Rational Design of Hierarchically Core–Shell Structured Ni3S2@NiMoO4 Nanowires for Electrochemical Energy Storage
Rational design and controllable synthesis of nanostructured materials with unique microstructure and excellent electrochemical performance for energy storage are crucially desired. In this paper, a facile method is reported for general synthesis of hierarchically core–shell structured Ni3S2@NiMoO4...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 27 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 |
DOI | 10.1002/smll.201800791 |
Cover
Loading…
Abstract | Rational design and controllable synthesis of nanostructured materials with unique microstructure and excellent electrochemical performance for energy storage are crucially desired. In this paper, a facile method is reported for general synthesis of hierarchically core–shell structured Ni3S2@NiMoO4 nanowires (NWs) as a binder‐free electrode for asymmetric supercapacitors. Due to the intimate contact between Ni3S2 and NiMoO4, the hierarchical structured electrodes provide a promising unique structure for asymmetric supercapacitors. The as‐prepared binder‐free Ni3S2@NiMoO4 electrode can significantly improve the electrical conductivity between Ni3S2 and NiMoO4, and effectively avoid the aggregation of NiMoO4 nanosheets, which provide more active space for storing charge. The Ni3S2@NiMoO4 electrode presents a high areal capacity of 1327.3 µAh cm−2 and 67.8% retention of its initial capacity when current density increases from 2 to 40 mA cm−2. In a two‐electrode Ni3S2@NiMoO4//active carbon cell, the active materials deliver a high energy density of 121.5 Wh kg−1 at a power density of 2.285 kW kg−1 with excellent cycling stability.
A facile method for general synthesis of core–shell structured Ni3S2@NiMoO4 nanowires as a binder‐free electrode for asymmetric supercapacitors is described in this study. Due to the intimate contact between the materials, core–shell structured Ni3S2@NiMoO4 binder‐free electrodes provide a promising target structure for energy storage. |
---|---|
AbstractList | Rational design and controllable synthesis of nanostructured materials with unique microstructure and excellent electrochemical performance for energy storage are crucially desired. In this paper, a facile method is reported for general synthesis of hierarchically core–shell structured Ni3S2@NiMoO4 nanowires (NWs) as a binder‐free electrode for asymmetric supercapacitors. Due to the intimate contact between Ni3S2 and NiMoO4, the hierarchical structured electrodes provide a promising unique structure for asymmetric supercapacitors. The as‐prepared binder‐free Ni3S2@NiMoO4 electrode can significantly improve the electrical conductivity between Ni3S2 and NiMoO4, and effectively avoid the aggregation of NiMoO4 nanosheets, which provide more active space for storing charge. The Ni3S2@NiMoO4 electrode presents a high areal capacity of 1327.3 µAh cm−2 and 67.8% retention of its initial capacity when current density increases from 2 to 40 mA cm−2. In a two‐electrode Ni3S2@NiMoO4//active carbon cell, the active materials deliver a high energy density of 121.5 Wh kg−1 at a power density of 2.285 kW kg−1 with excellent cycling stability. Rational design and controllable synthesis of nanostructured materials with unique microstructure and excellent electrochemical performance for energy storage are crucially desired. In this paper, a facile method is reported for general synthesis of hierarchically core–shell structured Ni3S2@NiMoO4 nanowires (NWs) as a binder‐free electrode for asymmetric supercapacitors. Due to the intimate contact between Ni3S2 and NiMoO4, the hierarchical structured electrodes provide a promising unique structure for asymmetric supercapacitors. The as‐prepared binder‐free Ni3S2@NiMoO4 electrode can significantly improve the electrical conductivity between Ni3S2 and NiMoO4, and effectively avoid the aggregation of NiMoO4 nanosheets, which provide more active space for storing charge. The Ni3S2@NiMoO4 electrode presents a high areal capacity of 1327.3 µAh cm−2 and 67.8% retention of its initial capacity when current density increases from 2 to 40 mA cm−2. In a two‐electrode Ni3S2@NiMoO4//active carbon cell, the active materials deliver a high energy density of 121.5 Wh kg−1 at a power density of 2.285 kW kg−1 with excellent cycling stability. A facile method for general synthesis of core–shell structured Ni3S2@NiMoO4 nanowires as a binder‐free electrode for asymmetric supercapacitors is described in this study. Due to the intimate contact between the materials, core–shell structured Ni3S2@NiMoO4 binder‐free electrodes provide a promising target structure for energy storage. |
Author | Liu, Hao Ji, Shan Wang, Hui Chen, Fangshuai Brett, Dan J. L. Wang, Guoxiu Liu, Quanbing Wang, Rongfang |
Author_xml | – sequence: 1 givenname: Fangshuai surname: Chen fullname: Chen, Fangshuai organization: Jiaxing University – sequence: 2 givenname: Shan surname: Ji fullname: Ji, Shan organization: Jiaxing University – sequence: 3 givenname: Quanbing surname: Liu fullname: Liu, Quanbing email: liuqb@gdut.edu.cn organization: Guangdong University of Technology – sequence: 4 givenname: Hui surname: Wang fullname: Wang, Hui organization: Qingdao University of Science and Technology – sequence: 5 givenname: Hao orcidid: 0000-0003-0266-9472 surname: Liu fullname: Liu, Hao email: haoliu@shu.edu.cn, hao.liu@uts.edu.au organization: University of Technology Sydney – sequence: 6 givenname: Dan J. L. surname: Brett fullname: Brett, Dan J. L. organization: University College London – sequence: 7 givenname: Guoxiu surname: Wang fullname: Wang, Guoxiu organization: University of Technology Sydney – sequence: 8 givenname: Rongfang surname: Wang fullname: Wang, Rongfang email: wrf38745779@126.com organization: Qingdao University of Science and Technology |
BookMark | eNo9kFFLwzAUhYMouE1ffQ743HmTdG36pszphG4Dq88lS9MuI2tm0jL65n_wH_pL7Jjs6dwD5x443xBd1rZWCN0RGBMA-uB3xowpEA4QJ-QCDUhEWBBxmlyebwLXaOj9FoARGsYD5N9Fo20tDH5WXlc1tiWea-WEkxsthTEdnlqnfr9_so0yBmeNa2XTOlXgpWYZfVzqhV2FeClqe9BOeVxah2dGycZZuVG7Ywme1cpVXf9snajUDboqhfHq9l9H6PNl9jGdB-nq9W36lAYVY5wEMWVFSXmSAE8gLmAtEwGUsX6d4LECEQGPRKiYKEpeTIDGExkWIV8LyWQCERuh-1Pv3tmvVvkm39rW9Vt9TiEKKaMRTPpUckodtFFdvnd6J1yXE8iPVPMj1fxMNc8WaXp27A-AdHCh |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/smll.201800791 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL201800791 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21766032; 201606050; 51661008 – fundername: Program of Zhujiang Technology Star New funderid: 201806010039 – fundername: Provincial Natural Science Foundation of Hunan funderid: 2016TP1009 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-g3381-723df289908907d0bc9a0233079a87e0a6086a4e3adf8d50275c4d48bac3c9063 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Fri Jul 25 12:14:55 EDT 2025 Wed Jan 22 16:34:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3381-723df289908907d0bc9a0233079a87e0a6086a4e3adf8d50275c4d48bac3c9063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0266-9472 |
PQID | 2064232605 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2064232605 wiley_primary_10_1002_smll_201800791_SMLL201800791 |
PublicationCentury | 2000 |
PublicationDate | July 5, 2018 |
PublicationDateYYYYMMDD | 2018-07-05 |
PublicationDate_xml | – month: 07 year: 2018 text: July 5, 2018 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2015; 17 2015; 5 2011; 2 2013; 1 2016; 19 2015; 54 2008; 7 2014; 24 2017; 29 2017; 355 2013; 5 2014; 251 2014; 114 2017; 9 2014; 115 2015; 273 2016; 4 2017; 52 2016; 1 2014; 2 2016; 538 2017; 39 2017; 13 2018; 30 2011; 23 2014; 8 2016; 28 2014; 7 2017; 322 2016; 191 2014; 6 2001; 414 2014; 53 |
References_xml | – volume: 29 start-page: 1605336 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 381 year: 2011 publication-title: Nat. Commun. – volume: 9 start-page: 496 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 1603 year: 2017 publication-title: J. Mater. Chem. A – volume: 30 start-page: 1703453 year: 2018 publication-title: Adv. Mater. – volume: 28 start-page: 8431 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 1701228 year: 2017 publication-title: Adv. Energy Mater. – volume: 322 start-page: 498 year: 2017 publication-title: Chem. Eng. J. – volume: 114 start-page: 11828 year: 2014 publication-title: Chem. Rev. – volume: 54 start-page: 1868 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 251 start-page: 116 year: 2014 publication-title: Chem. Eng. J. – volume: 7 start-page: 1700826 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 start-page: 7591 year: 2016 publication-title: J. Mater. Chem. A – volume: 52 start-page: 3642 year: 2017 publication-title: J. Mater. Sci. – volume: 7 start-page: 845 year: 2008 publication-title: Nat. Mater. – volume: 2 start-page: 15111 year: 2014 publication-title: J. Mater. Chem. A – volume: 8 start-page: 174 year: 2014 publication-title: Nano Energy – volume: 53 start-page: 3711 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 1401172 year: 2015 publication-title: Adv. Energy Mater. – volume: 1 start-page: 9024 year: 2013 publication-title: J. Mater. Chem. A – volume: 53 start-page: 1488 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 39 start-page: 337 year: 2017 publication-title: Nano Energy – volume: 1 start-page: 16070 year: 2016 publication-title: Nat. Energy – volume: 7 start-page: 3302 year: 2014 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1601301 year: 2017 publication-title: Adv. Energy Mater. – volume: 23 start-page: 2076 year: 2011 publication-title: Adv. Mater. – volume: 19 start-page: 213 year: 2016 publication-title: Mater. Today – volume: 6 start-page: 5050 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 12905 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 1701530 year: 2017 publication-title: Small – volume: 24 start-page: 7440 year: 2014 publication-title: Adv. Funct. Mater. – volume: 273 start-page: 110 year: 2015 publication-title: J. Power Sources – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 538 start-page: 88 year: 2016 publication-title: Nature – volume: 17 start-page: 16434 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 191 start-page: 795 year: 2016 publication-title: Electrochim. Acta – volume: 5 start-page: 7165 year: 2017 publication-title: J. Mater. Chem. A – volume: 355 start-page: 126 year: 2017 publication-title: Science – volume: 115 start-page: 358 year: 2014 publication-title: Electrochim. Acta – volume: 5 start-page: 92 year: 2017 publication-title: J. Mater. Chem. A |
SSID | ssj0031247 |
Score | 2.578619 |
Snippet | Rational design and controllable synthesis of nanostructured materials with unique microstructure and excellent electrochemical performance for energy storage... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Activated carbon binder‐free electrodes Core-shell structure core–shell Electric contacts Electrical resistivity Electrochemical analysis Electrodes Energy storage Flux density hierarchical structures Molybdates Nanostructured materials Nanotechnology Nanowires Nickel compounds Nickel sulfide Structural hierarchy Supercapacitors Synthesis |
Title | Rational Design of Hierarchically Core–Shell Structured Ni3S2@NiMoO4 Nanowires for Electrochemical Energy Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201800791 https://www.proquest.com/docview/2064232605 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0YVrrwbUTRzMJtoa-h7U6DEGIAEyoJu2Y6MyVEpIbCQlf-g3_ol3jvtFRwqbt2Mcn0dh7nzJx7LiE3CAOEYyWGQgmNyzzHCFRgGjGLlQIGrYDNodpi0OyO3IcxG29k8ef-EOWBG84MvV7jBOdx1vgxDc1eZnh1YAHi8XT6Ogq2EBUNS_8oBzYvXV0F9iwDjbfWro2m3dhuvoUvN1Gq3mY6B4SvO5irS57rq2VcF--_vBv_8wWHZL_AoPQuHzRHZEfNj8nehjPhCcmGxSEhvdcSD5omtDvFZGVdO2U2e6OtdKG-Pj5DVJLSUNvQrhZK0sHUCe3bwbSfProUFu8U3ZAzCuCYtvOaO6IwKaBtnXgIjWEcTtQpGXXaT62uUdRnMCZAbC3Dsx2ZIGEzfaDY0oxFwAECwKoRcN9TJm8CX-KucrhMfMnwglS40vVjLhwRADY6I5V5OlfnhPpSABRNJLMB0iScBwCLeJAwrizFXNmsktr6_0TFJMsiG8mTg4SsSmwd6Og1t-iIcjNmO8IQR2WIo7Df65VvF39pdEl28VkLdlmNVCC66gpgyTK-1kPvG97f3D0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0YXKgL30YUdRZuC6UP2u40PFK11IRC4q6ZdqaEiNRQWOjKf_AP_RLvnRYEl7psk0mmt_M4Z-bccwm5RhgQ6_VEESihMUxLVxzhqEpkRkIAgxbA5lBt4TfcgXH_ZC7UhJgLk_tDLA_ccGbI9RonOB5I135cQ7OXMd4d1AHyWJi_vollvbGIQau3dJDSYfuS9VVg11LQemvh26hqtfX2awhzFafKjaazR6JFF3N9yXN1Pouq8fsv98Z_fcM-2S1gKL3Nx80B2RCTQ7KzYk54RLJecU5IW1LlQdOEuiPMV5blU8bjN9pMp-Lr4zNAMSkNpBPtfCo49Ud6oN34o276aFBYv1M0RM4o4GPazsvuxIVPAW3L3ENoDENxKI7JoNPuN12lKNGgDIHb1hVL03mCnE21gWVzNYodBigAFg6H2ZZQWQMoEzOEznhicxPvSGODG3bEYj12AB6dkNIknYhTQm0eAxpNuKkBqkkYcwAZMScxmagL0-CNMqksflBYzLMs1JA_6cjJykSTkQ5fc5eOMPdj1kIMcbgMcRh0PW_5dPaXRldky-13vdC78x_OyTa-l_pds0JKEGlxAShlFl3KcfgNqyXgVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQkRAc2BGFAj5wTZt9uYG6qEAbUEul3iIndqqK0lRdDnDiH_hDvoQZJw0tRzgmkqVkPGO_Z8-8IeQaYUBkaLEiMIXGtBxD8YSnKqEVCgEMWgCbw2wL3272zPu-1V-p4k_1IfIDN4wMuV5jgE94XPkRDZ29jvDqQAPE42D5-qZpQ8QgLOrkAlIG7F6yvQpsWgoqby1lG1W9sj5-DWCuwlS5zzT2CFt-YZpe8lJezMNy9P5LvPE_v7BPdjMQSm9TrzkgG2J8SHZWpAmPyKyTnRLSmszxoElMm0OsVpbNU0ajN1pNpuLr47OLqaS0K3VoF1PBqT80uvqNP2wnjyaF1TtBOeQZBXRM62nTnShTKaB1WXkIg8ERB-KY9Br152pTyRo0KANgtpri6AaPkbGpLnBsroaRxwADwLLhMdcRKoMZsZkpDMZjl1t4QxqZ3HRDFhmRB-DohBTGyVicEuryCLBozC0dME3MmAe4iHmxxYQmLJPbRVJazk-QRdks0JE9GcjIikSXhg4mqUZHkKox6wGaOMhNHHTbrVb-dPaXQVdk66nWCFp3_sM52cbXMnnXKpECGFpcAESZh5fSC78BPPLfDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+Design+of+Hierarchically+Core%E2%80%93Shell+Structured+Ni3S2%40NiMoO4+Nanowires+for+Electrochemical+Energy+Storage&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chen%2C+Fangshuai&rft.au=Ji%2C+Shan&rft.au=Liu%2C+Quanbing&rft.au=Wang%2C+Hui&rft.date=2018-07-05&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201800791&rft.externalDBID=10.1002%252Fsmll.201800791&rft.externalDocID=SMLL201800791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |