieves large specific capacity and outstanding cycle life. |
Author | Wang, Peng Zhang, Qinghua Liu, Kaiming Sun, Shuo Xia, Qiuying Zhang, Chunchen Xia, Hui Zhu, Xiaohui Xu, Jing Gu, Lin Geng, Hao Zan, Feng Hussain, Fiaz Meng, Fanqi |
Author_xml | – sequence: 1 givenname: Qiuying surname: Xia fullname: Xia, Qiuying organization: Nanjing University of Science and Technology – sequence: 2 givenname: Qinghua surname: Zhang fullname: Zhang, Qinghua organization: Yangtze River Delta Physics Research Center Co. Ltd – sequence: 3 givenname: Shuo surname: Sun fullname: Sun, Shuo organization: Nanjing University of Science and Technology – sequence: 4 givenname: Fiaz surname: Hussain fullname: Hussain, Fiaz organization: Nanjing University of Science and Technology – sequence: 5 givenname: Chunchen surname: Zhang fullname: Zhang, Chunchen organization: Nanjing University – sequence: 6 givenname: Xiaohui surname: Zhu fullname: Zhu, Xiaohui organization: Nanjing University of Science and Technology – sequence: 7 givenname: Fanqi surname: Meng fullname: Meng, Fanqi organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Kaiming surname: Liu fullname: Liu, Kaiming organization: Nanjing University of Science and Technology – sequence: 9 givenname: Hao surname: Geng fullname: Geng, Hao organization: Nanjing University of Science and Technology – sequence: 10 givenname: Jing surname: Xu fullname: Xu, Jing organization: Nanjing University of Science and Technology – sequence: 11 givenname: Feng surname: Zan fullname: Zan, Feng organization: Nanjing University of Science and Technology – sequence: 12 givenname: Peng surname: Wang fullname: Wang, Peng organization: Nanjing University – sequence: 13 givenname: Lin surname: Gu fullname: Gu, Lin email: l.gu@aphy.iphy.ac.cn organization: Songshan Lake Materials Laboratory – sequence: 14 givenname: Hui orcidid: 0000-0002-2517-2410 surname: Xia fullname: Xia, Hui email: xiahui@njust.edu.cn organization: Nanjing University of Science and Technology |
BookMark | eNo9UEtLw0AYXKSCtXr1vOA5dd_NHkN9QmsF6zlsky_NSrKrmy21Ny_e_Y3-ElMqnoYZhhlmTtHAeQcIXVAypoSwK1O2ZswII4RLJo7QkEpGE0G0HKAh0VwmWon0BJ123SshRCuihuhruXEOGvzgIoR18NtY45n9mLsFw4_G-a4GiDgLwew6bDrMr_HUxNqXgCsf8L1d1z-f308QetYaVwDOmqZXnn1jyz1GEwEva-vwrW3aPjvWdtPiuS2CX5nYt1roztBxZZoOzv9whF5ub5bT-2S2uHuYZrNkzXkqkopOQBdCMakAjITSlJxOVDWBST-5lKk0VIpeTTURWgiRFkxW2lTlypSKp3yELg-5b8G_b6CL-avfBNdX5kykQqlUUtm79MG1tQ3s8rdgWxN2OSX5_ud8_3P-_3OeXc-zf8Z_AazjeVI |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH |
DBID | 7SR 8BQ 8FD JG9 |
DOI | 10.1002/adma.202003524 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA202003524 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51772154; 51802159; 51972174; 52002183; 52025025; 52072400 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-g3384-f17e9c46256eea5edad3176f7e7352d585a154dad890494448c25f9afdbad6383 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Jul 25 05:08:13 EDT 2025 Wed Jan 22 16:30:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3384-f17e9c46256eea5edad3176f7e7352d585a154dad890494448c25f9afdbad6383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2517-2410 |
PQID | 2484668515 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2484668515 wiley_primary_10_1002_adma_202003524_ADMA202003524 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2018; 29 2007; 19 2015; 15 2019; 9 2019; 3 2019; 6 2015; 3 2019; 35 2019; 12 2005; 116 2016; 10 1995; 335 2006; 153 2017; 29 2017; 350 2016; 324 2006; 159 2016; 16 2015; 7 2017; 9 1996; 54 2018; 48 2008; 183 2014; 134 1996; 77 1983; 304 2010; 20 2015; 27 1976; 13 2017; 17 2018; 1 2013; 234 2017; 164 2019; 337 2014; 9 2009; 19 2012; 116 1994; 50 2016; 8 2003; 100 2018; 14 |
References_xml | – volume: 234 start-page: 310 year: 2013 publication-title: J. Power Sources – volume: 27 start-page: 6044 year: 2015 publication-title: Chem. Mater. – volume: 153 start-page: A821 year: 2006 publication-title: J. Electrochem. Soc. – volume: 15 start-page: 2998 year: 2015 publication-title: Nano Lett. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 16 start-page: 3760 year: 2016 publication-title: Nano Lett. – volume: 1 start-page: 7046 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 116 start-page: 24 year: 2012 publication-title: Ultramicroscopy – volume: 183 start-page: 366 year: 2008 publication-title: J. Power Sources – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 8845 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 start-page: 6447 year: 2017 publication-title: J. Mater. Chem. A – volume: 12 start-page: 945 year: 2019 publication-title: Energy Environ. Sci. – volume: 164 start-page: A538 year: 2017 publication-title: J. Electrochem. Soc. – volume: 335 start-page: 32 year: 1995 publication-title: Surf. Sci. – volume: 14 year: 2018 publication-title: Small – volume: 19 start-page: 657 year: 2007 publication-title: Adv. Mater. – volume: 337 start-page: 24 year: 2019 publication-title: Solid State Ionics – volume: 27 start-page: 5116 year: 2015 publication-title: Chem. Mater. – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 19 start-page: 800 year: 2009 publication-title: J. Mater. Chem. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 27 start-page: 6608 year: 2015 publication-title: Chem. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 100 start-page: 87 year: 2003 publication-title: Mater. Sci. Eng., B – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 304 start-page: 143 year: 1983 publication-title: Nature – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 350 start-page: 56 year: 2017 publication-title: J. Power Sources – volume: 134 start-page: 237 year: 2014 publication-title: Mater. Lett. – volume: 116 start-page: 245 year: 2005 publication-title: Mater. Sci. Eng., B – volume: 50 year: 1994 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 17 start-page: 6974 year: 2017 publication-title: Nano Lett. – volume: 324 start-page: 342 year: 2016 publication-title: J. Power Sources – volume: 3 start-page: 7338 year: 2015 publication-title: J. Mater. Chem. A – volume: 9 start-page: 161 year: 2014 publication-title: Nano Energy – volume: 54 year: 1996 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 159 start-page: 1365 year: 2006 publication-title: J. Power Sources – volume: 164 start-page: D954 year: 2017 publication-title: J. Electrochem. Soc. – volume: 29 start-page: 7675 year: 2017 publication-title: Chem. Mater. – volume: 10 start-page: 539 year: 2016 publication-title: ACS Nano – volume: 8 start-page: 7060 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 301 year: 2018 publication-title: Nano Energy – volume: 35 start-page: 31 year: 2019 publication-title: J. Mater. Res. – volume: 20 year: 2010 publication-title: J. Mater. Chem. – volume: 3 start-page: 471 year: 2019 publication-title: Joule |
SSID | ssj0009606 |
Score | 2.576184 |
Snippet | All‐solid‐state thin film lithium batteries (TFBs) are proposed as the ideal power sources for microelectronic devices. However, the high‐temperature (>500 °C)... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | 3D cathodes all‐solid‐state Li batteries Arrays Cathodes Diffusion length Electrolytes High temperature Lithium batteries Lithium ions Lithium manganese oxides LixMnO2 Low temperature Materials science Microbatteries Microelectronics Nanosheets Power sources Structural stability Substrates thin film batteries Thin films tunnel intergrowth |
Title | Tunnel Intergrowth LixMnO2 Nanosheet Arrays as 3D Cathode for High‐Performance All‐Solid‐State Thin Film Lithium Microbatteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202003524 https://www.proquest.com/docview/2484668515 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ09T8MwEIYtxAQD34hCQR5Y0zaJ4yRjRakqRAFBK3WLnNhpK9IWNYkETCzs_EZ-CXdOPxlhimLJVnyxL-8558eEXHJlQ1TgCcOMFP5mNG1D2KaJeG3m1QTnvkZstO94q8tuek5vZRd_wYdYLLjhzND-Gie4CNPqEhoqpOYGFURPBIJiwhaqosclPwrluYbt2Y7hc-bNqY01q7pefU1frqpU_Zlp7hIxf8Aiu-S5kmdhJXr_xW78Tw_2yM5Mg9J6MWj2yYYaH5DtFTLhIfns5JgAQ_WCYR9C9WxAb4ev7fG9RcEhT9KBUhm0MBVvKRUptRsU9xJOpKKggilmj3x_fD0sdyXQepJAydMkGUq8osaleGgobQ6TEbSdDYb5iLYxPzDUzE8I4Y9It3nduWoZsxMbjD6EusyITVf5EYOYiislHCWFBH3CY1e50EUJoYkAyQalno9cGhgOkeXEvohlKCR4AvuYbI4nY3VCqMuggdCMbFvVmHAi8NoRjyOpfCZAsokSKc_fWDCbdmlgMZBTHESkUyKWNn3wUkA7ggLPbAVo9GBh9KDeaNcXd6d_qXRGtizMc9GZ3GWymU1zdQ5CJQsv9GD8AX9J40s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctKAMw8EYUCnhgTdskjtuMFaUq0BQErcQWObHTVvSB2lQCJhZ2PiOfhDunT0aYoliyFV_sy_-c88-EXHBlQ1RQFIYZKvzNaNqGsE0T8dqsmBecuxqx4dV5tclunpxpNiHuhUn4ELMFN5wZ2l_jBMcF6dycGiqkBgclSE-2StbwWG8dVT3MCVIo0DVuz3YMl7PilNuYt3LL9ZcU5qJO1R-ayjYJpo-Y5Jc8Z8dxkA3ff9Eb_9WHHbI1kaG0lIybXbKi-ntkcwFOuE8-G2PMgaF6zbAF0XrcprXOq9e_syj45MGorVQMLQzF24iKEbXLFLcTDqSiIIQpJpB8f3zdzzcm0FK3CyWPg25H4hVlLsVzQ2ml0-1B23G7M-5RD1MEA439hCj-gDQrV43LqjE5tMFoQbTLjMgsKDdkEFZxpYSjpJAgUXhUUAXoooToRIBqg9Kii2gaGBGh5USuiGQgJDgD-5Ck-oO-OiK0wKCBwAxtW-WZcEJw3CGPQqlcJkC1iTTJTF-ZP5l5I99ioKg46EgnTSxte_8l4Xb4CaHZ8tHo_szofqnslWZ3x3-pdE7Wqw2v5teu67cnZMPCtBed2J0hqXg4VqegW-LgTI_MH7V152Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbxcTowd9GFLUHrwO2dWU7Lk6CP0CikHBburUDIjACI1FPXrz7N_qX-Nrx06OeljVps3avb9_XvX6K0BUVJkQFNtP0UMjfjLqpMVPXJV6b2EVGqaMQG9UarTTJXctqLe3iT_kQ8wU3OTOUv5YTfMijwgIayrjiBqVET7KONggt2tKuvacFQErqc0XbMy3NocSeYRuLRmG1_orAXJap6jtT3kVs9oRpeslLfpIE-fD9F7zxP13YQztTEYrd1Gr20ZoYHKDtJTThIfpsTGQGDFYrhm2I1ZMOfui-VgePBgaPHI87QiTQwoi9jTEbY9PDcjNhzAUGGYxl-sj3x1d9sS0Bu70elDzHvS6XVylysTw1FJe7vT60nXS6kz6uygTBQEE_IYY_Qs3yTeO6ok2PbNDaEOsSLdJLwgkJBFVUCGYJzjgIFBqVRAm6yCE2YaDZoNR2JJgG7CE0rMhhEQ8YB1dgHqPMIB6IE4RLBBoI9NA0RZEwKwS3HdIo5MIhDDQby6Lc7I3503k39g0CeoqCirSyyFBD7w9Taoef8pkNXw66Px903_Wq7vzu9C-VLtFm3Sv7D7e1-zO0ZcicF5XVnUOZZDQR5yBakuBC2eUPMdPmHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunnel+Intergrowth+LixMnO2+Nanosheet+Arrays+as+3D+Cathode+for+High%E2%80%90Performance+All%E2%80%90Solid%E2%80%90State+Thin+Film+Lithium+Microbatteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xia%2C+Qiuying&rft.au=Zhang%2C+Qinghua&rft.au=Sun%2C+Shuo&rft.au=Hussain%2C+Fiaz&rft.date=2021-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=5&rft_id=info:doi/10.1002%2Fadma.202003524&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |