On the Noise Resilience of Ranking Measures

Performance measures play a pivotal role in the evaluation and selection of machine learning models for a wide range of applications. Using both synthetic and real-world data sets, we investigated the resilience to noise of various ranking measures. Our experiments revealed that the area under the R...

Full description

Saved in:
Bibliographic Details
Published inNeural Information Processing Vol. 9948; pp. 47 - 55
Main Author Berrar, Daniel
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Performance measures play a pivotal role in the evaluation and selection of machine learning models for a wide range of applications. Using both synthetic and real-world data sets, we investigated the resilience to noise of various ranking measures. Our experiments revealed that the area under the ROC curve (AUC) and a related measure, the truncated average Kolmogorov-Smirnov statistic (taKS), can reliably discriminate between models with truly different performance under various types and levels of noise. With increasing class skew, however, the H-measure and estimators of the area under the precision-recall curve become preferable measures. Because of its simple graphical interpretation and robustness, the lower trapezoid estimator of the area under the precision-recall curve is recommended for highly imbalanced data sets.
ISBN:3319466712
9783319466712
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-46672-9_6