Stable Dynamics Performance and High Efficiency of ABX3‐Type Super‐Alkali Perovskites First Obtained by Introducing H5O2 Cation

Developing new ABX3‐type perovskites is very important for expanding the family of perovskites and obtaining excellent light absorbing material. One strategy is replacing A site atoms with super‐alkali atoms for the perovskites, but super‐alkali perovskites with stable dynamics performance and high...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 29
Main Authors Zhou, Tingwei, Wang, Ming, Zang, Zhigang, Fang, Liang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing new ABX3‐type perovskites is very important for expanding the family of perovskites and obtaining excellent light absorbing material. One strategy is replacing A site atoms with super‐alkali atoms for the perovskites, but super‐alkali perovskites with stable dynamics performance and high efficiency have not been found until now. Herein, massive super‐alkalis, such as Li3O, Li2F, H5O2, and so on, are introduced into the cubic CH3NH3PbI3 perovskites, and the perovskites with these super‐alkalis are systematically studied by using ab initio molecular dynamics simulation and density functional theory based first principles calculations. Calculated results indicate that the perovskites with the super‐alkalis including metal atoms show unstable dynamics performance under normal temperature and pressure. On the contrary, the first obtainable super‐alkali perovskites of cubic H5O2MBr3 (M = Ge, Sn, Pb) and H5O2PbI3 show stable dynamics performance. They also show suitable tolerance factors, negative formation energies, tunable direct band gaps, and small effective hole and electron masses. Moreover, the calculated power conversion efficiencies of 23.17% and 22.83% are obtained for the single‐junction solar cells based on the cubic H5O2SnBr3 and H5O2PbBr3 perovskites, respectively. Introducing H5O2 cations into ABX3‐type perovskites, the cubic H5O2MBr3 (M = Ge, Sn, Pb) and H5O2PbI3 super‐alkali perovskites with suitable tolerance factors, negative formation energies, tunable direct band gaps, small carrier effective masses, stable dynamics performance and high efficiencies are obtained, which can be regarded as the excellent light absorbing materials of solar cells.
AbstractList Developing new ABX3‐type perovskites is very important for expanding the family of perovskites and obtaining excellent light absorbing material. One strategy is replacing A site atoms with super‐alkali atoms for the perovskites, but super‐alkali perovskites with stable dynamics performance and high efficiency have not been found until now. Herein, massive super‐alkalis, such as Li3O, Li2F, H5O2, and so on, are introduced into the cubic CH3NH3PbI3 perovskites, and the perovskites with these super‐alkalis are systematically studied by using ab initio molecular dynamics simulation and density functional theory based first principles calculations. Calculated results indicate that the perovskites with the super‐alkalis including metal atoms show unstable dynamics performance under normal temperature and pressure. On the contrary, the first obtainable super‐alkali perovskites of cubic H5O2MBr3 (M = Ge, Sn, Pb) and H5O2PbI3 show stable dynamics performance. They also show suitable tolerance factors, negative formation energies, tunable direct band gaps, and small effective hole and electron masses. Moreover, the calculated power conversion efficiencies of 23.17% and 22.83% are obtained for the single‐junction solar cells based on the cubic H5O2SnBr3 and H5O2PbBr3 perovskites, respectively.
Developing new ABX3‐type perovskites is very important for expanding the family of perovskites and obtaining excellent light absorbing material. One strategy is replacing A site atoms with super‐alkali atoms for the perovskites, but super‐alkali perovskites with stable dynamics performance and high efficiency have not been found until now. Herein, massive super‐alkalis, such as Li3O, Li2F, H5O2, and so on, are introduced into the cubic CH3NH3PbI3 perovskites, and the perovskites with these super‐alkalis are systematically studied by using ab initio molecular dynamics simulation and density functional theory based first principles calculations. Calculated results indicate that the perovskites with the super‐alkalis including metal atoms show unstable dynamics performance under normal temperature and pressure. On the contrary, the first obtainable super‐alkali perovskites of cubic H5O2MBr3 (M = Ge, Sn, Pb) and H5O2PbI3 show stable dynamics performance. They also show suitable tolerance factors, negative formation energies, tunable direct band gaps, and small effective hole and electron masses. Moreover, the calculated power conversion efficiencies of 23.17% and 22.83% are obtained for the single‐junction solar cells based on the cubic H5O2SnBr3 and H5O2PbBr3 perovskites, respectively. Introducing H5O2 cations into ABX3‐type perovskites, the cubic H5O2MBr3 (M = Ge, Sn, Pb) and H5O2PbI3 super‐alkali perovskites with suitable tolerance factors, negative formation energies, tunable direct band gaps, small carrier effective masses, stable dynamics performance and high efficiencies are obtained, which can be regarded as the excellent light absorbing materials of solar cells.
Author Zhou, Tingwei
Zang, Zhigang
Wang, Ming
Fang, Liang
Author_xml – sequence: 1
  givenname: Tingwei
  surname: Zhou
  fullname: Zhou, Tingwei
  organization: Chongqing University
– sequence: 2
  givenname: Ming
  surname: Wang
  fullname: Wang, Ming
  organization: Chongqing University
– sequence: 3
  givenname: Zhigang
  orcidid: 0000-0003-1632-503X
  surname: Zang
  fullname: Zang, Zhigang
  email: zangzg@cqu.edu.cn
  organization: Chongqing University
– sequence: 4
  givenname: Liang
  surname: Fang
  fullname: Fang, Liang
  organization: Chongqing University
BookMark eNo9kM1OwkAUhScGExHZup7ENTg_nTJdVgQhQTEBE3fNdOYWB8oUp0XTnYkv4DP6JJZguJt7T3LOucl3iVqucIDQNSV9Sgi7VeC2fUZoREgYBmeoTUMa9EIZkNbp5uwCdctyTZoJIko4b6PvRaXSHPB97dTW6hI_g88Kv1VOA1bO4IldveFRllltwekaFxmO717579fPst4BXux34BsR5xuV20O6-Cg3toISj60vKzxPK2UdGJzWeOoqX5i9tm6FJ2LO8FBVtnBX6DxTeQnd_91BL-PRcjjpzeYP02E86604l0FvYIQyShggERkIbRiXEqgmA8hkRBVlRjMJqSBCkYCKwBBJlRE00yFjUhjeQTfH3p0v3vdQVsm62HvXvEwYC2UUsiAUjSs6uj5tDnWy83arfJ1QkhxAJwfQyQl0Eo-eHk-K_wEl13dz
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201900664
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM201900664
Genre article
GrantInformation_xml – fundername: Defense Industrial Technology Development Program
  funderid: JCKY2017110C0654
– fundername: National Natural Science Foundation of China
  funderid: 61574024
– fundername: Key Program Science Foundation of Natural Science Foundation of Chongqing
  funderid: cstc2017jcyjBX0054
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-g3384-7d5ada5de09075cd2388e1c07ef891a12dc28eb505a04154d081ad51fc62285d3
ISSN 1614-6832
IngestDate Fri Jul 25 12:34:42 EDT 2025
Wed Jan 22 16:39:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g3384-7d5ada5de09075cd2388e1c07ef891a12dc28eb505a04154d081ad51fc62285d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1632-503X
PQID 2268962465
PQPubID 886389
PageCount 9
ParticipantIDs proquest_journals_2268962465
wiley_primary_10_1002_aenm_201900664_AENM201900664
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2017; 8
2001; 101
2013; 25
2017; 2
2003; 118
2013; 1
2015; 347
1982; 92
2017; 46
2004; 67
2014; 26
2008; 78
1961; 32
2017; 114
2017; 357
1996; 77
1976; 32
2018; 6
2010; 20
2018; 3
2014; 5
2012; 134
2014; 2
2006; 27
1999; 59
2013; 52
2018; 30
2016; 116
2017; 164
2015; 91
2014; 7
2017; 686
2012; 338
2018; 185
2015; 56
2019; 191
2015; 17
2015; 5
2012
2015; 92
1997; 299
2013; 342
2016; 94
2003
1991
1926; 14
2010; 81
2016; 18
2014; 196
2014; 89
1996; 54
1972; 28
2017; 139
2015; 350
2016; 4
2015; 23
2016; 6
2016; 1
1976; 13
2016; 3
2017; 56
2019
2015; 119
2017; 19
2016; 138
1994; 50
2016; 26
2016; 8
2014; 104
2016; 9
References_xml – volume: 6
  start-page: 1502009
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 27051
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 118
  start-page: 8207
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 25
  start-page: 1522
  year: 2013
  publication-title: Adv. Mater.
– volume: 116
  start-page: 4558
  year: 2016
  publication-title: Chem. Rev.
– volume: 164
  start-page: A207
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 67
  start-page: 1915
  year: 2004
  publication-title: Rep. Prog. Phys.
– volume: 91
  start-page: 094306
  year: 2015
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 682
  year: 2018
  publication-title: Nat. Energy
– volume: 2
  start-page: 16099
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 56
  start-page: 46
  year: 2017
  publication-title: Inorg. Chem.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 46
  start-page: 3500
  year: 2017
  publication-title: Dalton Trans.
– volume: 134
  start-page: 15042
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 357
  start-page: 491
  year: 2017
  publication-title: Science
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 347
  start-page: 522
  year: 2015
  publication-title: Science
– volume: 32
  start-page: 751
  year: 1976
  publication-title: Acta Crystallogr. A
– volume: 23
  start-page: 1
  year: 2015
  publication-title: Prog. Photovoltaics
– volume: 56
  start-page: 221
  year: 2015
  publication-title: J. Struct. Chem.
– volume: 9
  start-page: 932
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 477
  year: 1926
  publication-title: Die Naturwissenschaften
– volume: 92
  start-page: 144308
  year: 2015
  publication-title: Phys. Rev. B
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 114
  start-page: 11046
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 7
  start-page: 1701136
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 5628
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 94
  start-page: 220301
  year: 2016
  publication-title: Phys. Rev. B
– volume: 119
  start-page: 25209
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 30
  start-page: 718
  year: 2018
  publication-title: Chem. Mater.
– year: 2012
  publication-title: Effective Mass Calculator
– volume: 5
  start-page: 17499
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 686
  start-page: 1
  year: 2017
  publication-title: Chem. Phys. Lett.
– volume: 54
  start-page: 11169
  year: 1996
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 92
  start-page: 262
  year: 1982
  publication-title: Chem. Phys. Lett.
– volume: 8
  start-page: 17836
  year: 2016
  publication-title: Nanoscale
– volume: 26
  start-page: 4653
  year: 2014
  publication-title: Adv. Mater.
– year: 2019
– volume: 19
  start-page: 20619
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 949
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 350
  start-page: 1222
  year: 2015
  publication-title: Science
– volume: 3
  start-page: 1500678
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 101
  start-page: 1981
  year: 2001
  publication-title: Chem. Rev.
– volume: 299
  start-page: 113
  year: 1997
  publication-title: Thermochim. Acta
– volume: 104
  start-page: 063903
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 4728
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1500477
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 81
  start-page: 174301
  year: 2010
  publication-title: Phys. Rev. B
– year: 2003
– volume: 20
  start-page: 13
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 119
  start-page: 5253
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 191
  start-page: 33
  year: 2019
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 28
  start-page: 653
  year: 1972
  publication-title: Acta Crystallogr. B
– volume: 9
  start-page: 1989
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 2138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 78
  start-page: 134106
  year: 2008
  publication-title: Phys. Rev. B
– volume: 30
  start-page: 1801948
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 21785
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 139
  start-page: 2630
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 185
  start-page: 117
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 32
  start-page: 510
  year: 1961
  publication-title: J. Appl. Phys.
– volume: 89
  start-page: 205203
  year: 2014
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 6154
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 27
  start-page: 1787
  year: 2006
  publication-title: J. Comput. Chem.
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 52
  start-page: 9019
  year: 2013
  publication-title: Inorg. Chem.
– volume: 196
  start-page: 129
  year: 2014
  publication-title: Microporous Mesoporous Mater.
– volume: 2
  start-page: 9091
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 2999
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 17
  start-page: 25778
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 5
  start-page: 5706
  year: 2014
  publication-title: Nat. Commun.
– year: 1991
– volume: 50
  start-page: 17953
  year: 1994
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 5297
  year: 2016
  publication-title: Adv. Funct. Mater.
SSID ssj0000491033
Score 2.5857213
Snippet Developing new ABX3‐type perovskites is very important for expanding the family of perovskites and obtaining excellent light absorbing material. One strategy...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms ab initio molecular dynamics simulation
Alkalies
Density functional theory
Energy conversion efficiency
First principles
Free energy
Germanium
Heat of formation
Lead
Mathematical analysis
Molecular dynamics
Perovskites
Photovoltaic cells
power conversion efficiency
Solar cells
super‐alkali perovskites
Tin
tunable direct band gap
Title Stable Dynamics Performance and High Efficiency of ABX3‐Type Super‐Alkali Perovskites First Obtained by Introducing H5O2 Cation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201900664
https://www.proquest.com/docview/2268962465
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wKHFb9iYUE-cFsFEsdOnWNhtypou3tgV6q4RE5sdyNQuqLtIjgh8QI8DE_EkzATx0kqEIK9RO00TVXPF_ubycxnQp6FcVqo0PDA2ngUcBWLQBZMBSi9N4q4kpxh7_DsJJme8zdzMR8MfvSqljbr_Hnx5Y99JdfxKtjAr9gl-x-ebS8KBngN_oUjeBiO_-RjYIrY-HTodpVfYTn7VhcAFnHg3sllfQPXz9LHL-dxW-CAQShMHZfgNm8af3gPzByvtLxaYWZ3dTApgSEenOaYRHB89TWWt-tNgWmGqThl2Efo_esVbX1tgXHNhUCM3Yh0merlxoGlWnwyZZfYd5PPzC-peGpje3dRLlRnnjTm49Ibm-wFNkxJn71wEy7QgyCRTY7T9G1OxsnP0mkPjE2OxK3X7Wr222LgxGWVqVBxAIgPsCveLXv-UX97pvj7uU4k-Ohk1n5-g-wwCE7YkOyMD2fHb9vcHkRdURjXvR3-73m90JC92P6RrcimHx_VBOfsNtltIhM6djC7Qwamuktu9fQq75FvDnDUA472AEcBcBQBRzvA0aWlCLifX78j1GgNNXjjQEZ7IKM1yKgHGc0_0x7IKIKMOpDdJ-eTo7NX06DZxSNYxLHkwUgLpZXQJkyBnhYaOKI0URGOjJVppCKmCyZNDkxcoVwE10BSlRaRLRLGpNDxAzKslpV5SCiQUWa51bk1IbeJyJlOtRAxZ0AfcpHskX0_lllzm64yiC9kmjCeiD3C6vHNLp2QS-Yku1mGHslaj2RbTn50nS89Jjc7sO-T4frjxjwB8rrOnzZY-QUr0JSM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Dynamics+Performance+and+High+Efficiency+of+ABX3%E2%80%90Type+Super%E2%80%90Alkali+Perovskites+First+Obtained+by+Introducing+H5O2+Cation&rft.jtitle=Advanced+energy+materials&rft.au=Zhou%2C+Tingwei&rft.au=Wang%2C+Ming&rft.au=Zang%2C+Zhigang&rft.au=Fang%2C+Liang&rft.date=2019-08-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201900664&rft.externalDBID=10.1002%252Faenm.201900664&rft.externalDocID=AENM201900664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon