Learning to Improve Affinity Ranking for Diversity Search

Search diversification plays an important role in modern search engine, especially when user-issued queries are ambiguous and the top ranked results are redundant. Some diversity search approaches have been proposed for reducing the information redundancy of the retrieved results, while do not consi...

Full description

Saved in:
Bibliographic Details
Published inInformation Retrieval Technology Vol. 9994; pp. 335 - 341
Main Authors Wu, Yue, Li, Jingfei, Zhang, Peng, Song, Dawei
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319480503
3319480502
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-48051-0_28

Cover

Abstract Search diversification plays an important role in modern search engine, especially when user-issued queries are ambiguous and the top ranked results are redundant. Some diversity search approaches have been proposed for reducing the information redundancy of the retrieved results, while do not consider the topic coverage maximization. To solve this problem, the Affinity ranking model has been developed aiming at maximizing the topic coverage meanwhile reducing the information redundancy. However, the original model does not involve a learning algorithm for parameter tuning, thus limits the performance optimization. In order to further improve the diversity performance of Affinity ranking model, inspired by its ranking principle, we propose a learning approach based on the learning-to-rank framework. Our learning model not only considers the topic coverage maximization and redundancy reduction by formalizing a series of features, but also optimizes the diversity metric by extending a well-known learning-to-rank algorithm LambdaMART. Comparative experiments have been conducted on TREC diversity tracks, which show the effectiveness of our model.
AbstractList Search diversification plays an important role in modern search engine, especially when user-issued queries are ambiguous and the top ranked results are redundant. Some diversity search approaches have been proposed for reducing the information redundancy of the retrieved results, while do not consider the topic coverage maximization. To solve this problem, the Affinity ranking model has been developed aiming at maximizing the topic coverage meanwhile reducing the information redundancy. However, the original model does not involve a learning algorithm for parameter tuning, thus limits the performance optimization. In order to further improve the diversity performance of Affinity ranking model, inspired by its ranking principle, we propose a learning approach based on the learning-to-rank framework. Our learning model not only considers the topic coverage maximization and redundancy reduction by formalizing a series of features, but also optimizes the diversity metric by extending a well-known learning-to-rank algorithm LambdaMART. Comparative experiments have been conducted on TREC diversity tracks, which show the effectiveness of our model.
Author Zhang, Peng
Li, Jingfei
Song, Dawei
Wu, Yue
Author_xml – sequence: 1
  givenname: Yue
  surname: Wu
  fullname: Wu, Yue
– sequence: 2
  givenname: Jingfei
  surname: Li
  fullname: Li, Jingfei
– sequence: 3
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
– sequence: 4
  givenname: Dawei
  surname: Song
  fullname: Song, Dawei
  email: dwsong@tju.edu.cn
BookMark eNqNkMtOwzAQRQ0URFr6ByzyA4Zxxhnby6q8KlVC4rG23MRpQ0tSklCJv8dpQWxZWbrjY8-5Qzao6sozdingSgCoa6M0R47CcKkhFRxsoo_YEEOyD-CYRYKE4IjSnLBxuP87AxywCBASbpTEMxYZkmSAhDpn47Z9AwChSCBRxMzcu6Yqq2Xc1fHsfdvUOx9PiqKsyu4rfnLVup8VdRPflDvftH36HJBsdcFOC7dp_fjnHLHXu9uX6QOfP97PppM5XyJSx0X4u1DGSQkqBXJOau1VYahIKc_SXKOEhIgyDYnRpEDmIFyhFt5groPUiCWHd9ttE3bxjV3U9bq1AmxflA3iFm1Qt_tebF9UgOQBCkIfn77trO-pzFdd4zbZym27IGMJQQEmFo2wYY__YmlqUpB_2Ddygnho
ContentType Book Chapter
Copyright Springer International Publishing AG 2016
Copyright_xml – notice: Springer International Publishing AG 2016
DBID FFUUA
DEWEY 025.524
DOI 10.1007/978-3-319-48051-0_28
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Library & Information Science
EISBN 3319480510
9783319480510
EISSN 1611-3349
Editor Liu, Yiqun
Dou, Zhicheng
Zhao, Xin
Ma, Shaoping
Wen, Ji-Rong
Chang, Yi
Zhang, Min
Editor_xml – sequence: 1
  fullname: Liu, Yiqun
– sequence: 2
  fullname: Dou, Zhicheng
– sequence: 3
  fullname: Zhao, Xin
– sequence: 4
  fullname: Ma, Shaoping
– sequence: 5
  fullname: Wen, Ji-Rong
– sequence: 6
  fullname: Chang, Yi
– sequence: 7
  fullname: Zhang, Min
EndPage 341
ExternalDocumentID EBC6307032_391_340
EBC5595042_391_340
GroupedDBID 0D6
0DA
38.
AABBV
AAMCO
AAPIT
AAQZU
ABBVZ
ABMNI
ABOWU
ACLMJ
ADCXD
AEDXK
AEJGN
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
AORVH
AWFBM
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
SBO
SWNTM
TPJZQ
TSXQS
Z7R
Z7U
Z7Z
Z81
Z83
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ACGFS
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-g336t-1646f79a4407506aa488e7f96f56dc5d83402666c802986704d01af7be93d8783
ISBN 9783319480503
3319480502
ISSN 0302-9743
IngestDate Tue Jul 29 20:16:08 EDT 2025
Thu May 29 17:26:44 EDT 2025
Wed May 28 23:39:59 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA75.5-76.95QA76.9.D
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g336t-1646f79a4407506aa488e7f96f56dc5d83402666c802986704d01af7be93d8783
OCLC 964690617
PQID EBC5595042_391_340
PageCount 7
ParticipantIDs springer_books_10_1007_978_3_319_48051_0_28
proquest_ebookcentralchapters_6307032_391_340
proquest_ebookcentralchapters_5595042_391_340
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Information Systems and Applications, incl. Internet/Web, and HCI
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 12th Asia Information Retrieval Societies Conference, AIRS 2016, Beijing, China, November 30 - December 2, 2016, Proceedings
PublicationTitle Information Retrieval Technology
PublicationYear 2016
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001761366
ssj0002792
Score 2.0285852
Snippet Search diversification plays an important role in modern search engine, especially when user-issued queries are ambiguous and the top ranked results are...
SourceID springer
proquest
SourceType Publisher
StartPage 335
SubjectTerms Affinity ranking
Artificial intelligence
Information retrieval
Learning-to-rank
Search diversification
Title Learning to Improve Affinity Ranking for Diversity Search
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5595042&ppg=340
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6307032&ppg=340
http://link.springer.com/10.1007/978-3-319-48051-0_28
Volume 9994
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgLIiBb_EtD2woqK0dOx4LFBACFijqZrlOjFhaiQYGfj13id2kUSVUlqiK3OjilzjPz_fOhJxb4AQyRkePiW0EXwgVKQuAONPuWuaMihm6kZ-exf2APwzjYbWFYuEuyUeX9mehr-Q_qMI5wBVdsksgO7sonIDfgC8cAWE4NsjvvMzq0wVnxkPoJNwX6xu99g2p3DudgwACTLOUETJcy_kYFxzcFNsnFAmHN7M0jZdK5fKiQKcpCgRRsCEr1pSt3t3cRJLBm8gTrA1THxmBPPKFw2w9swJdUPhXCEB7n_dcVWtWlmNqVLXuX13DXCaGIUMz1dHQaJWsyoS3yFqv__D4VulkEgiHEGjLCTF2y8JJVcw1S-SimOYmD4317oJGvG6RDbSWUPR8QJTbZCUb75DNsLEG9ePsLlEBL5pPqMeLBryox4sCXnSGFy3x2iOD2_7r9X3k97iI3hkTeYTl3ZxUhnPkbsIYGFAz6ZRwsUhtnCbQM8ChhE2wVr6QbZ62O8bJUaZYmkAn7JPWeDLODgiVmVWpcTxxknFuhBIZTAdSJg2wxo5rH5IodIMuVuJ9-q8tb3qqG4D82V4U34ta-4vQtxqbT3UoiQ2gaKYBFF2AohGUoyWjOSbr1YN-Qlr551d2CnwwH535R-YX4rlZZw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Information+Retrieval+Technology&rft.atitle=Learning+to+Improve+Affinity+Ranking+for+Diversity+Search&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319480503&rft.volume=9994&rft_id=info:doi/10.1007%2F978-3-319-48051-0_28&rft.externalDBID=340&rft.externalDocID=EBC5595042_391_340
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5595042-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6307032-l.jpg