Infrared Spectrum of the Si3H8+ Cation: Evidence for a Bridged Isomer with an Asymmetric Three-Center Two-Electron SiHSi Bond

The IR spectrum of Si3H8+ ions produced in a supersonic plasma molecular beam expansion of SiH4, He, and Ar is inferred from photodissociation of cold Si3H8+–Ar complexes. Vibrational analysis of the spectrum is consistent with a Si3H8+ structure (2+) obtained by a barrierless addition reaction of S...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 19; no. 45; pp. 15315 - 15328
Main Authors George, Martin Andreas Robert, Savoca, Marco, Dopfer, Otto
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 04.11.2013
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The IR spectrum of Si3H8+ ions produced in a supersonic plasma molecular beam expansion of SiH4, He, and Ar is inferred from photodissociation of cold Si3H8+–Ar complexes. Vibrational analysis of the spectrum is consistent with a Si3H8+ structure (2+) obtained by a barrierless addition reaction of SiH4 to the disilene ion (H2SiSiH2+) in the silane plasma. In this structure, one of the electronegative H atoms of SiH4 donates electron density into the partially filled electrophilic π orbital of the disilene cation. The resulting asymmetric SiHSi bridge of the 2+ isomer with a bond energy of approximately 60 kJ mol−1 is characteristic for a weak three‐center two‐electron bond, which is identified by its strongly IR active asymmetric SiHSi stretching fundamental at about 1765 cm−1. The observed 2+ isomer is calculated to be only a few kJ mol−1 less stable than the global minimum structure of Si3H8+ (1+), which is derived from vertical ionization of trisilane. Although more stable, 1+ is not detected in the measured IR spectrum of Si3H8+–Ar, and its lower abundance in the supersonic plasma is rationalized by the production mechanism of Si3H8+ in the silane plasma, in which a high barrier between 2+ and 1+ prevents the efficient formation of 1+. The potential energy surface of Si3H8+ is characterized in some detail by quantum chemical calculations. The structural, vibrational, electronic and energetic properties as well as the chemical bonding mechanism are investigated for a variety of low‐energy Si3H8+ isomers and their fragments. The weak intermolecular bonds of the Ar ligands in the Si3H8+–Ar isomers arise from dispersion and induction forces and induce only a minor perturbation of the bare Si3H8+ ions. Comparison with the potential energy surface of C3H8+ reveals the differences between the silicon and carbon species. Good vibrations: The structure and vibrational spectrum of Si3H8+ ions generated in a silane plasma are characterized by quantum chemical calculations and Ar‐tagging IR spectroscopy (see figure). The detected isomer 2+ is characterized by a weak, asymmetric, and nonlinear 3c–2e SiHSi bond.
AbstractList The IR spectrum of Si3H8(+) ions produced in a supersonic plasma molecular beam expansion of SiH4, He, and Ar is inferred from photodissociation of cold Si3H8(+)-Ar complexes. Vibrational analysis of the spectrum is consistent with a Si3H8(+) structure (2(+)) obtained by a barrierless addition reaction of SiH4 to the disilene ion (H2Si=SiH2(+)) in the silane plasma. In this structure, one of the electronegative H atoms of SiH4 donates electron density into the partially filled electrophilic π orbital of the disilene cation. The resulting asymmetric Si-H-Si bridge of the 2(+) isomer with a bond energy of approximately 60 kJ mol(-1) is characteristic for a weak three-center two-electron bond, which is identified by its strongly IR active asymmetric Si-H-Si stretching fundamental at about 1765 cm(-1). The observed 2(+) isomer is calculated to be only a few kJ mol(-1) less stable than the global minimum structure of Si3H8(+) (1(+)), which is derived from vertical ionization of trisilane. Although more stable, 1(+) is not detected in the measured IR spectrum of Si3H8(+)-Ar, and its lower abundance in the supersonic plasma is rationalized by the production mechanism of Si3H8(+) in the silane plasma, in which a high barrier between 2(+) and 1(+) prevents the efficient formation of 1(+). The potential energy surface of Si3H8(+) is characterized in some detail by quantum chemical calculations. The structural, vibrational, electronic and energetic properties as well as the chemical bonding mechanism are investigated for a variety of low-energy Si3H8(+) isomers and their fragments. The weak intermolecular bonds of the Ar ligands in the Si3H8(+)-Ar isomers arise from dispersion and induction forces and induce only a minor perturbation of the bare Si3H8(+) ions. Comparison with the potential energy surface of C3H8(+) reveals the differences between the silicon and carbon species.
The IR spectrum of Si3H8+ ions produced in a supersonic plasma molecular beam expansion of SiH4, He, and Ar is inferred from photodissociation of cold Si3H8+–Ar complexes. Vibrational analysis of the spectrum is consistent with a Si3H8+ structure (2+) obtained by a barrierless addition reaction of SiH4 to the disilene ion (H2SiSiH2+) in the silane plasma. In this structure, one of the electronegative H atoms of SiH4 donates electron density into the partially filled electrophilic π orbital of the disilene cation. The resulting asymmetric SiHSi bridge of the 2+ isomer with a bond energy of approximately 60 kJ mol−1 is characteristic for a weak three‐center two‐electron bond, which is identified by its strongly IR active asymmetric SiHSi stretching fundamental at about 1765 cm−1. The observed 2+ isomer is calculated to be only a few kJ mol−1 less stable than the global minimum structure of Si3H8+ (1+), which is derived from vertical ionization of trisilane. Although more stable, 1+ is not detected in the measured IR spectrum of Si3H8+–Ar, and its lower abundance in the supersonic plasma is rationalized by the production mechanism of Si3H8+ in the silane plasma, in which a high barrier between 2+ and 1+ prevents the efficient formation of 1+. The potential energy surface of Si3H8+ is characterized in some detail by quantum chemical calculations. The structural, vibrational, electronic and energetic properties as well as the chemical bonding mechanism are investigated for a variety of low‐energy Si3H8+ isomers and their fragments. The weak intermolecular bonds of the Ar ligands in the Si3H8+–Ar isomers arise from dispersion and induction forces and induce only a minor perturbation of the bare Si3H8+ ions. Comparison with the potential energy surface of C3H8+ reveals the differences between the silicon and carbon species. Good vibrations: The structure and vibrational spectrum of Si3H8+ ions generated in a silane plasma are characterized by quantum chemical calculations and Ar‐tagging IR spectroscopy (see figure). The detected isomer 2+ is characterized by a weak, asymmetric, and nonlinear 3c–2e SiHSi bond.
Author Dopfer, Otto
George, Martin Andreas Robert
Savoca, Marco
Author_xml – sequence: 1
  givenname: Martin Andreas Robert
  surname: George
  fullname: George, Martin Andreas Robert
  organization: Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)
– sequence: 2
  givenname: Marco
  surname: Savoca
  fullname: Savoca, Marco
  organization: Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)
– sequence: 3
  givenname: Otto
  surname: Dopfer
  fullname: Dopfer, Otto
  email: dopfer@physik.tu-berlin.de
  organization: Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24105980$$D View this record in MEDLINE/PubMed
BookMark eNo9Uctu2zAQJIoEjZP22mPBY4FCKakV9egtFpzYQB5A7T5uBEWuYrYS6VByHZ_zKf2QflJ_ITKc-rDYXezMLDBzSo6cd0jIO87OOWPxJ73E9jxmHFjM8-IVGXER8wiyVByRESuSLEoFFCfktOt-MsaKFOA1OYkTzkSRsxF5mrk6qICGzleo-7Buqa9pv0Q6tzDNP9JS9da7z3Ty2xp0GmntA1V0HKy5H1izzrcY6Mb2S6ocvei2bYt9sJoulgExKtH1w32x8dGk2T3wblD-9-fvdKi5pWPvzBtyXKumw7cv_Yx8vZwsyml0fXc1Ky-uo3uAtIjqDKus1lnFY8FUlVSK8RoMTzJegQCVQG0gr0zKTRFryOO0FpBrAUybLFYCzsiHve4q-Ic1dr1sbaexaZRDv-4kT5IkF8Vg5gB9_wJdVy0auQq2VWEr_xs3AIo9YGMb3B7unMldLHIXizzEIsvp5OawDdxoz7Vdj48Hrgq_ZJpBJuT326thuhz_uP3yTebwDHvkk0w
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
NPM
7X8
DOI 10.1002/chem.201302189
DatabaseName Istex
PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 15328
ExternalDocumentID 24105980
CHEM201302189
ark_67375_WNG_67FBXNRV_8
Genre article
Journal Article
GrantInformation_xml – fundername: DFG
  funderid: FOR 1282 (DO 729/5)
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDBF
ABHUG
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
NPM
7X8
ID FETCH-LOGICAL-g3369-f7eb7fc7b1250ab4ba01f3d1471b353a43fd38bd61d92c3826f538c530cd72a53
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Fri Aug 16 04:51:32 EDT 2024
Sat Sep 28 07:52:29 EDT 2024
Sat Aug 24 01:07:15 EDT 2024
Wed Jan 17 05:01:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords silanes
mass spectrometry
structure elucidation
radical ions
IR spectroscopy
Language English
License Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3369-f7eb7fc7b1250ab4ba01f3d1471b353a43fd38bd61d92c3826f538c530cd72a53
Notes istex:359117C2520669FB5828B52F6B813A09C24C3921
ArticleID:CHEM201302189
DFG - No. FOR 1282 (DO 729/5)
ark:/67375/WNG-67FBXNRV-8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24105980
PQID 1444859013
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1444859013
pubmed_primary_24105980
wiley_primary_10_1002_chem_201302189_CHEM201302189
istex_primary_ark_67375_WNG_67FBXNRV_8
PublicationCentury 2000
PublicationDate November 4, 2013
PublicationDateYYYYMMDD 2013-11-04
PublicationDate_xml – month: 11
  year: 2013
  text: November 4, 2013
  day: 04
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References E. R. Fisher, P. B. Armentrout, J. Chem. Phys. 1990, 93, 4858
M. Okumura, L. I. Yeh, J. D. Myers, Y. T. Lee, J. Phys. Chem. 1990, 94, 3416
M. D. Halls, J. Velkovski, H. B. Schlegel, Theor. Chem. Acc. 2001, 105, 413.
A. F. DeBlase, M. T. Scerba, T. Lectka, M. A. Johnson, Chem. Phys. Lett. 2013, 568-569, 9.
K. Raghavachari, J. Chem. Phys. 1988, 88, 1688
S. Zilberg, Y. Haas, J. Am. Chem. Soc. 2003, 125, 1810.
D. M. Goldhaber, A. L. Betz, Astrophys. J. 1984, 279, L55.
B. H. Boo, P. B. Armentrout, J. Am. Chem. Soc. 1987, 109, 3549
J. V. Ortiz, J. Chem. Phys. 1991, 94, 6064
S. Lunell, D. Feller, E. R. Davidson, Theor. Chim. Acta 1990, 77, 111.
M. J. Kushner, J. Appl. Phys. 1988, 63, 2532
Angew. Chem. Int. Ed. 2003, 42, 1537
C. X. Cui, M. Kertesz, Macromolecules 1992, 25, 1103.
Y. B. Cao, J. H. Choi, B. M. Haas, M. S. Johnson, M. Okumura, J. Phys. Chem. 1993, 97, 5215.
F. Lattanzi, C. Di Lauro, V. M. Horneman, Mol. Phys. 2006, 104, 1795
L. A. Curtiss, K. Raghavachari, P. W. Deutsch, J. A. Pople, J. Chem. Phys. 1991, 95, 2433.
U. Itoh, Y. Toyoshima, H. Onuki, N. Washida, T. Ibuki, J. Chem. Phys. 1986, 85, 4867.
H. Bock, W. Ensslin, F. Feher, R. Freund, J. Am. Chem. Soc. 1976, 98, 668
Angew. Chem. Int. Ed. 2002, 41, 3628
A. A. Fokin, P. R. Schreiner, Chem. Rev. 2002, 102, 1551
J. Fischer, J. Baumgartner, C. Marschner, Science 2005, 310, 825
B. Albinsson, H. Teramae, H. S. Plitt, L. M. Goss, H. Schmidbaur, J. Michl, J. Phys. Chem. 1996, 100, 8681
T. Motooka, P. Fons, H. Abe, T. Tokuyama, Jpn. J. Appl. Phys. Part 2 1993, 32, L879
O. Dopfer, D. Roth, J. P. Maier, J. Am. Chem. Soc. 2002, 124, 494
E. J. Spanier, A. G. Macdiarmid, Inorg. Chem. 1962, 1, 432.
M. Savoca, M. A. R. George, J. Langer, O. Dopfer, Phys. Chem. Chem. Phys. 2013, 15, 2774.
N. Solcà, O. Dopfer, Angew. Chem. 2002, 114, 3781
H. J. Stein, Phys. Rev. Lett. 1979, 43, 1030.
O. Dopfer, Int. Rev. Phys. Chem. 2003, 22, 437.
K. Toriyama, Chem. Phys. Lett. 1991, 177, 39.
R. L. DeKock, W. B. Bosma, J. Chem. Educ. 1988, 65, 194
O. Dopfer, J. Phys. Org. Chem. 2006, 19, 540
A. M. Ricks, G. E. Douberly, P. V. R. Schleyer, M. A. Duncan, Chem. Phys. Lett. 2009, 480, 17
N. Moazzen-Ahmadi, V. M. Horneman, J. Chem. Phys. 2006, 124, 194309.
M. Savoca, J. Langer, D. J. Harding, O. Dopfer, A. Fielicke, Chem. Phys. Lett. 2013, 557, 49
L. Andrews, X. F. Wang, J. Phys. Chem. A 2002, 106, 7696.
V. Kumar, Y. Kawazoe, Phys. Rev. Lett. 2003, 90, 055502
S. P. Hoffmann, T. Kato, F. S. Tham, C. A. Reed, Chem. Commun. 2006, 767.
H. Bock, Angew. Chem. 1989, 101, 1659
H. S. Andrei, N. Solca, O. Dopfer, Angew. Chem. 2007, 119, 4838
G. Turban, Y. Catherine, B. Grolleau, Plasma Chem. Plasma Process. 1982, 2, 61.
Y. Apeloig, D. Danovich, Organometallics 1996, 15, 350.
M. Budde, G. Lupke, C. P. Cheney, N. H. Tolk, L. C. Feldman, Phys. Rev. Lett. 2000, 85, 1452
B. Ruscic, J. Berkowitz, J. Chem. Phys. 1991, 95, 2407.
K. Raghavachari, J. Chem. Phys. 1990, 92, 452.
N. Solca, O. Dopfer, J. Am. Chem. Soc. 2004, 126, 9520
M. L. Mandich, W. D. Reents, M. F. Jarrold, J. Chem. Phys. 1988, 88, 1703
S. Patai, Z. Rappoport, The Chemistry of Organic Silicon Compounds, Wiley, Chichester, 1989.
Angew. Chem. Int. Ed. 2010, 49, 10145
R. Singh, J. Phys. Condens. Matter 2008, 20, 045226
A. Patzer, M. Schütz, T. Möller, O. Dopfer, Angew. Chem. 2012, 124, 5009
G. Maier, H. P. Reisenauer, J. Glatthaar, Chem. Eur. J. 2002, 8, 4383.
M. A. Duncan, J. Phys. Chem. A 2012, 116, 11477
R. G. Satink, H. Piest, G. von Helden, G. Meijer, J. Chem. Phys. 1999, 111, 10750
J. E. McMurry, T. Lectka, Acc. Chem. Res. 1992, 25, 47.
R. V. Olkhov, O. Dopfer, Chem. Phys. Lett. 1999, 314, 215
A. Patzer, S. Chakraborty, N. Solca, O. Dopfer, Angew. Chem. 2010, 122, 10343
M. Savoca, J. Langer, A. Lagutschenkov, D. J. Harding, A. Fielicke, O. Dopfer, J. Phys. Chem. A 2013, 117, 1158.
D. Roth, O. Dopfer, Phys. Chem. Chem. Phys. 2002, 4, 4855
H. Bock, B. Solouki, Chem. Rev. 1995, 95, 1161.
G. E. Douberly, A. M. Ricks, P. V. R. Schleyer, M. A. Duncan, J. Phys. Chem. A 2008, 112, 4869
F. Feher, H. Fischer, Naturwissenschaften 1964, 51, 461
R. V. Olkhov, S. A. Nizkorodov, O. Dopfer, Chem. Phys. 1998, 239, 393.
J. Berkowitz, J. P. Greene, H. Cho, B. Ruscic, J. Chem. Phys. 1987, 86, 1235.
B. Chiavarino, M. E. Crestoni, S. Fornarini, J. Lemaire, L. MacAleese, P. Maitre, ChemPhysChem 2005, 6, 437.
Angew. Chem. Int. Ed. 2001, 40, 3033
Angew. Chem. Int. Ed. 2012, 51, 4925
K. Toriyama, K. Nunome, M. Iwasaki, J. Chem. Phys. 1982, 77, 5891
H. Zuilhof, J. P. Dinnocenzo, A. C. Reddy, S. Shaik, J. Phys. Chem. 1996, 100, 15774
J. V. Ortiz, J. W. Mintmire, J. Am. Chem. Soc. 1988, 110, 4522.
S. Olivella, A. Sole, D. J. McAdoo, J. Am. Chem. Soc. 1996, 118, 9368
R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165.
A. Fujii, E. Fujimaki, T. Ebata, N. Mikami, J. Chem. Phys. 2000, 112, 6275
R. I. Kaiser, Y. Osamura, Astron. Astrophys. 2005, 432, 559.
E. J. Bieske, O. Dopfer, Chem. Rev. 2000, 100, 3963.
H. Chatham, D. Hils, R. Robertson, A. Gallagher, J. Chem. Phys. 1984, 81, 1770
M. Iwasaki, K. Toriyama, K. Nunome, J. Am. Chem. Soc. 1981, 103, 3591
H. Chatham, A. Gallagher, J. Appl. Phys. 1985, 58, 159
B. Ruscic, J. Berkowitz, J. Chem. Phys. 1991, 95, 2416.
G. Turban, Y. Catherine, B. Grolleau, Thin Solid Films 1980, 67, 309.
H. S. Andrei, N. Solca, O. Dopfer, Angew. Chem. 2008, 120, 401
T. Müller, Angew. Chem, 2001, 113, 3123
M. Savoca, J. Langer, O. Dopfer, Angew. Chem. 2013, 125, 1608
D. M. Smith, P. M. Martineau, P. B. Davies, J. Chem. Phys. 1992, 96, 1741.
O. Dopfer, H. S. Andrei, N. Solca, J. Phys. Chem. A 2011, 115, 11466.
Angew. Chem. Int. Ed. 2013, 52, 1568.
T. P. Martin, H. Schaber, J. Chem. Phys. 1985, 83, 855
M. Fujii, O. Dopfer, Int. Rev. Phys. Chem. 2012, 31, 131.
Angew. Chem. Int. Ed. Engl. 1989, 28, 1627
A. M. Ricks, G. E. Douberly, P. V. Schleyer, M. A. Duncan, J. Chem. Phys. 2010, 132, 051101
T. Y. Yu, T. M. H. Cheng, F. W. Lampe, V. Kempter, J. Phys. Chem. 1972, 76, 3321
M. C. McCarthy, C. A. Gottlieb, P. Thaddeus, Mol. Phys. 2003, 101, 697
D. W. Boo, Y. T. Lee, J. Chem. Phys. 1995, 103, 514.
C. G. Van de Walle, P. J. H. Denteneer, Y. Baryam, S. T. Pantelides, Phys. Rev. B 1989, 39, 10791.
R. Panisch, M. Bolte, T. Müller, J. Am. Chem. Soc. 2006, 128, 9676.
R. D. Miller, J. Michl, Chem. Rev. 1989, 89, 1359.
G. E. Douberly, A. M. Ricks, B. W. Ticknor, W. C. McKee, P. V. R. Schleyer, M. A. Duncan, J. Phys. Chem. A 2008, 112, 1897.
J. M. S. Henis, M. K. Tripodi, G. W. Stewart, P. P. Gaspar, J. Chem. Phys. 1972, 57, 389
Angew. Chem. Int. Ed. 2007, 46, 4754.
Angew. Chem. Int. Ed. 2008, 47, 395
O. Dopfer, Z. Phys. Chem. 2005, 219, 125
N. Solca, O. Dopfer, Angew. Chem. 2003, 115, 1575
2011; 115
2013; 568–569
1989; 89
2004; 126
1989 1989; 101 28
2002 2002; 114 41
1981; 103
1987; 109
1991; 94
2000; 85
1991; 95
2010 2010; 122 49
1998; 239
2005; 219
1989; 162
1996; 100
1992; 96
2001; 105
2013; 15
1987; 86
2003; 90
1984; 279
1986; 85
1982; 2
2001 2001; 113 40
2002; 102
1993; 32
2013; 557
2013; 117
2002; 106
1988; 88
2009; 480
2008; 20
2008; 112
1972; 57
2003; 125
2006; 128
1990; 92
1989
1990; 93
1989; 39
1990; 94
1985; 58
2006; 124
1995; 95
1990; 77
1984; 81
1991; 177
2005; 310
2005; 432
1980; 67
1962; 1
2002; 8
1982; 77
2013 2013; 125 52
2006
2006; 19
2002; 4
1985; 83
2000; 112
1996; 15
2012; 31
1976; 98
2003 2003; 115 42
2002; 124
1993; 97
1988; 65
2010; 132
2005; 6
1988; 110
1972; 76
1992; 25
1995; 103
2012 2012; 124 51
1988; 63
2000; 100
1999; 111
2007 2007; 119 46
2006; 104
2012; 116
2003; 101
2008 2008; 120 47
1999; 314
1979; 43
1964; 51
1996; 118
2003; 22
References_xml – volume: 124
  start-page: 494
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 432
  start-page: 559
  year: 2005
  publication-title: Astron. Astrophys.
– volume: 67
  start-page: 309
  year: 1980
  publication-title: Thin Solid Films
– volume: 51
  start-page: 461
  year: 1964
  publication-title: Naturwissenschaften
– volume: 124
  start-page: 194309
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 110
  start-page: 4522
  year: 1988
  publication-title: J. Am. Chem. Soc.
– volume: 219
  start-page: 125
  year: 2005
  publication-title: Z. Phys. Chem.
– year: 1989
– volume: 25
  start-page: 47
  year: 1992
  publication-title: Acc. Chem. Res.
– volume: 111
  start-page: 10750
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 1897
  year: 2008
  publication-title: J. Phys. Chem. A
– volume: 557
  start-page: 49
  year: 2013
  publication-title: Chem. Phys. Lett.
– volume: 6
  start-page: 437
  year: 2005
  publication-title: ChemPhysChem
– volume: 63
  start-page: 2532
  year: 1988
  publication-title: J. Appl. Phys.
– volume: 114 41
  start-page: 3781 3628
  year: 2002 2002
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 102
  start-page: 1551
  year: 2002
  publication-title: Chem. Rev.
– volume: 113 40
  start-page: 3123 3033
  year: 2001 2001
  publication-title: Angew. Chem Angew. Chem. Int. Ed.
– volume: 115 42
  start-page: 1575 1537
  year: 2003 2003
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 109
  start-page: 3549
  year: 1987
  publication-title: J. Am. Chem. Soc.
– volume: 95
  start-page: 2416
  year: 1991
  publication-title: J. Chem. Phys.
– volume: 94
  start-page: 3416
  year: 1990
  publication-title: J. Phys. Chem.
– volume: 112
  start-page: 6275
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 25
  start-page: 1103
  year: 1992
  publication-title: Macromolecules
– volume: 89
  start-page: 1359
  year: 1989
  publication-title: Chem. Rev.
– volume: 95
  start-page: 2433
  year: 1991
  publication-title: J. Chem. Phys.
– volume: 126
  start-page: 9520
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 95
  start-page: 1161
  year: 1995
  publication-title: Chem. Rev.
– volume: 15
  start-page: 2774
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 118
  start-page: 9368
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 4383
  year: 2002
  publication-title: Chem. Eur. J.
– volume: 100
  start-page: 8681
  year: 1996
  publication-title: J. Phys. Chem.
– volume: 15
  start-page: 350
  year: 1996
  publication-title: Organometallics
– volume: 2
  start-page: 61
  year: 1982
  publication-title: Plasma Chem. Plasma Process.
– volume: 85
  start-page: 4867
  year: 1986
  publication-title: J. Chem. Phys.
– volume: 177
  start-page: 39
  year: 1991
  publication-title: Chem. Phys. Lett.
– volume: 112
  start-page: 4869
  year: 2008
  publication-title: J. Phys. Chem. A
– volume: 104
  start-page: 1795
  year: 2006
  publication-title: Mol. Phys.
– volume: 43
  start-page: 1030
  year: 1979
  publication-title: Phys. Rev. Lett.
– volume: 90
  start-page: 055502
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 314
  start-page: 215
  year: 1999
  publication-title: Chem. Phys. Lett.
– volume: 105
  start-page: 413
  year: 2001
  publication-title: Theor. Chem. Acc.
– volume: 120 47
  start-page: 401 395
  year: 2008 2008
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 77
  start-page: 111
  year: 1990
  publication-title: Theor. Chim. Acta
– volume: 480
  start-page: 17
  year: 2009
  publication-title: Chem. Phys. Lett.
– volume: 162
  start-page: 165
  year: 1989
  publication-title: Chem. Phys. Lett.
– volume: 86
  start-page: 1235
  year: 1987
  publication-title: J. Chem. Phys.
– volume: 58
  start-page: 159
  year: 1985
  publication-title: J. Appl. Phys.
– volume: 125
  start-page: 1810
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 103
  start-page: 3591
  year: 1981
  publication-title: J. Am. Chem. Soc.
– start-page: 767
  year: 2006
  publication-title: Chem. Commun.
– volume: 93
  start-page: 4858
  year: 1990
  publication-title: J. Chem. Phys.
– volume: 95
  start-page: 2407
  year: 1991
  publication-title: J. Chem. Phys.
– volume: 92
  start-page: 452
  year: 1990
  publication-title: J. Chem. Phys.
– volume: 65
  start-page: 194
  year: 1988
  publication-title: J. Chem. Educ.
– volume: 31
  start-page: 131
  year: 2012
  publication-title: Int. Rev. Phys. Chem.
– volume: 32
  start-page: L879
  year: 1993
  publication-title: Jpn. J. Appl. Phys. Part 2
– volume: 83
  start-page: 855
  year: 1985
  publication-title: J. Chem. Phys.
– volume: 115
  start-page: 11466
  year: 2011
  publication-title: J. Phys. Chem. A
– volume: 279
  start-page: L55
  year: 1984
  publication-title: Astrophys. J.
– volume: 98
  start-page: 668
  year: 1976
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 045226
  year: 2008
  publication-title: J. Phys. Condens. Matter
– volume: 97
  start-page: 5215
  year: 1993
  publication-title: J. Phys. Chem.
– volume: 1
  start-page: 432
  year: 1962
  publication-title: Inorg. Chem.
– volume: 81
  start-page: 1770
  year: 1984
  publication-title: J. Chem. Phys.
– volume: 119 46
  start-page: 4838 4754
  year: 2007 2007
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 94
  start-page: 6064
  year: 1991
  publication-title: J. Chem. Phys.
– volume: 77
  start-page: 5891
  year: 1982
  publication-title: J. Chem. Phys.
– volume: 239
  start-page: 393
  year: 1998
  publication-title: Chem. Phys.
– volume: 100
  start-page: 3963
  year: 2000
  publication-title: Chem. Rev.
– volume: 85
  start-page: 1452
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 1741
  year: 1992
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 540
  year: 2006
  publication-title: J. Phys. Org. Chem.
– volume: 88
  start-page: 1688
  year: 1988
  publication-title: J. Chem. Phys.
– volume: 124 51
  start-page: 5009 4925
  year: 2012 2012
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 116
  start-page: 11477
  year: 2012
  publication-title: J. Phys. Chem. A
– volume: 128
  start-page: 9676
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 389
  year: 1972
  publication-title: J. Chem. Phys.
– volume: 122 49
  start-page: 10343 10145
  year: 2010 2010
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 76
  start-page: 3321
  year: 1972
  publication-title: J. Phys. Chem.
– volume: 100
  start-page: 15774
  year: 1996
  publication-title: J. Phys. Chem.
– volume: 117
  start-page: 1158
  year: 2013
  publication-title: J. Phys. Chem. A
– volume: 101
  start-page: 697
  year: 2003
  publication-title: Mol. Phys.
– volume: 39
  start-page: 10791
  year: 1989
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 4855
  year: 2002
  publication-title: Phys. Chem. Chem. Phys.
– volume: 125 52
  start-page: 1608 1568
  year: 2013 2013
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 22
  start-page: 437
  year: 2003
  publication-title: Int. Rev. Phys. Chem.
– volume: 106
  start-page: 7696
  year: 2002
  publication-title: J. Phys. Chem. A
– volume: 88
  start-page: 1703
  year: 1988
  publication-title: J. Chem. Phys.
– volume: 132
  start-page: 051101
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 310
  start-page: 825
  year: 2005
  publication-title: Science
– volume: 103
  start-page: 514
  year: 1995
  publication-title: J. Chem. Phys.
– volume: 101 28
  start-page: 1659 1627
  year: 1989 1989
  publication-title: Angew. Chem. Angew. Chem. Int. Ed. Engl.
– volume: 568–569
  start-page: 9
  year: 2013
  publication-title: Chem. Phys. Lett.
SSID ssj0009633
Score 2.2536023
Snippet The IR spectrum of Si3H8+ ions produced in a supersonic plasma molecular beam expansion of SiH4, He, and Ar is inferred from photodissociation of cold...
The IR spectrum of Si3H8(+) ions produced in a supersonic plasma molecular beam expansion of SiH4, He, and Ar is inferred from photodissociation of cold...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 15315
SubjectTerms IR spectroscopy
mass spectrometry
radical ions
silanes
structure elucidation
Title Infrared Spectrum of the Si3H8+ Cation: Evidence for a Bridged Isomer with an Asymmetric Three-Center Two-Electron SiHSi Bond
URI https://api.istex.fr/ark:/67375/WNG-67FBXNRV-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201302189
https://www.ncbi.nlm.nih.gov/pubmed/24105980
https://search.proquest.com/docview/1444859013
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQN7Dh_RheukiIDUqb2E6cYdeOOp0iMYt2CrOL_KyqahI0DwFddceWf-BD-Bd-gF_ovckkpYgVLCLZSmzFPn4cP-65jL1MLZLYWPnI-H4aSZyQSQNSRtwZbVWQwmvah3w3zkZH8u00nf5mxd_oQ3QbbtQz6vGaOrg2i61L0VAsE1mS08FbkpMFH6npESs6uNSPwtbV-JKXKiIN1la1MeZbV5MjNaVa_fw3nnmVttbzzvAW0-0fN9dNTjdXS7Npz_4Qc_yfIt1mN9ekFLabVnSHXfPlXXZ90PqCu8e-7pdhTlfVgfzVL-erGVQBkDvC4YkY5a9hUAP8BlonpYBcGDTs1OZgDvYX1czPgTZ9QZewvfgym5ErLwsTbEv-5_k32mXGLyafKozsrn3zYO6_vv8Y4XN4AuQA-T47Gu5OBqNo7cIhOhYi60dBeaOCVQZ5VKyNNDpOgnAJTolGpEJLEZzIjcsS1-cWAcwCjsA2FbF1iutUPGAbZVX6RwycVVym3mZeGRm8MIYnJpCYENI2nrsee1VDWHxsZDoKPT-lW2sqLT6M9zA03JmOD94XeY-9aDEusBrpgESXvlotcBmEi1UyxhU99rABv8uN033Yfh73GK8h7F40us-8IPCKDryCFC262ON_SfSE3aBwbfgon7INBNc_Qwa0NM_rVn4BVN4A3A
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEG1BOIQL-zJhayTEBTmxe5m2uSWjDB5I5pBMIDerVxRFY0eziOXEjSv_wIfwL_wAv0CVPXYUxAkOlty2u-Xu6uV1ddUrQp5JCyA2Vj4yPpORgAUZOSBFxJzRVgXBvUY95P64nx-J18eytSZEX5iGH6JTuOHIqOdrHOCokN46Zw2FSqErOZ68JWl2mVyBMS_rXdXBOYMU9K8mmrxQEbKwtryNMdu6mB_AKbbrx78hzYvAtV55hteJaf-5MTg53VwuzKb9_Aed439V6ga5tsKldLvpSDfJJV_eIuuDNhzcbfJ1VIYZWqtTDFm_mC2ntAoU4CM9POF5-oIOahm_pG2cUgpwmGq6U3uEOTqaV1M_o6j3pbqk2_NP0ylG87J0At3J__zyDRXN8MXkQwWJ3VV4Hij91_cfOVyHJxRjIN8hR8PdySCPVlEcovec97MoKG9UsMoAlIq1EUbHSeAugVXRcMm14MHx1Lh-4jJmOWx3AkzCVvLYOsW05HfJWlmV_j6hziompLd9r4wInhvDEhOQTwiQG0tdjzyvZVicNUwdhZ6douGaksW78Su4G-4cjw_eFmmPPG2FXEAz4hmJLn21nMNOCPar6I_Le-ReI_2uNIYmsVka9wirZdi9aKifWYHCKzrhFUhq0aU2_iXTE7KeT_b3ir3R-M0DchWf136Q4iFZA0H7RwCIFuZx3eV_A2ufBP4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgSMCG92MoBSMhNihtYjtxwq6ddpjhMULttMwu8hNV1STVPARlxY4t_8CH8C_8QH-Be5NJShErWESKk9iKfa_t42vfcwl5GhsAsaF0gXZZHAiYkJEDUgTMamWkF9wptEO-HSb9ffFqHI9_8-Kv-SFagxv2jGq8xg5-bP3GGWko1Ak9yXHjLUqzi-SSSDhDvd7ePSOQAvWqg8kLGSAJa0PbGLKN8_kBm2Kzfvob0DyPW6uJp3edqOaX6_MmR-uLuV43n_9gc_yfOt0g15aolG7WanSTXHDFLXKl2wSDu02-Dgo_xbPqFAPWz6eLCS09BfBI9w55P31Ou5WEX9AmSikFMEwV3ar8wSwdzMqJm1K0-lJV0M3ZyWSCsbwMHYEyuZ9fvqGZGb4YfSwhsbMMzgOln37_0Ydr75BiBOQ7ZL-3M-r2g2UMh-AD50kWeOm09EZqAFKh0kKrMPLcRjAnah5zJbi3PNU2iWzGDIfFjoch2MQ8NFYyFfO7ZKUoC3efUGskE7EziZNaeMe1ZpH2yCYEuI2ltkOeVSLMj2uejlxNj_DYmozz98OXcNfbGg93D_K0Q540Ms6hGXGHRBWuXMxgHQSrVfTG5R1yrxZ-WxrDA7FZGnYIq0TYvqiJn1mOwstb4eVIadGmHvxLpsfk8rvtXv5mMHy9Sq7i48oJUjwkKyBntwZoaK4fVQr_C169A60
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infrared+Spectrum+of+the+Si3H8%2B+Cation%3A+Evidence+for+a+Bridged+Isomer+with+an+Asymmetric+Three%E2%80%90Center+Two%E2%80%90Electron+Si%EF%A3%BFH%EF%A3%BFSi+Bond&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=George%2C+Martin+Andreas+Robert&rft.au=Savoca%2C+Marco&rft.au=Dopfer%2C+Otto&rft.date=2013-11-04&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=19&rft.issue=45&rft.spage=15315&rft.epage=15328&rft_id=info:doi/10.1002%2Fchem.201302189&rft.externalDBID=10.1002%252Fchem.201302189&rft.externalDocID=CHEM201302189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon