Recent Progress in Electrocatalytic Methanation of CO2 at Ambient Conditions
Electrochemical CO2 reduction under ambient conditions is a promising pathway for conversion of CO2 into value‐added products. In recent years, great achievements have been obtained in the understanding the mechanism and development of efficient and selective catalysts for electrochemical CO2 reduct...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 13 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical CO2 reduction under ambient conditions is a promising pathway for conversion of CO2 into value‐added products. In recent years, great achievements have been obtained in the understanding the mechanism and development of efficient and selective catalysts for electrochemical CO2 reduction. However, the electrochemical CO2 reduction is still far from practical applications. Based on the gap between current research and practical applications, the state‐of‐the‐art of the theoretical and experiment investigations on different electrocatalysts for the electrocatalysis of CO2 to CH4 is systematically and constructively reviewed. First of all, strategies for enhancing the catalytic activity and selectivity of electrochemical reduction of CO2 to CH4 are also examined in this review. The modulated strategies mainly involve the following aspects: i) tuning the applied potentials, ii) morphology engineering, iii) crystallographic facets engineering, iv) defect engineering, v) alloying. Furthermore, the influence of the electrolyte on the activity and selectivity for electrocatalysis of CO2 to CH4 is also reviewed. This review will build a systematic understanding in the electrochemical CO2 reduction to CH4 and may help to provide new insight for designing and optimizing the catalysts and/or electrolyte.
This review summarizes the recent progress in the state‐of‐the‐art of theoretical and experiment investigations on different electrocatalysts for the catalysis of CO2 to CH4. The strategies and influencing factors of the electrocatalysis of CO2 to CH4 are also proposed. |
---|---|
AbstractList | Electrochemical CO2 reduction under ambient conditions is a promising pathway for conversion of CO2 into value‐added products. In recent years, great achievements have been obtained in the understanding the mechanism and development of efficient and selective catalysts for electrochemical CO2 reduction. However, the electrochemical CO2 reduction is still far from practical applications. Based on the gap between current research and practical applications, the state‐of‐the‐art of the theoretical and experiment investigations on different electrocatalysts for the electrocatalysis of CO2 to CH4 is systematically and constructively reviewed. First of all, strategies for enhancing the catalytic activity and selectivity of electrochemical reduction of CO2 to CH4 are also examined in this review. The modulated strategies mainly involve the following aspects: i) tuning the applied potentials, ii) morphology engineering, iii) crystallographic facets engineering, iv) defect engineering, v) alloying. Furthermore, the influence of the electrolyte on the activity and selectivity for electrocatalysis of CO2 to CH4 is also reviewed. This review will build a systematic understanding in the electrochemical CO2 reduction to CH4 and may help to provide new insight for designing and optimizing the catalysts and/or electrolyte.
This review summarizes the recent progress in the state‐of‐the‐art of theoretical and experiment investigations on different electrocatalysts for the catalysis of CO2 to CH4. The strategies and influencing factors of the electrocatalysis of CO2 to CH4 are also proposed. Electrochemical CO2 reduction under ambient conditions is a promising pathway for conversion of CO2 into value‐added products. In recent years, great achievements have been obtained in the understanding the mechanism and development of efficient and selective catalysts for electrochemical CO2 reduction. However, the electrochemical CO2 reduction is still far from practical applications. Based on the gap between current research and practical applications, the state‐of‐the‐art of the theoretical and experiment investigations on different electrocatalysts for the electrocatalysis of CO2 to CH4 is systematically and constructively reviewed. First of all, strategies for enhancing the catalytic activity and selectivity of electrochemical reduction of CO2 to CH4 are also examined in this review. The modulated strategies mainly involve the following aspects: i) tuning the applied potentials, ii) morphology engineering, iii) crystallographic facets engineering, iv) defect engineering, v) alloying. Furthermore, the influence of the electrolyte on the activity and selectivity for electrocatalysis of CO2 to CH4 is also reviewed. This review will build a systematic understanding in the electrochemical CO2 reduction to CH4 and may help to provide new insight for designing and optimizing the catalysts and/or electrolyte. |
Author | Zhang, Longcheng Luo, Yonglan Sun, Xuping Wei, Peipei Li, Tingshuai Wang, Zhiming Ding, Peng Gao, Shuyan Liu, Qian Shi, Xifeng Zhao, Runbo Asiri, Abdullah M. Lu, Siyu |
Author_xml | – sequence: 1 givenname: Runbo surname: Zhao fullname: Zhao, Runbo organization: University of Electronic Science and Technology of China – sequence: 2 givenname: Peng surname: Ding fullname: Ding, Peng organization: University of Electronic Science and Technology of China – sequence: 3 givenname: Peipei surname: Wei fullname: Wei, Peipei organization: University of Electronic Science and Technology of China – sequence: 4 givenname: Longcheng surname: Zhang fullname: Zhang, Longcheng organization: University of Electronic Science and Technology of China – sequence: 5 givenname: Qian surname: Liu fullname: Liu, Qian organization: University of Electronic Science and Technology of China – sequence: 6 givenname: Yonglan surname: Luo fullname: Luo, Yonglan organization: University of Electronic Science and Technology of China – sequence: 7 givenname: Tingshuai surname: Li fullname: Li, Tingshuai organization: University of Electronic Science and Technology of China – sequence: 8 givenname: Siyu surname: Lu fullname: Lu, Siyu organization: Zhengzhou University – sequence: 9 givenname: Xifeng surname: Shi fullname: Shi, Xifeng organization: Shandong Normal University – sequence: 10 givenname: Shuyan surname: Gao fullname: Gao, Shuyan organization: Henan Normal University – sequence: 11 givenname: Abdullah M. surname: Asiri fullname: Asiri, Abdullah M. organization: King Abdulaziz University – sequence: 12 givenname: Zhiming surname: Wang fullname: Wang, Zhiming email: zhmwang@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 13 givenname: Xuping orcidid: 0000-0002-5326-3838 surname: Sun fullname: Sun, Xuping email: xpsun@uestc.edu.cn organization: University of Electronic Science and Technology of China |
BookMark | eNo9kM1LAzEQxYNUsK1ePQc8b50k-5VjWVsVWiqi4C1kd5Oask1qkiL97-1S2dObYd6bB78JGllnFUL3BGYEgD7KVu9nFCgAT1N-hcYkJ3nCgJajYSZfN2gSwg6AFAVLx2j1rhplI37zbutVCNhYvOhUE71rZJTdKZoGr1X8llZG4yx2GlcbimXE831t-mjlbGv6W7hF11p2Qd396xR9Lhcf1Uuy2jy_VvNVsmUs54lOM1o2dV3Stq3Lmrc8K2oli5YpSTOZMU1AFVKDAq0p5_qsUBDeKJrmlKVsih4ufw_e_RxViGLnjt6eKwXNgNOM87w8u_jF9Ws6dRIHb_bSnwQB0eMSPS4x4BLzp-V62NgfnINiqQ |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202009449 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM202009449 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51706114 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-g3369-f4528cbb82ddb8b9d957bea7d3ea25a53f10e7af0e0ff299fe0f0719ce2462343 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:09:15 EDT 2025 Wed Jan 22 16:29:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3369-f4528cbb82ddb8b9d957bea7d3ea25a53f10e7af0e0ff299fe0f0719ce2462343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5326-3838 |
PQID | 2509259968 |
PQPubID | 2045204 |
PageCount | 35 |
ParticipantIDs | proquest_journals_2509259968 wiley_primary_10_1002_adfm_202009449_ADFM202009449 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2014; 139 2013; 4 2019; 11 2019; 10 2019; 13 1995; 34 2019; 12 2006; 36 2019; 16 2020; 14 2020; 13 2020; 12 2020; 11 2020; 10 2012; 14 2014; 136 2016; 260 2018; 9 2018; 8 2018; 5 2012; 134 2018; 4 2015; 137 2005; 100 2018; 1 2013; 52 2013; 117 2014; 16 2018; 30 1985; 11 2010; 3 2017; 288 2019; 7 2019; 9 2019; 4 2014; 716 1990; 35 2011; 2 2019; 6 2019; 31 2020; 142 1989; 136 2015; 51 2019; 1 2015; 244 2015; 54 2016; 10 2006; 594 2002; 533 1993 2016; 16 2018; 20 2014; 312 2017; 139 2016; 6 2016; 7 2016; 2 2015; 115 2020; 272 2013; 215 2015; 112 1991; 64 2019; 48 2020; 270 2017; 56 2018; 11 2018; 10 2016; 8 2016; 9 2011; 660 2018; 14 2017; 5 2010; 56 1989; 85 2017; 7 2018; 122 2017; 8 2017; 1 2017; 4 2000; 48 2019; 55 2017; 46 2020; 59 2020; 367 2017; 114 2013; 160 2003; 199 2017; 9 2009; 48 2020; 8 2018; 130 2020; 7 2017; 31 2020; 5 2014; 5 2020; 4 2014; 4 2020; 3 2014; 2 2011; 605 2015; 44 1997; 101 2002; 106 2019; 119 1994; 39 2017; 121 2012; 63 2014; 53 2015; 2 1803; 93 2015; 6 2015; 17 2015; 5 2015; 3 2020; 581 2019; 306 2017; 29 2003 2015; 9 2015; 7 2016; 120 2016; 55 1990; 63 2012; 3 2014; 508 2017; 17 2016; 537 2020; 71 2017; 11 2017; 10 2017; 13 2020; 117 2017; 19 2016; 138 2018; 51 2016; 654 2005; 50 2012; 5 2009; 38 2014; 345 2018; 57 |
References_xml | – volume: 260 start-page: 8 year: 2016 publication-title: Catal. Today – volume: 5 start-page: 922 year: 2017 publication-title: Energy Technol. – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 139 start-page: 4486 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 465 year: 2015 publication-title: ACS Catal. – volume: 5 start-page: 1044 year: 2020 publication-title: ACS Energy Lett. – volume: 137 start-page: 9808 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 103 year: 2018 publication-title: Nat. Catal. – volume: 12 start-page: 1483 year: 2020 publication-title: ChemCatChem – volume: 9 start-page: 925 year: 2018 publication-title: Nat. Commun. – volume: 117 start-page: 9187 year: 2013 publication-title: J. Phys. Chem. C – volume: 367 start-page: 661 year: 2020 publication-title: Science – volume: 36 start-page: 161 year: 2006 publication-title: J. Appl. Electrochem. – volume: 654 start-page: 56 year: 2016 publication-title: Surf. Sci. – volume: 4 start-page: 2268 year: 2014 publication-title: ACS Catal. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 2099 year: 2020 publication-title: ACS Nano – volume: 39 start-page: 1891 year: 1994 publication-title: Electrochim. Acta – volume: 71 year: 2020 publication-title: Nano Energy – volume: 312 start-page: 108 year: 2014 publication-title: J. Catal. – volume: 122 start-page: 3719 year: 2018 publication-title: J. Phys. Chem. C – volume: 1 year: 2019 publication-title: EnergyChem – volume: 272 year: 2020 publication-title: Appl. Catal., B – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 4 start-page: 3742 year: 2014 publication-title: ACS Catal. – volume: 4 start-page: 1402 year: 2017 publication-title: ChemElectroChem – volume: 9 start-page: 5064 year: 2018 publication-title: Chem. Sci. – volume: 3 start-page: 1311 year: 2010 publication-title: Energy Environ. Sci. – volume: 5 start-page: 4479 year: 2015 publication-title: ACS Catal. – volume: 9 start-page: 3117 year: 2018 publication-title: Nat. Commun. – volume: 6 start-page: 6829 year: 2015 publication-title: Chem. Sci. – volume: 11 start-page: 1807 year: 2020 publication-title: Chem. Sci. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 10 start-page: 3340 year: 2019 publication-title: Nat. Commun. – volume: 8 start-page: 944 year: 2017 publication-title: Nat. Commun. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 411 year: 2020 publication-title: Nat. Catal. – volume: 6 start-page: 2136 year: 2016 publication-title: ACS Catal. – volume: 55 start-page: 5789 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 970 year: 2020 publication-title: Mater. Horiz. – volume: 4 start-page: 1104 year: 2020 publication-title: Joule – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 13 year: 2017 publication-title: Small – volume: 8 start-page: 3317 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 115 start-page: 2818 year: 2015 publication-title: Chem. Rev. – volume: 508 start-page: 504 year: 2014 publication-title: Nature – volume: 117 year: 2013 publication-title: J. Phys. Chem. C – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 7050 year: 2012 publication-title: Energy Environ. Sci. – volume: 130 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 44 start-page: 5981 year: 2015 publication-title: Chem. Soc. Rev. – volume: 134 start-page: 7231 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 202 year: 2016 publication-title: ACS Catal. – volume: 244 start-page: 58 year: 2015 publication-title: Catal. Today – volume: 20 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 46 year: 2017 publication-title: Dalton Trans. – volume: 9 start-page: 9411 year: 2019 publication-title: ACS Catal. – volume: 139 start-page: 9739 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4642 year: 2017 publication-title: ChemSusChem – volume: 9 start-page: 9721 year: 2019 publication-title: ACS Catal. – volume: 139 start-page: 5652 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 7610 year: 2019 publication-title: Chem. Rev. – volume: 270 year: 2020 publication-title: Appl. Catal., B – volume: 10 start-page: 2806 year: 2010 publication-title: Nano Lett. – volume: 101 start-page: 7075 year: 1997 publication-title: J. Phys. Chem. B – volume: 4 start-page: 1663 year: 2019 publication-title: ACS Energy Lett. – volume: 11 start-page: 1695 year: 1985 publication-title: Chem. Lett. – volume: 17 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 106 start-page: 15 year: 2002 publication-title: J. Phys. Chem. B – volume: 6 start-page: 4073 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 120 start-page: 1778 year: 2016 publication-title: J. Phys. Chem. C – volume: 10 start-page: 4559 year: 2016 publication-title: ACS Nano – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 52 start-page: 2459 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 134 start-page: 9864 year: 2012 publication-title: J. Am. Chem. Soc. – year: 2003 – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 4434 year: 2014 publication-title: ACS Catal. – volume: 56 start-page: 381 year: 2010 publication-title: Electrochim. Acta – volume: 35 start-page: 771 year: 1990 publication-title: Electrochim. Acta – volume: 53 start-page: 3698 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 142 start-page: 7276 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 7769 year: 2016 publication-title: ACS Catal. – volume: 19 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 594 start-page: 1 year: 2006 publication-title: J. Electroanal. Chem. – volume: 7 start-page: 7675 year: 2019 publication-title: J. Mater. Chem. A – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 136 start-page: 6978 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 63 start-page: 2459 year: 1990 publication-title: Bull. Chem. Soc. Jpn. – volume: 139 start-page: 9359 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 354 year: 2015 publication-title: ChemElectroChem – volume: 660 start-page: 254 year: 2011 publication-title: J. Electroanal. Chem. – volume: 4 year: 2020 publication-title: Small Methods – volume: 39 start-page: 1833 year: 1994 publication-title: Electrochim. Acta – volume: 288 start-page: 74 year: 2017 publication-title: Catal. Today – volume: 6 start-page: 4428 year: 2016 publication-title: ACS Catal. – volume: 533 start-page: 135 year: 2002 publication-title: J. Electroanal. Chem. – volume: 139 start-page: 137 year: 2014 publication-title: Electrochim. Acta – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 10 start-page: 4854 year: 2020 publication-title: ACS Catal. – volume: 6 start-page: 219 year: 2016 publication-title: ACS Catal. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 142 start-page: 3525 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 8076 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 605 start-page: 1354 year: 2011 publication-title: Surf. Sci. – volume: 4 start-page: 2410 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 8207 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 345 start-page: 546 year: 2014 publication-title: Science – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 7 start-page: 1520 year: 2017 publication-title: ACS Catal. – volume: 537 start-page: 382 year: 2016 publication-title: Nature – volume: 63 start-page: 541 year: 2012 publication-title: Annu. Rev. Phys. Chem. – volume: 14 year: 2018 publication-title: Small – volume: 57 start-page: 2943 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 134 start-page: 1986 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 85 start-page: 2309 year: 1989 publication-title: J. Chem. Soc., Faraday Trans. 1 – volume: 8 start-page: 7113 year: 2018 publication-title: ACS Catal. – volume: 4 start-page: 388 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 6451 year: 2017 publication-title: ACS Nano – volume: 716 start-page: 53 year: 2014 publication-title: J. Electroanal. Chem. – volume: 139 start-page: 47 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 374 year: 2020 publication-title: Energy Environ. Sci. – volume: 48 start-page: 60 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 539 year: 2019 publication-title: ChemSusChem – volume: 4 start-page: 3682 year: 2014 publication-title: ACS Catal. – volume: 6 start-page: 2003 year: 2016 publication-title: ACS Catal. – volume: 59 start-page: 8262 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 7445 year: 2018 publication-title: ACS Catal. – volume: 4 start-page: 2819 year: 2013 publication-title: Nat. Commun. – volume: 31 start-page: 270 year: 2017 publication-title: Nano Energy – volume: 112 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 1206 year: 2020 publication-title: ACS Energy Lett. – volume: 10 start-page: 4640 year: 2020 publication-title: ACS Catal. – volume: 64 start-page: 123 year: 1991 publication-title: Bull. Chem. Soc. Jpn. – volume: 9 start-page: 5035 year: 2019 publication-title: ACS Catal. – volume: 7 start-page: 6302 year: 2017 publication-title: ACS Catal. – volume: 114 start-page: 1795 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 1312 year: 2017 publication-title: Nano Lett. – volume: 16 year: 2019 publication-title: Small – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 1902 year: 2011 publication-title: Chem. Sci. – volume: 34 start-page: 2207 year: 1995 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 2238 year: 2018 publication-title: Inorg. Chem. Front. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 114 year: 2017 publication-title: Proc. Natl. Acad. Sci. U S A – volume: 2 start-page: 169 year: 2016 publication-title: ACS Cent. Sci. – volume: 9 start-page: 606 year: 2016 publication-title: ChemSusChem – volume: 11 start-page: 2904 year: 2018 publication-title: ChemSusChem – volume: 4 start-page: 1809 year: 2018 publication-title: Chem – volume: 5 start-page: 4948 year: 2014 publication-title: Nat. Commun. – volume: 136 start-page: 1686 year: 1989 publication-title: J. Electrochem. Soc. – volume: 138 start-page: 483 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 4023 year: 2017 publication-title: Green Chem. – volume: 8 start-page: 952 year: 2016 publication-title: ChemCatChem – volume: 44 start-page: 7540 year: 2015 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 89 year: 2009 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 526 year: 2020 publication-title: Nat. Catal. – volume: 48 start-page: 3261 year: 2000 publication-title: Acta Mater. – volume: 10 start-page: 2026 year: 2020 publication-title: ACS Catal. – volume: 8 start-page: 8357 year: 2018 publication-title: ACS Catal. – volume: 11 start-page: 9904 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 4720 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 306 start-page: 28 year: 2019 publication-title: Electrochim. Acta – volume: 1 start-page: 794 year: 2017 publication-title: Joule – volume: 51 start-page: 910 year: 2018 publication-title: Acc. Chem. Res. – volume: 2 start-page: 902 year: 2014 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1511 year: 2020 publication-title: J. Mater. Chem. A – volume: 14 start-page: 76 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 55 start-page: 8796 year: 2019 publication-title: Chem. Commun. – volume: 59 start-page: 758 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 1455 year: 2018 publication-title: ChemSusChem – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 48 start-page: 5310 year: 2019 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 251 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 2326 year: 2016 publication-title: ChemSusChem – volume: 9 start-page: 5364 year: 2015 publication-title: ACS Nano – volume: 10 year: 2018 publication-title: Nanoscale – volume: 51 start-page: 1345 year: 2015 publication-title: Chem. Commun. – volume: 10 start-page: 892 year: 2019 publication-title: Nat. Commun. – volume: 5 start-page: 2814 year: 2015 publication-title: ACS Catal. – volume: 17 start-page: 824 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 1442 year: 2019 publication-title: Energy Environ. Sci. – volume: 93 start-page: 29 year: 1803 publication-title: Philos. Trans. R. Soc. London – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 137 start-page: 4701 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 199 start-page: 39 year: 2003 publication-title: J. Mol. Catal. A: Chem. – volume: 50 start-page: 5354 year: 2005 publication-title: Electrochim. Acta – volume: 7 start-page: 1749 year: 2017 publication-title: ACS Catal. – volume: 215 start-page: 201 year: 2013 publication-title: Catal. Today – volume: 160 start-page: F69 year: 2013 publication-title: J. Electrochem. Soc. – volume: 117 start-page: 1330 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 100 start-page: 111 year: 2005 publication-title: Catal. Lett. – volume: 10 start-page: 5681 year: 2020 publication-title: ACS Catal. – volume: 9 start-page: 2354 year: 2016 publication-title: Energy Environ. Sci. – start-page: 145 year: 1993 – volume: 581 start-page: 406 year: 2020 publication-title: Nature – volume: 7 year: 2015 publication-title: Nanoscale – volume: 9 start-page: 1972 year: 2016 publication-title: ChemSusChem – volume: 6 start-page: 1075 year: 2016 publication-title: ACS Catal. – volume: 16 start-page: 466 year: 2016 publication-title: Nano Lett. – volume: 11 start-page: 222 year: 2019 publication-title: Nat. Chem. |
SSID | ssj0017734 |
Score | 2.6472745 |
SecondaryResourceType | review_article |
Snippet | Electrochemical CO2 reduction under ambient conditions is a promising pathway for conversion of CO2 into value‐added products. In recent years, great... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | ambient conditions Carbon dioxide Catalysts Catalytic activity CH4 synthesis Chemical reduction CO2 reduction reaction Crystallography Electrocatalysis Electrocatalysts Electrolytes Materials science Methanation Methane Morphology Selectivity |
Title | Recent Progress in Electrocatalytic Methanation of CO2 at Ambient Conditions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202009449 https://www.proquest.com/docview/2509259968 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELVQWWDgG1EolQfWtInjxPYY9UMINYCASt0iO7ERQqSIpgP8enxOW1pGmKIMlpLzne_p_O4dQldGMqak4Z5vBPVsJOYe177xmEXjISRU5cYBpbfx9ZjeTKLJWhd_rQ-xKrhBZLjzGgJcqln3RzRUFgY6yaG6Tyl08AFhC1DRw0o_KmCsvlaOAyB4BZOlaqNPupvLN_DlOkp1aWa4j-TyA2t2yWtnXqlO_vVLu_E_f3CA9hYYFCe10xyiLV0eod01ZcJjNLJw0qYjfA_0LXsY4pcSD-qJOa7g82mX4lRD3d1tLZ4a3LsjWFY4eVPQY4l7U7gNB68-QePh4Kl37S0GL3jPYRgLz9CI8FwpTopCcSUKETGlJStCLUkko9AEvmbS-HZXjc1nxj4tVBG5JtTCKRqeokY5LfUZwiGPSEGJLzjLaW4xso5IzHxiFJO5YLqJWkvDZ4vomWUWlgkCujG8iYizYPZea29ktcoyycB22cp2WdIfpqu3878sukA7BOgqjl7WQo3qY64vLd6oVBttJ_109Nh2vvUNWu7Ong |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgDMDAN6JQwANr2tRx4nisSqsCTUGolbpFdmIjhEgRpAP8enxOE1pGmKIMJznnO9_L-e4dQldaMCaFDh1Xc-oYT0ycULnaYQaNexBQpR0HFI2CwYTeTv2ymhB6YQp-iCrhBp5hz2twcEhIt35YQ0WqoZUc0vuU8nW0AWO97V_VY8Ug1WasuFgO2lDi1Z6WvI0uaa3KryDMZZxqA01_F8lyiUV9yUtznstm8vWLvfFf37CHdhYwFHcKu9lHayo7QNtL5ISHaGgQpYlI-AEquMx5iJ8z3CuG5ticz6cRxZGC1LvdXTzTuHtPsMhx51VCmyXuzuBCHAz7CE36vXF34CxmLzhPnhdwR1OfhImUIUlTGUqecp9JJVjqKUF84Xu67SomtGs2VpuQps3ToBWeKEINoqLeMapls0ydIOyFPkkpcXnIEpoYmKx8EjCXaMlEwpmqo0ap-XjhQB-xQWacAHVMWEfEqjB-K-g34oJomcSgu7jSXdy57kfV2-lfhC7R5mAcDePhzejuDG0RqF6x1WYNVMvf5-rcwI9cXlgD-wbUrdEl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UE6MHfxtR1B68DkbXre2RAAsqIDGScGvarTXGOIiOg_71th1M8KinpoeXbK_v9X15fe97ANxoQYgUmnq-Ztgznph4VPnaIwaNBzagSjcOaDCMemN8NwknK138BT9EmXCznuHua-vgs1Q3fkhDRaptJ7nN7mPMNsEWjnxq7brzWBJINQkp3pWjpq3wak6WtI0-aqzLrwHMVZjq4ky8D8TyC4vyktf6PJf15OsXeeN_fuEA7C1AKGwVVnMINlR2BHZXqAmPQd_gSROP4MjWb5nbEL5ksFuMzHEZn08jCgfKJt7d2cKphu0HBEUOW2_SNlnC9tQ-h1uzPgHjuPvU7nmLyQvecxBEzNM4RDSRkqI0lVSylIVEKkHSQAkUijDQTV8RoX1zrNoENG1Wg1VYohA2eAoHp6CSTTN1BmBAQ5Ri5DNKEpwYkKxCFBEfaUlEwoiqgtpS8XzhPh_c4DKGLHEMrQLkNMhnBfkGL2iWEbe646XueKsTD8rd-V-ErsH2qBPz_u3w_gLsIFu64krNaqCSv8_VpcEeubxy5vUNmf7P3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Electrocatalytic+Methanation+of+CO2+at+Ambient+Conditions&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Runbo&rft.au=Ding%2C+Peng&rft.au=Wei%2C+Peipei&rft.au=Zhang%2C+Longcheng&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=13&rft_id=info:doi/10.1002%2Fadfm.202009449&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |