Carbon‐Coated Li3VO4 Spheres as Constituents of an Advanced Anode Material for High‐Rate Long‐Life Lithium‐Ion Batteries
Lithium‐ion batteries are receiving considerable attention for large‐scale energy‐storage systems. However, to date the current cathode/anode system cannot satisfy safety, cost, and performance requirements for such applications. Here, a lithium‐ion full battery based on the combination of a Li3VO4...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 33 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium‐ion batteries are receiving considerable attention for large‐scale energy‐storage systems. However, to date the current cathode/anode system cannot satisfy safety, cost, and performance requirements for such applications. Here, a lithium‐ion full battery based on the combination of a Li3VO4 anode with a LiNi0.5Mn1.5O4 cathode is reported, which displays a better performance than existing systems. Carbon‐coated Li3VO4 spheres comprising nanoscale carbon‐coating primary particles are synthesized by a morphology‐inheritance route. The observed high capacity combined with excellent sample stability and high rate capability of carbon‐coated Li3VO4 spheres is superior to other insertion anode materials. A high‐performance full lithium‐ion battery is fabricated by using the carbon‐coated Li3VO4 spheres as the anode and LiNi0.5Mn1.5O4 spheres as the cathode; such a cell shows an estimated practical energy density of 205 W h kg−1 with greatly improved properties such as pronounced long‐term cyclability, and rapid charge and discharge.
Advanced carbon‐coated LVO (LVO⊂C) sub‐micrometer spheres comprising nanoscale carbon‐coating primary particles are synthesized by a morphology‐inheritance route. When combined with a LiNi0.5Mn1.5O4 cathode, the rationally designed full cell demonstrates an estimated energy density of 205 W h kg−1, high‐power performances up to 20 C, and pronounced long‐term cyclability. |
---|---|
AbstractList | Lithium‐ion batteries are receiving considerable attention for large‐scale energy‐storage systems. However, to date the current cathode/anode system cannot satisfy safety, cost, and performance requirements for such applications. Here, a lithium‐ion full battery based on the combination of a Li3VO4 anode with a LiNi0.5Mn1.5O4 cathode is reported, which displays a better performance than existing systems. Carbon‐coated Li3VO4 spheres comprising nanoscale carbon‐coating primary particles are synthesized by a morphology‐inheritance route. The observed high capacity combined with excellent sample stability and high rate capability of carbon‐coated Li3VO4 spheres is superior to other insertion anode materials. A high‐performance full lithium‐ion battery is fabricated by using the carbon‐coated Li3VO4 spheres as the anode and LiNi0.5Mn1.5O4 spheres as the cathode; such a cell shows an estimated practical energy density of 205 W h kg−1 with greatly improved properties such as pronounced long‐term cyclability, and rapid charge and discharge.
Advanced carbon‐coated LVO (LVO⊂C) sub‐micrometer spheres comprising nanoscale carbon‐coating primary particles are synthesized by a morphology‐inheritance route. When combined with a LiNi0.5Mn1.5O4 cathode, the rationally designed full cell demonstrates an estimated energy density of 205 W h kg−1, high‐power performances up to 20 C, and pronounced long‐term cyclability. Lithium-ion batteries are receiving considerable attention for large-scale energy-storage systems. However, to date the current cathode/anode system cannot satisfy safety, cost, and performance requirements for such applications. Here, a lithium-ion full battery based on the combination of a Li3VO4 anode with a LiNi0.5Mn1.5O4 cathode is reported, which displays a better performance than existing systems. Carbon-coated Li3VO4 spheres comprising nanoscale carbon-coating primary particles are synthesized by a morphology-inheritance route. The observed high capacity combined with excellent sample stability and high rate capability of carbon-coated Li3VO4 spheres is superior to other insertion anode materials. A high-performance full lithium-ion battery is fabricated by using the carbon-coated Li3VO4 spheres as the anode and LiNi0.5Mn1.5O4 spheres as the cathode; such a cell shows an estimated practical energy density of 205 W h kg-1 with greatly improved properties such as pronounced long-term cyclability, and rapid charge and discharge. |
Author | Maier, Joachim Shen, Laifa Chen, Shuangqiang Yu, Yan |
Author_xml | – sequence: 1 givenname: Laifa surname: Shen fullname: Shen, Laifa organization: Max Planck Institute for Solid State Research – sequence: 2 givenname: Shuangqiang surname: Chen fullname: Chen, Shuangqiang organization: Max Planck Institute for Solid State Research – sequence: 3 givenname: Joachim surname: Maier fullname: Maier, Joachim organization: Max Planck Institute for Solid State Research – sequence: 4 givenname: Yan orcidid: 0000-0002-3685-7773 surname: Yu fullname: Yu, Yan email: yanyumse@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNo9UElOAzEQtBBIhOXK2RLngfY2y3EYVmmiSGxXy_HYiVFih_EElFuewBt5CY5AnLqqVVWtriO074M3CJ0RuCAA9FJ1S3VBgRRAREH20IgISjIOldhHI6iYyKqcl4foKMY3AKhyyEdo26h-Gvz39qsJajAdbh17nXD8tJqb3kSsIm6Cj4Mb1sYPEQeLlcd196G8Turah87gcXL2Ti2wDT2-d7N5intMO9wGP0u4dTZhN8zdepnoQ_D4Sg07j4kn6MCqRTSnf_MYvdzePDf3WTu5e2jqNpsxVpIsz7nlQnSUFrSjvNRTVgIluc4ZaGpEaQE00VxZpist0m-gmZhaXSgBXWnZMTr_zV314X1t4iDfwrr36aQkFeOMccHzpKp-VZ9uYTZy1bul6jeSgNxVLHcVy_-KZX09rv8Z-wGvnnbx |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SR 8BQ 8FD JG9 |
DOI | 10.1002/adma.201701571 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201701571 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: WK3430000004 – fundername: Sofja Kovalevskaja Award, and Postdoctoral Scholarship of the Alexander von Humboldt Foundation funderid: 51622210; 21373195 – fundername: National Natural Science Foundation of China – fundername: National Key Research Program of China funderid: 2016YFB0100305 – fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-g3381-664f455d2272d248cb380216c630c2e58f00c1c4af3c9c56060c35bfc7a50d8f3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Sun Jul 13 04:00:57 EDT 2025 Wed Jan 22 17:04:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3381-664f455d2272d248cb380216c630c2e58f00c1c4af3c9c56060c35bfc7a50d8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3685-7773 |
PQID | 1934334546 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_journals_1934334546 wiley_primary_10_1002_adma_201701571_ADMA201701571 |
PublicationCentury | 2000 |
PublicationDate | September 6, 2017 |
PublicationDateYYYYMMDD | 2017-09-06 |
PublicationDate_xml | – month: 09 year: 2017 text: September 6, 2017 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2015; 12 2011; 334 2013; 3 2015; 6 2011; 2 2015; 54 2013; 244 2016; 201 2014; 26 2011; 10 2015; 648 2011; 4 2012; 12 2013; 5 1998; 178 2014; 252 2015; 7 2012; 206 2014; 20 2016; 11 2016; 4 2015; 25 2012; 2 2005; 879E 2013; 13 2013; 12 1997; 101 2010; 157 2008; 47 2005; 4 2009; 8 2012; 24 2016; 28 2008; 451 2014; 6 2001; 414 2010; 9 2014; 53 |
References_xml | – volume: 12 start-page: 5673 year: 2012 publication-title: Nano Lett. – volume: 244 start-page: 557 year: 2013 publication-title: J. Power Sources – volume: 201 start-page: 158 year: 2016 publication-title: Electrochim. Acta – volume: 10 start-page: 223 year: 2011 publication-title: Nat. Mater. – volume: 26 start-page: 6111 year: 2014 publication-title: Adv. Mater. – volume: 25 start-page: 3497 year: 2015 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 146 year: 2010 publication-title: Nat. Mater. – volume: 4 start-page: 7165 year: 2016 publication-title: J. Mater. Chem. A – volume: 3 start-page: 428 year: 2013 publication-title: Adv. Energy Mater. – volume: 53 start-page: 13488 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 20 start-page: 5608 year: 2014 publication-title: Chem. – Eur. J. – volume: 12 start-page: 709 year: 2015 publication-title: Nano Energy – volume: 54 start-page: 1868 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 366 year: 2005 publication-title: Nat. Mater. – volume: 157 start-page: A925 year: 2010 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 1500284 year: 2015 publication-title: Adv. Sci. – volume: 11 start-page: 1273 year: 2016 publication-title: Chem. – Asian J. – volume: 4 start-page: 14101 year: 2016 publication-title: J. Mater. Chem. A – volume: 648 start-page: 7 year: 2015 publication-title: J. Alloys Compd. – volume: 8 start-page: 320 year: 2009 publication-title: Nat. Mater. – volume: 178 start-page: 999 year: 1998 publication-title: Coord. Chem. Rev. – volume: 4 start-page: 1345 year: 2011 publication-title: Energy Environ. Sci. – volume: 2 start-page: 691 year: 2012 publication-title: Adv. Energy Mater. – volume: 47 start-page: 2930 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 4715 year: 2013 publication-title: Nano Lett. – volume: 6 start-page: 8660 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 252 start-page: 244 year: 2014 publication-title: J. Power Sources – volume: 879E start-page: Z7.14.1 year: 2005 publication-title: Mater. Res. Soc. Symp. Proc. – volume: 24 start-page: 6502 year: 2012 publication-title: Adv. Mater. – volume: 4 start-page: 3287 year: 2011 publication-title: Energy Environ. Sci. – volume: 206 start-page: 222 year: 2012 publication-title: J. Power Sources – volume: 5 start-page: 3475 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 6694 year: 2015 publication-title: Nat. Commun. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 12 start-page: 518 year: 2013 publication-title: Nat. Mater. – volume: 28 start-page: 986 year: 2016 publication-title: Chem. Mater. – volume: 2 start-page: 1500090 year: 2015 publication-title: Adv. Sci. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 101 start-page: 7717 year: 1997 publication-title: J. Phys. Chem. B – volume: 7 start-page: 25084 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 516 year: 2011 publication-title: Nat. Commun. |
SSID | ssj0009606 |
Score | 2.563344 |
Snippet | Lithium‐ion batteries are receiving considerable attention for large‐scale energy‐storage systems. However, to date the current cathode/anode system cannot... Lithium-ion batteries are receiving considerable attention for large-scale energy-storage systems. However, to date the current cathode/anode system cannot... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Anodes Carbon Coating Electrode materials Energy storage Flux density high‐power performance Li3VO4, spheres LiNi0.5Mn1.5O4 Lithium Lithium-ion batteries Materials science Rechargeable batteries Storage batteries Storage systems |
Title | Carbon‐Coated Li3VO4 Spheres as Constituents of an Advanced Anode Material for High‐Rate Long‐Life Lithium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201701571 https://www.proquest.com/docview/1934334546 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ27TsMwFIYtxAQDd0S5yQNrIPGtzhgVUEEtSNzEFvlaKkSC2nRh6iPwjDwJttOWlhE2O5Kj5OSc5Hf0-zMAJ9wwmSYSR1KaOCI6tRFPqIoQ1Ux4fjnSfqFw94a1H8n1M32eW8Vf8yFmP9x8ZYT3tS9wIYdnP9BQoQM3yPPEaVhE7g1bXhXd_fCjvDwPsD1Mo5QRPqU2xuhscfiCvpxXqeEzc7kOxPQCa3fJ6-mokqfq4xe78T93sAHWJhoUZnXSbIIlU2yB1Tky4TYYt8RAlsXX-LNVOjWqYaePn24JvPcUAjOEYgj9Vp_eZ-CdGLC0UBQwmxgKYFaU2sCuqEJ-QyeMoTeUuNPduWOwUxY91-70rWv3q5f-6M11r8oC1rhPN3vfAY-XFw-tdjTZrCHquVluEjFGLKFUI9REGhGuJOZOPzDFcKyQodzGsUoUERarVDmdxWKFqbSqKWisucW7YLkoC7MHYEqoNZJghK112YNSbgwXskkTmSpBTQMcTh9WPqm4Ye6EKMGYUMIaAIWo5-81ryOvycwo9_HOZ_HOs_NuNuvt_2XQAVjx7WA5Y4dguRqMzJHTKJU8Dnn4DTyy4ow |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LbtQwFIaPSlkAC-4VhQJewDJt4ts4CxbRDNUMzRSptKi74GuJEAlqMkKw6iPwKrwKj8CTYCeZacsSqQt2tqVYkY-P_ds6_g7AC2G5ShNFIqVsHFGTukgkTEeYGS4Dvxyb8FB4vs-nR_TNMTteg5_LtzA9H2J14RY8o1uvg4OHC-mdc2qoNB04KADF2SgZ4ir37Lev_tTWvJpNvIlfYrz7-nA8jYbEAtGJP5ElEefUUcYMxiNsMBVaEeH3Oq45iTW2TLg41omm0hGdaq8JeKwJU06PJIuNcMT3ew2uhzTiAdc_OTgnVoUDQYf3IyxKORVLTmSMdy7_7yVFe1EXdxvb7h34tRySPp7l0_aiVdv6-1-0yP9qzO7C7UFmo6z3i3uwZqv7cOsCfPEBnI3lqaqr32c_xrUX3AblJXn_lqJ3AbRgGyQbFLKZhlCKEGyCaodkhbIhZgJlVW0smsu2c2HktT8KMTO-uwPfhvK6OvHlvHS-XLYfy8VnX53VFeqJpqVtHsLRlQzBBqxXdWUfAUopc1ZRgolz3kFwKqwVUo1YolItmd2EreXsKIZFpSm81qaEUEb5JuDOzMWXHklS9PBpXAT7Fiv7Ftlknq1qj__lo-dwY3o4z4t8tr_3BG6G9i7Cjm_Benu6sE-9JGvVs84JEHy46hn0BxSgPos |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LbtQwFIaPSpEQLChXUSjgBSzTJr6Ns2ARzXTUoTMFFYq6C76WCJFUTUYIVn0EHqWvwivwJLWTzLRlidQFOztSrMjHx_4d_f4M8EpYrtJEkUgpG0fUpC4SCdMRZobLwC_HJhwUnu3xnQP69pAdrsDZ4ixMx4dY_nALmdHO1yHBj43buoCGStNygwJPnA2S3la5a39895u2-s1k5CP8GuPx9sfhTtTfKxAd-Q1ZEnFOHWXMYDzABlOhFRF-qeOak1hjy4SLY51oKh3RqfaSgMeaMOX0QLLYCEd8uzfgJuVxGi6LGO1fAKvCfqCl-xEWpZyKBSYyxltXv_eKoL0si9t1bbwGvxc90tlZvm7OG7Wpf_4Fi_yfuuwe3O1FNsq6rLgPK7Z8AHcuoRcfwulQnqiq_HP6a1h5uW3QtCCf3lH0IWAWbI1kjcJdpsFIEawmqHJIlijrHRMoKytj0Uw2bQIjr_xRcMz45vb9MzStyiNfnhbOl4vmSzH_5quTqkQdz7Sw9SM4uJYueAyrZVXaJ4BSypxVlGDinE8PnAprhVQDlqhUS2bXYWMxOPJ-Sqlzr7QpIZRRvg64jXJ-3AFJ8g49jfMQ33wZ3zwbzbJl7em_vPQSbr0fjfPpZG_3GdwOj1t7Hd-A1eZkbp97PdaoF20KIPh83QPoHPozPTo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon-Coated+Li3VO4+Spheres+as+Constituents+of+an+Advanced+Anode+Material+for+High-Rate+Long-Life+Lithium-Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shen%2C+Laifa&rft.au=Chen%2C+Shuangqiang&rft.au=Maier%2C+Joachim&rft.au=Yu%2C+Yan&rft.date=2017-09-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=33&rft_id=info:doi/10.1002%2Fadma.201701571&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |