Tunnel Intergrowth LixMnO2 Nanosheet Arrays as 3D Cathode for High‐Performance All‐Solid‐State Thin Film Lithium Microbatteries

All‐solid‐state thin film lithium batteries (TFBs) are proposed as the ideal power sources for microelectronic devices. However, the high‐temperature (>500 °C) annealing process of cathode films, such as LiCoO2 and LiMn2O4, restricts the on‐chip integration and potential applications of TFBs. Her...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 5
Main Authors Xia, Qiuying, Zhang, Qinghua, Sun, Shuo, Hussain, Fiaz, Zhang, Chunchen, Zhu, Xiaohui, Meng, Fanqi, Liu, Kaiming, Geng, Hao, Xu, Jing, Zan, Feng, Wang, Peng, Gu, Lin, Xia, Hui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract All‐solid‐state thin film lithium batteries (TFBs) are proposed as the ideal power sources for microelectronic devices. However, the high‐temperature (>500 °C) annealing process of cathode films, such as LiCoO2 and LiMn2O4, restricts the on‐chip integration and potential applications of TFBs. Herein, tunnel structured LixMnO2 nanosheet arrays are fabricated as 3D cathode for TFBs by a facile electrolyte Li+ ion infusion method at very low temperature of 180 °C. Featuring an interesting tunnel intergrowth structure consisting of alternating 1 × 3 and 1 × 2 tunnels, the LixMnO2 cathode shows high specific capacity with good structural stability between 2.0 and 4.3 V (vs. Li+/Li). By utilizing the 3D LixMnO2 cathode, all‐solid‐state LixMnO2/LiPON/Li TFB (3DLMO‐TFB) has been successfully constructed with prominent advantages of greatly enriched cathode/electrolyte interface and shortened Li+ diffusion length in the 3D structure. Consequently, the 3DLMO‐TFB device exhibits large specific capacity (185 mAh g−1 at 50 mA g−1), good rate performance, and excellent cycle performance (81.3% capacity retention after 1000 cycles), outperforming the TFBs using spinel LiMn2O4 thin film cathodes fabricated at high temperature. Importantly, the low‐temperature preparation of high‐performance cathode film enables the fabrication of TFBs on various rigid and flexible substrates, which could greatly expand their potential applications in microelectronics. Tunnel intergrowth LixMnO2 nanosheet arrays consisting of alternating 1 × 3 and 1 × 2 tunnels are developed by a facile electrolyte Li+ ion infusion method at a low temperature of 180 °C. Benefiting from the stable tunnel structure for the cathode and favorable architecture with abundant 3D cathode/electrolyte interface, the constructed LixMnO2/LiPON/Li thin‐film battery achieves large specific capacity and outstanding cycle life.
AbstractList All‐solid‐state thin film lithium batteries (TFBs) are proposed as the ideal power sources for microelectronic devices. However, the high‐temperature (>500 °C) annealing process of cathode films, such as LiCoO2 and LiMn2O4, restricts the on‐chip integration and potential applications of TFBs. Herein, tunnel structured LixMnO2 nanosheet arrays are fabricated as 3D cathode for TFBs by a facile electrolyte Li+ ion infusion method at very low temperature of 180 °C. Featuring an interesting tunnel intergrowth structure consisting of alternating 1 × 3 and 1 × 2 tunnels, the LixMnO2 cathode shows high specific capacity with good structural stability between 2.0 and 4.3 V (vs. Li+/Li). By utilizing the 3D LixMnO2 cathode, all‐solid‐state LixMnO2/LiPON/Li TFB (3DLMO‐TFB) has been successfully constructed with prominent advantages of greatly enriched cathode/electrolyte interface and shortened Li+ diffusion length in the 3D structure. Consequently, the 3DLMO‐TFB device exhibits large specific capacity (185 mAh g−1 at 50 mA g−1), good rate performance, and excellent cycle performance (81.3% capacity retention after 1000 cycles), outperforming the TFBs using spinel LiMn2O4 thin film cathodes fabricated at high temperature. Importantly, the low‐temperature preparation of high‐performance cathode film enables the fabrication of TFBs on various rigid and flexible substrates, which could greatly expand their potential applications in microelectronics.
All‐solid‐state thin film lithium batteries (TFBs) are proposed as the ideal power sources for microelectronic devices. However, the high‐temperature (>500 °C) annealing process of cathode films, such as LiCoO2 and LiMn2O4, restricts the on‐chip integration and potential applications of TFBs. Herein, tunnel structured LixMnO2 nanosheet arrays are fabricated as 3D cathode for TFBs by a facile electrolyte Li+ ion infusion method at very low temperature of 180 °C. Featuring an interesting tunnel intergrowth structure consisting of alternating 1 × 3 and 1 × 2 tunnels, the LixMnO2 cathode shows high specific capacity with good structural stability between 2.0 and 4.3 V (vs. Li+/Li). By utilizing the 3D LixMnO2 cathode, all‐solid‐state LixMnO2/LiPON/Li TFB (3DLMO‐TFB) has been successfully constructed with prominent advantages of greatly enriched cathode/electrolyte interface and shortened Li+ diffusion length in the 3D structure. Consequently, the 3DLMO‐TFB device exhibits large specific capacity (185 mAh g−1 at 50 mA g−1), good rate performance, and excellent cycle performance (81.3% capacity retention after 1000 cycles), outperforming the TFBs using spinel LiMn2O4 thin film cathodes fabricated at high temperature. Importantly, the low‐temperature preparation of high‐performance cathode film enables the fabrication of TFBs on various rigid and flexible substrates, which could greatly expand their potential applications in microelectronics. Tunnel intergrowth LixMnO2 nanosheet arrays consisting of alternating 1 × 3 and 1 × 2 tunnels are developed by a facile electrolyte Li+ ion infusion method at a low temperature of 180 °C. Benefiting from the stable tunnel structure for the cathode and favorable architecture with abundant 3D cathode/electrolyte interface, the constructed LixMnO2/LiPON/Li thin‐film battery achieves large specific capacity and outstanding cycle life.
Author Wang, Peng
Zhang, Qinghua
Liu, Kaiming
Sun, Shuo
Xia, Qiuying
Zhang, Chunchen
Xia, Hui
Zhu, Xiaohui
Xu, Jing
Gu, Lin
Geng, Hao
Zan, Feng
Hussain, Fiaz
Meng, Fanqi
Author_xml – sequence: 1
  givenname: Qiuying
  surname: Xia
  fullname: Xia, Qiuying
  organization: Nanjing University of Science and Technology
– sequence: 2
  givenname: Qinghua
  surname: Zhang
  fullname: Zhang, Qinghua
  organization: Yangtze River Delta Physics Research Center Co. Ltd
– sequence: 3
  givenname: Shuo
  surname: Sun
  fullname: Sun, Shuo
  organization: Nanjing University of Science and Technology
– sequence: 4
  givenname: Fiaz
  surname: Hussain
  fullname: Hussain, Fiaz
  organization: Nanjing University of Science and Technology
– sequence: 5
  givenname: Chunchen
  surname: Zhang
  fullname: Zhang, Chunchen
  organization: Nanjing University
– sequence: 6
  givenname: Xiaohui
  surname: Zhu
  fullname: Zhu, Xiaohui
  organization: Nanjing University of Science and Technology
– sequence: 7
  givenname: Fanqi
  surname: Meng
  fullname: Meng, Fanqi
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Kaiming
  surname: Liu
  fullname: Liu, Kaiming
  organization: Nanjing University of Science and Technology
– sequence: 9
  givenname: Hao
  surname: Geng
  fullname: Geng, Hao
  organization: Nanjing University of Science and Technology
– sequence: 10
  givenname: Jing
  surname: Xu
  fullname: Xu, Jing
  organization: Nanjing University of Science and Technology
– sequence: 11
  givenname: Feng
  surname: Zan
  fullname: Zan, Feng
  organization: Nanjing University of Science and Technology
– sequence: 12
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: Nanjing University
– sequence: 13
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  email: l.gu@aphy.iphy.ac.cn
  organization: Songshan Lake Materials Laboratory
– sequence: 14
  givenname: Hui
  orcidid: 0000-0002-2517-2410
  surname: Xia
  fullname: Xia, Hui
  email: xiahui@njust.edu.cn
  organization: Nanjing University of Science and Technology
BookMark eNo9UEtLw0AYXKSCtXr1vOA5dd_NHkN9QmsF6zlsky_NSrKrmy21Ny_e_Y3-ElMqnoYZhhlmTtHAeQcIXVAypoSwK1O2ZswII4RLJo7QkEpGE0G0HKAh0VwmWon0BJ123SshRCuihuhruXEOGvzgIoR18NtY45n9mLsFw4_G-a4GiDgLwew6bDrMr_HUxNqXgCsf8L1d1z-f308QetYaVwDOmqZXnn1jyz1GEwEva-vwrW3aPjvWdtPiuS2CX5nYt1roztBxZZoOzv9whF5ub5bT-2S2uHuYZrNkzXkqkopOQBdCMakAjITSlJxOVDWBST-5lKk0VIpeTTURWgiRFkxW2lTlypSKp3yELg-5b8G_b6CL-avfBNdX5kykQqlUUtm79MG1tQ3s8rdgWxN2OSX5_ud8_3P-_3OeXc-zf8Z_AazjeVI
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
DBID 7SR
8BQ
8FD
JG9
DOI 10.1002/adma.202003524
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202003524
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51772154; 51802159; 51972174; 52002183; 52025025; 52072400
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-g3384-f17e9c46256eea5edad3176f7e7352d585a154dad890494448c25f9afdbad6383
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Jul 25 05:08:13 EDT 2025
Wed Jan 22 16:30:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3384-f17e9c46256eea5edad3176f7e7352d585a154dad890494448c25f9afdbad6383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2517-2410
PQID 2484668515
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_journals_2484668515
wiley_primary_10_1002_adma_202003524_ADMA202003524
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2018; 29
2007; 19
2015; 15
2019; 9
2019; 3
2019; 6
2015; 3
2019; 35
2019; 12
2005; 116
2016; 10
1995; 335
2006; 153
2017; 29
2017; 350
2016; 324
2006; 159
2016; 16
2015; 7
2017; 9
1996; 54
2018; 48
2008; 183
2014; 134
1996; 77
1983; 304
2010; 20
2015; 27
1976; 13
2017; 17
2018; 1
2013; 234
2017; 164
2019; 337
2014; 9
2009; 19
2012; 116
1994; 50
2016; 8
2003; 100
2018; 14
References_xml – volume: 234
  start-page: 310
  year: 2013
  publication-title: J. Power Sources
– volume: 27
  start-page: 6044
  year: 2015
  publication-title: Chem. Mater.
– volume: 153
  start-page: A821
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 15
  start-page: 2998
  year: 2015
  publication-title: Nano Lett.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 3760
  year: 2016
  publication-title: Nano Lett.
– volume: 1
  start-page: 7046
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 116
  start-page: 24
  year: 2012
  publication-title: Ultramicroscopy
– volume: 183
  start-page: 366
  year: 2008
  publication-title: J. Power Sources
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 8845
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 6447
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 945
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 164
  start-page: A538
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 335
  start-page: 32
  year: 1995
  publication-title: Surf. Sci.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 19
  start-page: 657
  year: 2007
  publication-title: Adv. Mater.
– volume: 337
  start-page: 24
  year: 2019
  publication-title: Solid State Ionics
– volume: 27
  start-page: 5116
  year: 2015
  publication-title: Chem. Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 19
  start-page: 800
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 27
  start-page: 6608
  year: 2015
  publication-title: Chem. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 100
  start-page: 87
  year: 2003
  publication-title: Mater. Sci. Eng., B
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 304
  start-page: 143
  year: 1983
  publication-title: Nature
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 350
  start-page: 56
  year: 2017
  publication-title: J. Power Sources
– volume: 134
  start-page: 237
  year: 2014
  publication-title: Mater. Lett.
– volume: 116
  start-page: 245
  year: 2005
  publication-title: Mater. Sci. Eng., B
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 17
  start-page: 6974
  year: 2017
  publication-title: Nano Lett.
– volume: 324
  start-page: 342
  year: 2016
  publication-title: J. Power Sources
– volume: 3
  start-page: 7338
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 161
  year: 2014
  publication-title: Nano Energy
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 159
  start-page: 1365
  year: 2006
  publication-title: J. Power Sources
– volume: 164
  start-page: D954
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 29
  start-page: 7675
  year: 2017
  publication-title: Chem. Mater.
– volume: 10
  start-page: 539
  year: 2016
  publication-title: ACS Nano
– volume: 8
  start-page: 7060
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 301
  year: 2018
  publication-title: Nano Energy
– volume: 35
  start-page: 31
  year: 2019
  publication-title: J. Mater. Res.
– volume: 20
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 471
  year: 2019
  publication-title: Joule
SSID ssj0009606
Score 2.576184
Snippet All‐solid‐state thin film lithium batteries (TFBs) are proposed as the ideal power sources for microelectronic devices. However, the high‐temperature (>500 °C)...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms 3D cathodes
all‐solid‐state Li batteries
Arrays
Cathodes
Diffusion length
Electrolytes
High temperature
Lithium batteries
Lithium ions
Lithium manganese oxides
LixMnO2
Low temperature
Materials science
Microbatteries
Microelectronics
Nanosheets
Power sources
Structural stability
Substrates
thin film batteries
Thin films
tunnel intergrowth
Title Tunnel Intergrowth LixMnO2 Nanosheet Arrays as 3D Cathode for High‐Performance All‐Solid‐State Thin Film Lithium Microbatteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202003524
https://www.proquest.com/docview/2484668515
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ09T8MwEIYtxAQD34hCQR5Y0zaJ4yRjRakqRAFBK3WLnNhpK9IWNYkETCzs_EZ-CXdOPxlhimLJVnyxL-8558eEXHJlQ1TgCcOMFP5mNG1D2KaJeG3m1QTnvkZstO94q8tuek5vZRd_wYdYLLjhzND-Gie4CNPqEhoqpOYGFURPBIJiwhaqosclPwrluYbt2Y7hc-bNqY01q7pefU1frqpU_Zlp7hIxf8Aiu-S5kmdhJXr_xW78Tw_2yM5Mg9J6MWj2yYYaH5DtFTLhIfns5JgAQ_WCYR9C9WxAb4ev7fG9RcEhT9KBUhm0MBVvKRUptRsU9xJOpKKggilmj3x_fD0sdyXQepJAydMkGUq8osaleGgobQ6TEbSdDYb5iLYxPzDUzE8I4Y9It3nduWoZsxMbjD6EusyITVf5EYOYiislHCWFBH3CY1e50EUJoYkAyQalno9cGhgOkeXEvohlKCR4AvuYbI4nY3VCqMuggdCMbFvVmHAi8NoRjyOpfCZAsokSKc_fWDCbdmlgMZBTHESkUyKWNn3wUkA7ggLPbAVo9GBh9KDeaNcXd6d_qXRGtizMc9GZ3GWymU1zdQ5CJQsv9GD8AX9J40s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctKAMw8EYUCnhgTdskjtuMFaUq0BQErcQWObHTVvSB2lQCJhZ2PiOfhDunT0aYoliyFV_sy_-c88-EXHBlQ1RQFIYZKvzNaNqGsE0T8dqsmBecuxqx4dV5tclunpxpNiHuhUn4ELMFN5wZ2l_jBMcF6dycGiqkBgclSE-2StbwWG8dVT3MCVIo0DVuz3YMl7PilNuYt3LL9ZcU5qJO1R-ayjYJpo-Y5Jc8Z8dxkA3ff9Eb_9WHHbI1kaG0lIybXbKi-ntkcwFOuE8-G2PMgaF6zbAF0XrcprXOq9e_syj45MGorVQMLQzF24iKEbXLFLcTDqSiIIQpJpB8f3zdzzcm0FK3CyWPg25H4hVlLsVzQ2ml0-1B23G7M-5RD1MEA439hCj-gDQrV43LqjE5tMFoQbTLjMgsKDdkEFZxpYSjpJAgUXhUUAXoooToRIBqg9Kii2gaGBGh5USuiGQgJDgD-5Ck-oO-OiK0wKCBwAxtW-WZcEJw3CGPQqlcJkC1iTTJTF-ZP5l5I99ioKg46EgnTSxte_8l4Xb4CaHZ8tHo_szofqnslWZ3x3-pdE7Wqw2v5teu67cnZMPCtBed2J0hqXg4VqegW-LgTI_MH7V152Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbxcTowd9GFLUHrwO2dWU7Lk6CP0CikHBburUDIjACI1FPXrz7N_qX-Nrx06OeljVps3avb9_XvX6K0BUVJkQFNtP0UMjfjLqpMVPXJV6b2EVGqaMQG9UarTTJXctqLe3iT_kQ8wU3OTOUv5YTfMijwgIayrjiBqVET7KONggt2tKuvacFQErqc0XbMy3NocSeYRuLRmG1_orAXJap6jtT3kVs9oRpeslLfpIE-fD9F7zxP13YQztTEYrd1Gr20ZoYHKDtJTThIfpsTGQGDFYrhm2I1ZMOfui-VgePBgaPHI87QiTQwoi9jTEbY9PDcjNhzAUGGYxl-sj3x1d9sS0Bu70elDzHvS6XVylysTw1FJe7vT60nXS6kz6uygTBQEE_IYY_Qs3yTeO6ok2PbNDaEOsSLdJLwgkJBFVUCGYJzjgIFBqVRAm6yCE2YaDZoNR2JJgG7CE0rMhhEQ8YB1dgHqPMIB6IE4RLBBoI9NA0RZEwKwS3HdIo5MIhDDQby6Lc7I3503k39g0CeoqCirSyyFBD7w9Taoef8pkNXw66Px903_Wq7vzu9C-VLtFm3Sv7D7e1-zO0ZcicF5XVnUOZZDQR5yBakuBC2eUPMdPmHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunnel+Intergrowth+LixMnO2+Nanosheet+Arrays+as+3D+Cathode+for+High%E2%80%90Performance+All%E2%80%90Solid%E2%80%90State+Thin+Film+Lithium+Microbatteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Xia%2C+Qiuying&rft.au=Zhang%2C+Qinghua&rft.au=Sun%2C+Shuo&rft.au=Hussain%2C+Fiaz&rft.date=2021-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=5&rft_id=info:doi/10.1002%2Fadma.202003524&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon