Learning to Improve Affinity Ranking for Diversity Search
Search diversification plays an important role in modern search engine, especially when user-issued queries are ambiguous and the top ranked results are redundant. Some diversity search approaches have been proposed for reducing the information redundancy of the retrieved results, while do not consi...
Saved in:
Published in | Information Retrieval Technology Vol. 9994; pp. 335 - 341 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2016
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783319480503 3319480502 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-48051-0_28 |
Cover
Abstract | Search diversification plays an important role in modern search engine, especially when user-issued queries are ambiguous and the top ranked results are redundant. Some diversity search approaches have been proposed for reducing the information redundancy of the retrieved results, while do not consider the topic coverage maximization. To solve this problem, the Affinity ranking model has been developed aiming at maximizing the topic coverage meanwhile reducing the information redundancy. However, the original model does not involve a learning algorithm for parameter tuning, thus limits the performance optimization. In order to further improve the diversity performance of Affinity ranking model, inspired by its ranking principle, we propose a learning approach based on the learning-to-rank framework. Our learning model not only considers the topic coverage maximization and redundancy reduction by formalizing a series of features, but also optimizes the diversity metric by extending a well-known learning-to-rank algorithm LambdaMART. Comparative experiments have been conducted on TREC diversity tracks, which show the effectiveness of our model. |
---|---|
AbstractList | Search diversification plays an important role in modern search engine, especially when user-issued queries are ambiguous and the top ranked results are redundant. Some diversity search approaches have been proposed for reducing the information redundancy of the retrieved results, while do not consider the topic coverage maximization. To solve this problem, the Affinity ranking model has been developed aiming at maximizing the topic coverage meanwhile reducing the information redundancy. However, the original model does not involve a learning algorithm for parameter tuning, thus limits the performance optimization. In order to further improve the diversity performance of Affinity ranking model, inspired by its ranking principle, we propose a learning approach based on the learning-to-rank framework. Our learning model not only considers the topic coverage maximization and redundancy reduction by formalizing a series of features, but also optimizes the diversity metric by extending a well-known learning-to-rank algorithm LambdaMART. Comparative experiments have been conducted on TREC diversity tracks, which show the effectiveness of our model. |
Author | Zhang, Peng Li, Jingfei Song, Dawei Wu, Yue |
Author_xml | – sequence: 1 givenname: Yue surname: Wu fullname: Wu, Yue – sequence: 2 givenname: Jingfei surname: Li fullname: Li, Jingfei – sequence: 3 givenname: Peng surname: Zhang fullname: Zhang, Peng – sequence: 4 givenname: Dawei surname: Song fullname: Song, Dawei email: dwsong@tju.edu.cn |
BookMark | eNqNkMtOwzAQRQ0URFr6ByzyA4Zxxhnby6q8KlVC4rG23MRpQ0tSklCJv8dpQWxZWbrjY8-5Qzao6sozdingSgCoa6M0R47CcKkhFRxsoo_YEEOyD-CYRYKE4IjSnLBxuP87AxywCBASbpTEMxYZkmSAhDpn47Z9AwChSCBRxMzcu6Yqq2Xc1fHsfdvUOx9PiqKsyu4rfnLVup8VdRPflDvftH36HJBsdcFOC7dp_fjnHLHXu9uX6QOfP97PppM5XyJSx0X4u1DGSQkqBXJOau1VYahIKc_SXKOEhIgyDYnRpEDmIFyhFt5groPUiCWHd9ttE3bxjV3U9bq1AmxflA3iFm1Qt_tebF9UgOQBCkIfn77trO-pzFdd4zbZym27IGMJQQEmFo2wYY__YmlqUpB_2Ddygnho |
ContentType | Book Chapter |
Copyright | Springer International Publishing AG 2016 |
Copyright_xml | – notice: Springer International Publishing AG 2016 |
DBID | FFUUA |
DEWEY | 025.524 |
DOI | 10.1007/978-3-319-48051-0_28 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Library & Information Science |
EISBN | 3319480510 9783319480510 |
EISSN | 1611-3349 |
Editor | Liu, Yiqun Dou, Zhicheng Zhao, Xin Ma, Shaoping Wen, Ji-Rong Chang, Yi Zhang, Min |
Editor_xml | – sequence: 1 fullname: Liu, Yiqun – sequence: 2 fullname: Dou, Zhicheng – sequence: 3 fullname: Zhao, Xin – sequence: 4 fullname: Ma, Shaoping – sequence: 5 fullname: Wen, Ji-Rong – sequence: 6 fullname: Chang, Yi – sequence: 7 fullname: Zhang, Min |
EndPage | 341 |
ExternalDocumentID | EBC6307032_391_340 EBC5595042_391_340 |
GroupedDBID | 0D6 0DA 38. AABBV AAMCO AAPIT AAQZU ABBVZ ABMNI ABOWU ACLMJ ADCXD AEDXK AEJGN AEJLV AEKFX AEZAY ALMA_UNASSIGNED_HOLDINGS AORVH AWFBM AZZ BBABE CZZ FFUUA I4C IEZ SBO SWNTM TPJZQ TSXQS Z7R Z7U Z7Z Z81 Z83 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ACGFS AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-g336t-1646f79a4407506aa488e7f96f56dc5d83402666c802986704d01af7be93d8783 |
ISBN | 9783319480503 3319480502 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:16:08 EDT 2025 Thu May 29 17:26:44 EDT 2025 Wed May 28 23:39:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | QA75.5-76.95QA76.9.D |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g336t-1646f79a4407506aa488e7f96f56dc5d83402666c802986704d01af7be93d8783 |
OCLC | 964690617 |
PQID | EBC5595042_391_340 |
PageCount | 7 |
ParticipantIDs | springer_books_10_1007_978_3_319_48051_0_28 proquest_ebookcentralchapters_6307032_391_340 proquest_ebookcentralchapters_5595042_391_340 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Information Systems and Applications, incl. Internet/Web, and HCI |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 12th Asia Information Retrieval Societies Conference, AIRS 2016, Beijing, China, November 30 - December 2, 2016, Proceedings |
PublicationTitle | Information Retrieval Technology |
PublicationYear | 2016 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard |
SSID | ssj0001761366 ssj0002792 |
Score | 2.0285852 |
Snippet | Search diversification plays an important role in modern search engine, especially when user-issued queries are ambiguous and the top ranked results are... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 335 |
SubjectTerms | Affinity ranking Artificial intelligence Information retrieval Learning-to-rank Search diversification |
Title | Learning to Improve Affinity Ranking for Diversity Search |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5595042&ppg=340 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6307032&ppg=340 http://link.springer.com/10.1007/978-3-319-48051-0_28 |
Volume | 9994 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgLIiBb_EtD2woqK0dOx4LFBACFijqZrlOjFhaiQYGfj13id2kUSVUlqiK3OjilzjPz_fOhJxb4AQyRkePiW0EXwgVKQuAONPuWuaMihm6kZ-exf2APwzjYbWFYuEuyUeX9mehr-Q_qMI5wBVdsksgO7sonIDfgC8cAWE4NsjvvMzq0wVnxkPoJNwX6xu99g2p3DudgwACTLOUETJcy_kYFxzcFNsnFAmHN7M0jZdK5fKiQKcpCgRRsCEr1pSt3t3cRJLBm8gTrA1THxmBPPKFw2w9swJdUPhXCEB7n_dcVWtWlmNqVLXuX13DXCaGIUMz1dHQaJWsyoS3yFqv__D4VulkEgiHEGjLCTF2y8JJVcw1S-SimOYmD4317oJGvG6RDbSWUPR8QJTbZCUb75DNsLEG9ePsLlEBL5pPqMeLBryox4sCXnSGFy3x2iOD2_7r9X3k97iI3hkTeYTl3ZxUhnPkbsIYGFAz6ZRwsUhtnCbQM8ChhE2wVr6QbZ62O8bJUaZYmkAn7JPWeDLODgiVmVWpcTxxknFuhBIZTAdSJg2wxo5rH5IodIMuVuJ9-q8tb3qqG4D82V4U34ta-4vQtxqbT3UoiQ2gaKYBFF2AohGUoyWjOSbr1YN-Qlr551d2CnwwH535R-YX4rlZZw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Information+Retrieval+Technology&rft.atitle=Learning+to+Improve+Affinity+Ranking+for+Diversity+Search&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319480503&rft.volume=9994&rft_id=info:doi/10.1007%2F978-3-319-48051-0_28&rft.externalDBID=340&rft.externalDocID=EBC5595042_391_340 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5595042-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6307032-l.jpg |