Recent Progress in Electrocatalytic Methanation of CO2 at Ambient Conditions

Electrochemical CO2 reduction under ambient conditions is a promising pathway for conversion of CO2 into value‐added products. In recent years, great achievements have been obtained in the understanding the mechanism and development of efficient and selective catalysts for electrochemical CO2 reduct...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 13
Main Authors Zhao, Runbo, Ding, Peng, Wei, Peipei, Zhang, Longcheng, Liu, Qian, Luo, Yonglan, Li, Tingshuai, Lu, Siyu, Shi, Xifeng, Gao, Shuyan, Asiri, Abdullah M., Wang, Zhiming, Sun, Xuping
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical CO2 reduction under ambient conditions is a promising pathway for conversion of CO2 into value‐added products. In recent years, great achievements have been obtained in the understanding the mechanism and development of efficient and selective catalysts for electrochemical CO2 reduction. However, the electrochemical CO2 reduction is still far from practical applications. Based on the gap between current research and practical applications, the state‐of‐the‐art of the theoretical and experiment investigations on different electrocatalysts for the electrocatalysis of CO2 to CH4 is systematically and constructively reviewed. First of all, strategies for enhancing the catalytic activity and selectivity of electrochemical reduction of CO2 to CH4 are also examined in this review. The modulated strategies mainly involve the following aspects: i) tuning the applied potentials, ii) morphology engineering, iii) crystallographic facets engineering, iv) defect engineering, v) alloying. Furthermore, the influence of the electrolyte on the activity and selectivity for electrocatalysis of CO2 to CH4 is also reviewed. This review will build a systematic understanding in the electrochemical CO2 reduction to CH4 and may help to provide new insight for designing and optimizing the catalysts and/or electrolyte. This review summarizes the recent progress in the state‐of‐the‐art of theoretical and experiment investigations on different electrocatalysts for the catalysis of CO2 to CH4. The strategies and influencing factors of the electrocatalysis of CO2 to CH4 are also proposed.
AbstractList Electrochemical CO2 reduction under ambient conditions is a promising pathway for conversion of CO2 into value‐added products. In recent years, great achievements have been obtained in the understanding the mechanism and development of efficient and selective catalysts for electrochemical CO2 reduction. However, the electrochemical CO2 reduction is still far from practical applications. Based on the gap between current research and practical applications, the state‐of‐the‐art of the theoretical and experiment investigations on different electrocatalysts for the electrocatalysis of CO2 to CH4 is systematically and constructively reviewed. First of all, strategies for enhancing the catalytic activity and selectivity of electrochemical reduction of CO2 to CH4 are also examined in this review. The modulated strategies mainly involve the following aspects: i) tuning the applied potentials, ii) morphology engineering, iii) crystallographic facets engineering, iv) defect engineering, v) alloying. Furthermore, the influence of the electrolyte on the activity and selectivity for electrocatalysis of CO2 to CH4 is also reviewed. This review will build a systematic understanding in the electrochemical CO2 reduction to CH4 and may help to provide new insight for designing and optimizing the catalysts and/or electrolyte. This review summarizes the recent progress in the state‐of‐the‐art of theoretical and experiment investigations on different electrocatalysts for the catalysis of CO2 to CH4. The strategies and influencing factors of the electrocatalysis of CO2 to CH4 are also proposed.
Electrochemical CO2 reduction under ambient conditions is a promising pathway for conversion of CO2 into value‐added products. In recent years, great achievements have been obtained in the understanding the mechanism and development of efficient and selective catalysts for electrochemical CO2 reduction. However, the electrochemical CO2 reduction is still far from practical applications. Based on the gap between current research and practical applications, the state‐of‐the‐art of the theoretical and experiment investigations on different electrocatalysts for the electrocatalysis of CO2 to CH4 is systematically and constructively reviewed. First of all, strategies for enhancing the catalytic activity and selectivity of electrochemical reduction of CO2 to CH4 are also examined in this review. The modulated strategies mainly involve the following aspects: i) tuning the applied potentials, ii) morphology engineering, iii) crystallographic facets engineering, iv) defect engineering, v) alloying. Furthermore, the influence of the electrolyte on the activity and selectivity for electrocatalysis of CO2 to CH4 is also reviewed. This review will build a systematic understanding in the electrochemical CO2 reduction to CH4 and may help to provide new insight for designing and optimizing the catalysts and/or electrolyte.
Author Zhang, Longcheng
Luo, Yonglan
Sun, Xuping
Wei, Peipei
Li, Tingshuai
Wang, Zhiming
Ding, Peng
Gao, Shuyan
Liu, Qian
Shi, Xifeng
Zhao, Runbo
Asiri, Abdullah M.
Lu, Siyu
Author_xml – sequence: 1
  givenname: Runbo
  surname: Zhao
  fullname: Zhao, Runbo
  organization: University of Electronic Science and Technology of China
– sequence: 2
  givenname: Peng
  surname: Ding
  fullname: Ding, Peng
  organization: University of Electronic Science and Technology of China
– sequence: 3
  givenname: Peipei
  surname: Wei
  fullname: Wei, Peipei
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: Longcheng
  surname: Zhang
  fullname: Zhang, Longcheng
  organization: University of Electronic Science and Technology of China
– sequence: 5
  givenname: Qian
  surname: Liu
  fullname: Liu, Qian
  organization: University of Electronic Science and Technology of China
– sequence: 6
  givenname: Yonglan
  surname: Luo
  fullname: Luo, Yonglan
  organization: University of Electronic Science and Technology of China
– sequence: 7
  givenname: Tingshuai
  surname: Li
  fullname: Li, Tingshuai
  organization: University of Electronic Science and Technology of China
– sequence: 8
  givenname: Siyu
  surname: Lu
  fullname: Lu, Siyu
  organization: Zhengzhou University
– sequence: 9
  givenname: Xifeng
  surname: Shi
  fullname: Shi, Xifeng
  organization: Shandong Normal University
– sequence: 10
  givenname: Shuyan
  surname: Gao
  fullname: Gao, Shuyan
  organization: Henan Normal University
– sequence: 11
  givenname: Abdullah M.
  surname: Asiri
  fullname: Asiri, Abdullah M.
  organization: King Abdulaziz University
– sequence: 12
  givenname: Zhiming
  surname: Wang
  fullname: Wang, Zhiming
  email: zhmwang@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 13
  givenname: Xuping
  orcidid: 0000-0002-5326-3838
  surname: Sun
  fullname: Sun, Xuping
  email: xpsun@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
BookMark eNo9kM1LAzEQxYNUsK1ePQc8b50k-5VjWVsVWiqi4C1kd5Oask1qkiL97-1S2dObYd6bB78JGllnFUL3BGYEgD7KVu9nFCgAT1N-hcYkJ3nCgJajYSZfN2gSwg6AFAVLx2j1rhplI37zbutVCNhYvOhUE71rZJTdKZoGr1X8llZG4yx2GlcbimXE831t-mjlbGv6W7hF11p2Qd396xR9Lhcf1Uuy2jy_VvNVsmUs54lOM1o2dV3Stq3Lmrc8K2oli5YpSTOZMU1AFVKDAq0p5_qsUBDeKJrmlKVsih4ufw_e_RxViGLnjt6eKwXNgNOM87w8u_jF9Ws6dRIHb_bSnwQB0eMSPS4x4BLzp-V62NgfnINiqQ
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202009449
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202009449
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51706114
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-g3369-f4528cbb82ddb8b9d957bea7d3ea25a53f10e7af0e0ff299fe0f0719ce2462343
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:09:15 EDT 2025
Wed Jan 22 16:29:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3369-f4528cbb82ddb8b9d957bea7d3ea25a53f10e7af0e0ff299fe0f0719ce2462343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5326-3838
PQID 2509259968
PQPubID 2045204
PageCount 35
ParticipantIDs proquest_journals_2509259968
wiley_primary_10_1002_adfm_202009449_ADFM202009449
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2014; 139
2013; 4
2019; 11
2019; 10
2019; 13
1995; 34
2019; 12
2006; 36
2019; 16
2020; 14
2020; 13
2020; 12
2020; 11
2020; 10
2012; 14
2014; 136
2016; 260
2018; 9
2018; 8
2018; 5
2012; 134
2018; 4
2015; 137
2005; 100
2018; 1
2013; 52
2013; 117
2014; 16
2018; 30
1985; 11
2010; 3
2017; 288
2019; 7
2019; 9
2019; 4
2014; 716
1990; 35
2011; 2
2019; 6
2019; 31
2020; 142
1989; 136
2015; 51
2019; 1
2015; 244
2015; 54
2016; 10
2006; 594
2002; 533
1993
2016; 16
2018; 20
2014; 312
2017; 139
2016; 6
2016; 7
2016; 2
2015; 115
2020; 272
2013; 215
2015; 112
1991; 64
2019; 48
2020; 270
2017; 56
2018; 11
2018; 10
2016; 8
2016; 9
2011; 660
2018; 14
2017; 5
2010; 56
1989; 85
2017; 7
2018; 122
2017; 8
2017; 1
2017; 4
2000; 48
2019; 55
2017; 46
2020; 59
2020; 367
2017; 114
2013; 160
2003; 199
2017; 9
2009; 48
2020; 8
2018; 130
2020; 7
2017; 31
2020; 5
2014; 5
2020; 4
2014; 4
2020; 3
2014; 2
2011; 605
2015; 44
1997; 101
2002; 106
2019; 119
1994; 39
2017; 121
2012; 63
2014; 53
2015; 2
1803; 93
2015; 6
2015; 17
2015; 5
2015; 3
2020; 581
2019; 306
2017; 29
2003
2015; 9
2015; 7
2016; 120
2016; 55
1990; 63
2012; 3
2014; 508
2017; 17
2016; 537
2020; 71
2017; 11
2017; 10
2017; 13
2020; 117
2017; 19
2016; 138
2018; 51
2016; 654
2005; 50
2012; 5
2009; 38
2014; 345
2018; 57
References_xml – volume: 260
  start-page: 8
  year: 2016
  publication-title: Catal. Today
– volume: 5
  start-page: 922
  year: 2017
  publication-title: Energy Technol.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 139
  start-page: 4486
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 465
  year: 2015
  publication-title: ACS Catal.
– volume: 5
  start-page: 1044
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 137
  start-page: 9808
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 103
  year: 2018
  publication-title: Nat. Catal.
– volume: 12
  start-page: 1483
  year: 2020
  publication-title: ChemCatChem
– volume: 9
  start-page: 925
  year: 2018
  publication-title: Nat. Commun.
– volume: 117
  start-page: 9187
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 367
  start-page: 661
  year: 2020
  publication-title: Science
– volume: 36
  start-page: 161
  year: 2006
  publication-title: J. Appl. Electrochem.
– volume: 654
  start-page: 56
  year: 2016
  publication-title: Surf. Sci.
– volume: 4
  start-page: 2268
  year: 2014
  publication-title: ACS Catal.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 2099
  year: 2020
  publication-title: ACS Nano
– volume: 39
  start-page: 1891
  year: 1994
  publication-title: Electrochim. Acta
– volume: 71
  year: 2020
  publication-title: Nano Energy
– volume: 312
  start-page: 108
  year: 2014
  publication-title: J. Catal.
– volume: 122
  start-page: 3719
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 1
  year: 2019
  publication-title: EnergyChem
– volume: 272
  year: 2020
  publication-title: Appl. Catal., B
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 3742
  year: 2014
  publication-title: ACS Catal.
– volume: 4
  start-page: 1402
  year: 2017
  publication-title: ChemElectroChem
– volume: 9
  start-page: 5064
  year: 2018
  publication-title: Chem. Sci.
– volume: 3
  start-page: 1311
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 4479
  year: 2015
  publication-title: ACS Catal.
– volume: 9
  start-page: 3117
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  start-page: 6829
  year: 2015
  publication-title: Chem. Sci.
– volume: 11
  start-page: 1807
  year: 2020
  publication-title: Chem. Sci.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 10
  start-page: 3340
  year: 2019
  publication-title: Nat. Commun.
– volume: 8
  start-page: 944
  year: 2017
  publication-title: Nat. Commun.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 411
  year: 2020
  publication-title: Nat. Catal.
– volume: 6
  start-page: 2136
  year: 2016
  publication-title: ACS Catal.
– volume: 55
  start-page: 5789
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 970
  year: 2020
  publication-title: Mater. Horiz.
– volume: 4
  start-page: 1104
  year: 2020
  publication-title: Joule
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 8
  start-page: 3317
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 115
  start-page: 2818
  year: 2015
  publication-title: Chem. Rev.
– volume: 508
  start-page: 504
  year: 2014
  publication-title: Nature
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 7050
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 130
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 44
  start-page: 5981
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 134
  start-page: 7231
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 202
  year: 2016
  publication-title: ACS Catal.
– volume: 244
  start-page: 58
  year: 2015
  publication-title: Catal. Today
– volume: 20
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 46
  year: 2017
  publication-title: Dalton Trans.
– volume: 9
  start-page: 9411
  year: 2019
  publication-title: ACS Catal.
– volume: 139
  start-page: 9739
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 4642
  year: 2017
  publication-title: ChemSusChem
– volume: 9
  start-page: 9721
  year: 2019
  publication-title: ACS Catal.
– volume: 139
  start-page: 5652
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 7610
  year: 2019
  publication-title: Chem. Rev.
– volume: 270
  year: 2020
  publication-title: Appl. Catal., B
– volume: 10
  start-page: 2806
  year: 2010
  publication-title: Nano Lett.
– volume: 101
  start-page: 7075
  year: 1997
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 1663
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 1695
  year: 1985
  publication-title: Chem. Lett.
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 106
  start-page: 15
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 4073
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 120
  start-page: 1778
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 4559
  year: 2016
  publication-title: ACS Nano
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 52
  start-page: 2459
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 134
  start-page: 9864
  year: 2012
  publication-title: J. Am. Chem. Soc.
– year: 2003
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 4434
  year: 2014
  publication-title: ACS Catal.
– volume: 56
  start-page: 381
  year: 2010
  publication-title: Electrochim. Acta
– volume: 35
  start-page: 771
  year: 1990
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 3698
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  start-page: 7276
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7769
  year: 2016
  publication-title: ACS Catal.
– volume: 19
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 594
  start-page: 1
  year: 2006
  publication-title: J. Electroanal. Chem.
– volume: 7
  start-page: 7675
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 136
  start-page: 6978
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 63
  start-page: 2459
  year: 1990
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 139
  start-page: 9359
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 354
  year: 2015
  publication-title: ChemElectroChem
– volume: 660
  start-page: 254
  year: 2011
  publication-title: J. Electroanal. Chem.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 39
  start-page: 1833
  year: 1994
  publication-title: Electrochim. Acta
– volume: 288
  start-page: 74
  year: 2017
  publication-title: Catal. Today
– volume: 6
  start-page: 4428
  year: 2016
  publication-title: ACS Catal.
– volume: 533
  start-page: 135
  year: 2002
  publication-title: J. Electroanal. Chem.
– volume: 139
  start-page: 137
  year: 2014
  publication-title: Electrochim. Acta
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 10
  start-page: 4854
  year: 2020
  publication-title: ACS Catal.
– volume: 6
  start-page: 219
  year: 2016
  publication-title: ACS Catal.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 142
  start-page: 3525
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 8076
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 605
  start-page: 1354
  year: 2011
  publication-title: Surf. Sci.
– volume: 4
  start-page: 2410
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 8207
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 345
  start-page: 546
  year: 2014
  publication-title: Science
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 1520
  year: 2017
  publication-title: ACS Catal.
– volume: 537
  start-page: 382
  year: 2016
  publication-title: Nature
– volume: 63
  start-page: 541
  year: 2012
  publication-title: Annu. Rev. Phys. Chem.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 57
  start-page: 2943
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 134
  start-page: 1986
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 85
  start-page: 2309
  year: 1989
  publication-title: J. Chem. Soc., Faraday Trans. 1
– volume: 8
  start-page: 7113
  year: 2018
  publication-title: ACS Catal.
– volume: 4
  start-page: 388
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 6451
  year: 2017
  publication-title: ACS Nano
– volume: 716
  start-page: 53
  year: 2014
  publication-title: J. Electroanal. Chem.
– volume: 139
  start-page: 47
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 374
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 48
  start-page: 60
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 539
  year: 2019
  publication-title: ChemSusChem
– volume: 4
  start-page: 3682
  year: 2014
  publication-title: ACS Catal.
– volume: 6
  start-page: 2003
  year: 2016
  publication-title: ACS Catal.
– volume: 59
  start-page: 8262
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 7445
  year: 2018
  publication-title: ACS Catal.
– volume: 4
  start-page: 2819
  year: 2013
  publication-title: Nat. Commun.
– volume: 31
  start-page: 270
  year: 2017
  publication-title: Nano Energy
– volume: 112
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 1206
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 4640
  year: 2020
  publication-title: ACS Catal.
– volume: 64
  start-page: 123
  year: 1991
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 9
  start-page: 5035
  year: 2019
  publication-title: ACS Catal.
– volume: 7
  start-page: 6302
  year: 2017
  publication-title: ACS Catal.
– volume: 114
  start-page: 1795
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 1312
  year: 2017
  publication-title: Nano Lett.
– volume: 16
  year: 2019
  publication-title: Small
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 1902
  year: 2011
  publication-title: Chem. Sci.
– volume: 34
  start-page: 2207
  year: 1995
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 2238
  year: 2018
  publication-title: Inorg. Chem. Front.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 114
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 2
  start-page: 169
  year: 2016
  publication-title: ACS Cent. Sci.
– volume: 9
  start-page: 606
  year: 2016
  publication-title: ChemSusChem
– volume: 11
  start-page: 2904
  year: 2018
  publication-title: ChemSusChem
– volume: 4
  start-page: 1809
  year: 2018
  publication-title: Chem
– volume: 5
  start-page: 4948
  year: 2014
  publication-title: Nat. Commun.
– volume: 136
  start-page: 1686
  year: 1989
  publication-title: J. Electrochem. Soc.
– volume: 138
  start-page: 483
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 4023
  year: 2017
  publication-title: Green Chem.
– volume: 8
  start-page: 952
  year: 2016
  publication-title: ChemCatChem
– volume: 44
  start-page: 7540
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 89
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 526
  year: 2020
  publication-title: Nat. Catal.
– volume: 48
  start-page: 3261
  year: 2000
  publication-title: Acta Mater.
– volume: 10
  start-page: 2026
  year: 2020
  publication-title: ACS Catal.
– volume: 8
  start-page: 8357
  year: 2018
  publication-title: ACS Catal.
– volume: 11
  start-page: 9904
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 4720
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 306
  start-page: 28
  year: 2019
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 794
  year: 2017
  publication-title: Joule
– volume: 51
  start-page: 910
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 2
  start-page: 902
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1511
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 76
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 55
  start-page: 8796
  year: 2019
  publication-title: Chem. Commun.
– volume: 59
  start-page: 758
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 1455
  year: 2018
  publication-title: ChemSusChem
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 5310
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 251
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 2326
  year: 2016
  publication-title: ChemSusChem
– volume: 9
  start-page: 5364
  year: 2015
  publication-title: ACS Nano
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 51
  start-page: 1345
  year: 2015
  publication-title: Chem. Commun.
– volume: 10
  start-page: 892
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2814
  year: 2015
  publication-title: ACS Catal.
– volume: 17
  start-page: 824
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 1442
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 93
  start-page: 29
  year: 1803
  publication-title: Philos. Trans. R. Soc. London
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 137
  start-page: 4701
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 199
  start-page: 39
  year: 2003
  publication-title: J. Mol. Catal. A: Chem.
– volume: 50
  start-page: 5354
  year: 2005
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 1749
  year: 2017
  publication-title: ACS Catal.
– volume: 215
  start-page: 201
  year: 2013
  publication-title: Catal. Today
– volume: 160
  start-page: F69
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 117
  start-page: 1330
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 100
  start-page: 111
  year: 2005
  publication-title: Catal. Lett.
– volume: 10
  start-page: 5681
  year: 2020
  publication-title: ACS Catal.
– volume: 9
  start-page: 2354
  year: 2016
  publication-title: Energy Environ. Sci.
– start-page: 145
  year: 1993
– volume: 581
  start-page: 406
  year: 2020
  publication-title: Nature
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 9
  start-page: 1972
  year: 2016
  publication-title: ChemSusChem
– volume: 6
  start-page: 1075
  year: 2016
  publication-title: ACS Catal.
– volume: 16
  start-page: 466
  year: 2016
  publication-title: Nano Lett.
– volume: 11
  start-page: 222
  year: 2019
  publication-title: Nat. Chem.
SSID ssj0017734
Score 2.6472745
SecondaryResourceType review_article
Snippet Electrochemical CO2 reduction under ambient conditions is a promising pathway for conversion of CO2 into value‐added products. In recent years, great...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms ambient conditions
Carbon dioxide
Catalysts
Catalytic activity
CH4 synthesis
Chemical reduction
CO2 reduction reaction
Crystallography
Electrocatalysis
Electrocatalysts
Electrolytes
Materials science
Methanation
Methane
Morphology
Selectivity
Title Recent Progress in Electrocatalytic Methanation of CO2 at Ambient Conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202009449
https://www.proquest.com/docview/2509259968
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVQWWDgG1EolQfWtInjxPYY9UMINYCASt0iO7ERQqSIpgP8enxOW1pGmKIMlpLzne_p_O4dQldGMqak4Z5vBPVsJOYe177xmEXjISRU5cYBpbfx9ZjeTKLJWhd_rQ-xKrhBZLjzGgJcqln3RzRUFgY6yaG6Tyl08AFhC1DRw0o_KmCsvlaOAyB4BZOlaqNPupvLN_DlOkp1aWa4j-TyA2t2yWtnXqlO_vVLu_E_f3CA9hYYFCe10xyiLV0eod01ZcJjNLJw0qYjfA_0LXsY4pcSD-qJOa7g82mX4lRD3d1tLZ4a3LsjWFY4eVPQY4l7U7gNB68-QePh4Kl37S0GL3jPYRgLz9CI8FwpTopCcSUKETGlJStCLUkko9AEvmbS-HZXjc1nxj4tVBG5JtTCKRqeokY5LfUZwiGPSEGJLzjLaW4xso5IzHxiFJO5YLqJWkvDZ4vomWUWlgkCujG8iYizYPZea29ktcoyycB22cp2WdIfpqu3878sukA7BOgqjl7WQo3qY64vLd6oVBttJ_109Nh2vvUNWu7Ong
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgDMDAN6JQwANr2tRx4nisSqsCTUGolbpFdmIjhEgRpAP8enxOE1pGmKIMJznnO9_L-e4dQldaMCaFDh1Xc-oYT0ycULnaYQaNexBQpR0HFI2CwYTeTv2ymhB6YQp-iCrhBp5hz2twcEhIt35YQ0WqoZUc0vuU8nW0AWO97V_VY8Ug1WasuFgO2lDi1Z6WvI0uaa3KryDMZZxqA01_F8lyiUV9yUtznstm8vWLvfFf37CHdhYwFHcKu9lHayo7QNtL5ISHaGgQpYlI-AEquMx5iJ8z3CuG5ticz6cRxZGC1LvdXTzTuHtPsMhx51VCmyXuzuBCHAz7CE36vXF34CxmLzhPnhdwR1OfhImUIUlTGUqecp9JJVjqKUF84Xu67SomtGs2VpuQps3ToBWeKEINoqLeMapls0ydIOyFPkkpcXnIEpoYmKx8EjCXaMlEwpmqo0ap-XjhQB-xQWacAHVMWEfEqjB-K-g34oJomcSgu7jSXdy57kfV2-lfhC7R5mAcDePhzejuDG0RqF6x1WYNVMvf5-rcwI9cXlgD-wbUrdEl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UE6MHfxtR1B68DkbXre2RAAsqIDGScGvarTXGOIiOg_71th1M8KinpoeXbK_v9X15fe97ANxoQYgUmnq-Ztgznph4VPnaIwaNBzagSjcOaDCMemN8NwknK138BT9EmXCznuHua-vgs1Q3fkhDRaptJ7nN7mPMNsEWjnxq7brzWBJINQkp3pWjpq3wak6WtI0-aqzLrwHMVZjq4ky8D8TyC4vyktf6PJf15OsXeeN_fuEA7C1AKGwVVnMINlR2BHZXqAmPQd_gSROP4MjWb5nbEL5ksFuMzHEZn08jCgfKJt7d2cKphu0HBEUOW2_SNlnC9tQ-h1uzPgHjuPvU7nmLyQvecxBEzNM4RDSRkqI0lVSylIVEKkHSQAkUijDQTV8RoX1zrNoENG1Wg1VYohA2eAoHp6CSTTN1BmBAQ5Ri5DNKEpwYkKxCFBEfaUlEwoiqgtpS8XzhPh_c4DKGLHEMrQLkNMhnBfkGL2iWEbe646XueKsTD8rd-V-ErsH2qBPz_u3w_gLsIFu64krNaqCSv8_VpcEeubxy5vUNmf7P3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Electrocatalytic+Methanation+of+CO2+at+Ambient+Conditions&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Runbo&rft.au=Ding%2C+Peng&rft.au=Wei%2C+Peipei&rft.au=Zhang%2C+Longcheng&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=13&rft_id=info:doi/10.1002%2Fadfm.202009449&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon