Modification of Carbon Nanotubes via Birch Reaction for Enhanced HER Catalyst by Constructing Pearl Necklace‐Like NiCo2P2–CNT Composite

Combining transition metal phosphides (TMPs) with carbon nanotubes (CNTs) is a promising and proven approach to enhance their performance in the electrochemical hydrogen evolution reaction (HER), due to the excellent conductivity and stability of CNTs. Generally, the deep oxidation of CNTs to form o...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 51
Main Authors Gao, Saisai, Zhang, Yin, Zhang, Yanjun, Wang, Bin, Yang, Shengchun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 20.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Combining transition metal phosphides (TMPs) with carbon nanotubes (CNTs) is a promising and proven approach to enhance their performance in the electrochemical hydrogen evolution reaction (HER), due to the excellent conductivity and stability of CNTs. Generally, the deep oxidation of CNTs to form oxygen‐containing groups on their surface is indispensable before combining them with TMPs. However, such approaches inevitably introduce a large number of defects to CNTs and apparently decrease their stability and electrical conductivity. Hence, fabricating TMP–CNT composites which does not come at the expense of CNTs' high electrical conductivity is quite desirable. In this work, alkylated CNTs (named as ACNT) functionalized via the Birch reaction are used to prepare the pearl necklace‐like NiCo2P2–ACNT composites for electrocatalysts toward HER in acidic and alkaline conditions, respectively. The X‐ray photoelectron spectroscopy, transmission electron microscope, and Fourier transform infrared spectroscopy characterizations indicate that the ACNTs are well modified with functional groups and keep their structural integrity, thereby maximizing their excellent conductivity. Compared to bare NiCo2P2 and the NiCo2P2–CNT composites prepared with mildly oxidized CNTs and deeply oxidized CNTs, the NiCo2P2–ACNTs show far better HER performance and much faster kinetics. Alkylated carbon nanotubes (ACNTs) are obtained by modifying CNTs via the Birch reaction. The ACNTs preserve integrated tubular structures as well as high conductivities, which leads to enhanced hydrogen evolution reaction activity by constructing a pearl necklace‐like NiCo2P2–ACNT composite.
AbstractList Combining transition metal phosphides (TMPs) with carbon nanotubes (CNTs) is a promising and proven approach to enhance their performance in the electrochemical hydrogen evolution reaction (HER), due to the excellent conductivity and stability of CNTs. Generally, the deep oxidation of CNTs to form oxygen‐containing groups on their surface is indispensable before combining them with TMPs. However, such approaches inevitably introduce a large number of defects to CNTs and apparently decrease their stability and electrical conductivity. Hence, fabricating TMP–CNT composites which does not come at the expense of CNTs' high electrical conductivity is quite desirable. In this work, alkylated CNTs (named as ACNT) functionalized via the Birch reaction are used to prepare the pearl necklace‐like NiCo2P2–ACNT composites for electrocatalysts toward HER in acidic and alkaline conditions, respectively. The X‐ray photoelectron spectroscopy, transmission electron microscope, and Fourier transform infrared spectroscopy characterizations indicate that the ACNTs are well modified with functional groups and keep their structural integrity, thereby maximizing their excellent conductivity. Compared to bare NiCo2P2 and the NiCo2P2–CNT composites prepared with mildly oxidized CNTs and deeply oxidized CNTs, the NiCo2P2–ACNTs show far better HER performance and much faster kinetics. Alkylated carbon nanotubes (ACNTs) are obtained by modifying CNTs via the Birch reaction. The ACNTs preserve integrated tubular structures as well as high conductivities, which leads to enhanced hydrogen evolution reaction activity by constructing a pearl necklace‐like NiCo2P2–ACNT composite.
Combining transition metal phosphides (TMPs) with carbon nanotubes (CNTs) is a promising and proven approach to enhance their performance in the electrochemical hydrogen evolution reaction (HER), due to the excellent conductivity and stability of CNTs. Generally, the deep oxidation of CNTs to form oxygen‐containing groups on their surface is indispensable before combining them with TMPs. However, such approaches inevitably introduce a large number of defects to CNTs and apparently decrease their stability and electrical conductivity. Hence, fabricating TMP–CNT composites which does not come at the expense of CNTs' high electrical conductivity is quite desirable. In this work, alkylated CNTs (named as ACNT) functionalized via the Birch reaction are used to prepare the pearl necklace‐like NiCo2P2–ACNT composites for electrocatalysts toward HER in acidic and alkaline conditions, respectively. The X‐ray photoelectron spectroscopy, transmission electron microscope, and Fourier transform infrared spectroscopy characterizations indicate that the ACNTs are well modified with functional groups and keep their structural integrity, thereby maximizing their excellent conductivity. Compared to bare NiCo2P2 and the NiCo2P2–CNT composites prepared with mildly oxidized CNTs and deeply oxidized CNTs, the NiCo2P2–ACNTs show far better HER performance and much faster kinetics.
Author Yang, Shengchun
Zhang, Yanjun
Gao, Saisai
Zhang, Yin
Wang, Bin
Author_xml – sequence: 1
  givenname: Saisai
  surname: Gao
  fullname: Gao, Saisai
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Yin
  surname: Zhang
  fullname: Zhang, Yin
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Yanjun
  surname: Zhang
  fullname: Zhang, Yanjun
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
  organization: Xi'an Jiaotong University
– sequence: 5
  givenname: Shengchun
  orcidid: 0000-0003-1547-798X
  surname: Yang
  fullname: Yang, Shengchun
  email: ysch1209@mail.xjtu.edu.cn
  organization: Suzhou Academy of Xi'an Jiaotong University
BookMark eNo9kMFPwjAUxhujiYBePTfxDLZr121HXVBMBhLE89J1HRRGi-3QcOPuxcT_kL_EIobT-17e7_te8rXBuTZaAnCDUQ8jFNy5VV33AoRjREkcn4EWZph0WRwk5yeN0SVoO7dAiOCARi3wNTSlqpTgjTIamgqm3BZejbg2zaaQDn4oDh-UFXM4kVz8YZWxsK_nXAtZwkF_4k0Nr7eugcUWpka7xm48qWdwLLmt4UiKZc2F3O--M7WUcKRSE4yD_e4nHU29YbU2TjXyClxUvHby-n92wNtjf5oOutnL03N6n3VnhLC4mwgkoiKpBGWsCJMyqGRCSo4IjWlISRn7a0STkHiOsqgICWOCFpSIMCIYU9IBt8fctTXvG-mafGE2VvuXeYBDH8IQwp5KjtSnquU2X1u14nabY5Qf2s4PbeentvPXYZadNvIL9dd5Rw
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.201804388
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL201804388
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2017M623161
– fundername: World‐Class Universities
– fundername: Characteristic Development Guidance Funds for the Central Universities
– fundername: Fundamental Research Funds of Xi'an Jiaotong University
– fundername: National Natural Science Foundation of China
  funderid: 51802255; 51572215
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-g3368-9c0c7b9fc466b59d2fe93da03484543d8c7b74953c0c467b5366c4b43c5731143
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Sun Jul 13 05:28:11 EDT 2025
Wed Jan 22 16:52:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3368-9c0c7b9fc466b59d2fe93da03484543d8c7b74953c0c467b5366c4b43c5731143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1547-798X
PQID 2158456001
PQPubID 1046358
PageCount 13
ParticipantIDs proquest_journals_2158456001
wiley_primary_10_1002_smll_201804388_SMLL201804388
PublicationCentury 2000
PublicationDate December 20, 2018
PublicationDateYYYYMMDD 2018-12-20
PublicationDate_xml – month: 12
  year: 2018
  text: December 20, 2018
  day: 20
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 42
2009; 47
2017; 8
2013; 23
2002; 11
1999; 285
2004; 4
2017; 356
2014; 136
2018; 6
2014; 4
2014; 2
2018; 1
2015; 44
2010; 110
2014; 16
2010; 396
2006; 440
2014; 8
2014; 50
2014; 126
2014; 53
2015; 15
2011; 257
2015; 14
2015; 6
2011; 2
2015; 3
2015; 127
2005; 43
2017; 29
1999; 103
2017; 252
2015; 8
2016; 16
2015; 7
2011; 133
2016; 6
2014; 149
2015; 25
2014; 508
2015; 27
2003; 107
2016; 3
2017; 13
1996; 272
2013; 135
2008; 46
2015; 119
2016; 138
2003; 302
2016; 28
2016; 26
2017; 226
References_xml – volume: 11
  start-page: 962
  year: 2002
  publication-title: Smart Mater. Struct.
– volume: 5
  start-page: 6994
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1605502
  year: 2017
  publication-title: Adv. Mater.
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 1700068
  year: 2017
  publication-title: Small
– volume: 508
  start-page: 309
  year: 2014
  publication-title: Nature
– volume: 8
  start-page: 3022
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1500454
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 7
  start-page: 28412
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 8411
  year: 2017
  publication-title: Chem. Sci.
– volume: 2
  start-page: 6266
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 11101
  year: 2014
  publication-title: ACS Nano
– volume: 396
  start-page: 1003
  year: 2010
  publication-title: Anal. Bioanal. Chem.
– volume: 1
  start-page: 2421
  year: 2018
  publication-title: ACS Appl. Nano Mater.
– volume: 42
  start-page: 4184
  year: 2017
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 1693
  year: 2014
  publication-title: ACS Catal.
– volume: 135
  start-page: 9267
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 107
  start-page: 712
  year: 2003
  publication-title: J. Phys. Chem. B
– volume: 3
  start-page: 1941
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 7718
  year: 2016
  publication-title: Nano Lett..
– volume: 356
  start-page: 165
  year: 2017
  publication-title: J. Catal.
– volume: 46
  start-page: 833
  year: 2008
  publication-title: Carbon
– volume: 119
  start-page: 27938
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 53
  start-page: 5427
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  start-page: 12120
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 13087
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 7337
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 6710
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 257
  start-page: 2401
  year: 2011
  publication-title: Appl. Surf. Sci.
– volume: 50
  start-page: 11554
  year: 2014
  publication-title: Chem. Commun.
– volume: 285
  start-page: 687
  year: 1999
  publication-title: Science
– volume: 28
  start-page: 143
  year: 2016
  publication-title: Nano Energy
– volume: 3
  start-page: 14942
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 14433
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 46
  start-page: 196
  year: 2008
  publication-title: Carbon
– volume: 6
  start-page: 6146
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 302
  start-page: 1528
  year: 2003
  publication-title: Science
– volume: 126
  start-page: 12802
  year: 2014
  publication-title: Angew. Chem.
– volume: 149
  start-page: 324
  year: 2014
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 1257
  year: 2004
  publication-title: Nano Lett.
– volume: 15
  start-page: 634
  year: 2015
  publication-title: Nano Energy
– volume: 133
  start-page: 7296
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1245
  year: 2015
  publication-title: Nat. Mater.
– volume: 126
  start-page: 9731
  year: 2014
  publication-title: Angew. Chem.
– volume: 43
  start-page: 873
  year: 2005
  publication-title: Carbon
– volume: 3
  start-page: 19706
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 382
  year: 2011
  publication-title: Nat. Commun.
– volume: 4
  start-page: 4065
  year: 2014
  publication-title: ACS Catal.
– volume: 26
  start-page: 4067
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 440
  start-page: 295
  year: 2006
  publication-title: Nature
– volume: 226
  start-page: 69
  year: 2017
  publication-title: Electrochim. Acta
– volume: 103
  start-page: 8116
  year: 1999
  publication-title: J. Phys. Chem. B
– volume: 6
  start-page: 6512
  year: 2015
  publication-title: Nat. Commun.
– volume: 272
  start-page: 523
  year: 1996
  publication-title: Science
– volume: 127
  start-page: 8306
  year: 2015
  publication-title: Angew. Chem.
– volume: 252
  start-page: 101
  year: 2017
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 1427
  year: 2016
  publication-title: Adv. Mater.
– volume: 110
  start-page: 6446
  year: 2010
  publication-title: Chem. Rev.
– volume: 27
  start-page: 3769
  year: 2015
  publication-title: Chem. Mater.
– volume: 47
  start-page: 2970
  year: 2009
  publication-title: Carbon
– volume: 127
  start-page: 6349
  year: 2015
  publication-title: Angew. Chem.
– volume: 6
  start-page: 8069
  year: 2016
  publication-title: ACS Catal.
– volume: 23
  start-page: 5326
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: 7587
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 14686
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 5917
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
SSID ssj0031247
Score 2.380449
Snippet Combining transition metal phosphides (TMPs) with carbon nanotubes (CNTs) is a promising and proven approach to enhance their performance in the...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Alkylation
Birch reaction
Carbon nanotubes
Composite materials
Electrical resistivity
Electrocatalysts
Electrons
Fourier transforms
Functional groups
hydrogen evolution reaction
Hydrogen evolution reactions
Nanotechnology
NiCo2P2 nanoparticles
Oxidation
pearl necklace‐like structure
Phosphides
Photoelectrons
Reaction kinetics
Spectrum analysis
Stability
Structural integrity
Transition metals
Title Modification of Carbon Nanotubes via Birch Reaction for Enhanced HER Catalyst by Constructing Pearl Necklace‐Like NiCo2P2–CNT Composite
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201804388
https://www.proquest.com/docview/2158456001
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQEwx8I8qXPLAGUttJkxGqogq1FSogsUU-xylVS4LagAQTOwsS_5Bfwl3SlsIIS-QosZL4cs_v7PMzY0cWArcmIHFUGEs8hNYBxEAnAVBurCEQmgLFdsdv3qiLW-92bhV_qQ8xG3Ajzyjwmhxcw_jkWzR0fD-kqYNqQHNZtNqXEraIFXVn-lESO69idxXssxwS3pqqNrri5Gf1H_xynqUW3cz5KtPTFyyzSwbHjzkcm5df2o3_-YI1tjLhoPy0_GnW2YJNN9jynDLhJntrZzElERV241nC63oEWEIwzvJHsGP-1Nf8rI9ewru2XBzBkf_yRnpX5BTwZqOLlXKSPMk5PHPaGbTUqk17HIF4NOQdawY0iv_5-t7qDyzv9OuZuBSfrx_1zjUnpKKMMrvFbs4b1_WmM9m3welJ6SN-GtfUIEyM8n3wwlgkNpSxdqUKlKdkHODVGuW14n2I0-BJ3zcKlDReTWJ8JrfZYpqldodxjRbUyktU7KEpZRW0MRikQqIxEkoCWWH7U7tFE-cbR8hi8EHE5CpMFAaIHkrpjqgUaRYRNX00a_roqt1qzc52_1Jpjy1RmRJdhLvPFrFB7QHSlRwOi1_yC8-r5Sc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_CMKBeYAx7Sp7WSTAwfYbrWl2QgtW6m3YDtOWW2bVN0UVE69c0HiSXgVHqFPwkyyu7QckXrgEuXPiTX_Y48_A7x0JvI7whSeinNJh9h5hmygVxij_FybSGhOFAdp2N9V7_aCvSX4OV8L0-JDLAbcWDMae80KzgPS639QQ6eHBzx3sBHxZFY0q6vccadfKGubvt7eJBa_EmKrN-r2vdnGAt6-lCEpuPVtx8SFVWFogjgXhYtlrn2pIhUomUf0tMOFl_QeGRITyDC0yihpg46kBELSd6_Bdd5GnOH6N4cLxCpJ7rLZz4W8pMdQX3OcSF-sX-7vpYj2YlzcOLatO_BrTpK2nmWydlKbNfv1L7TI_4pmd-H2LMzGN61e3IMlV96HWxfAFx_At0GVc51UI5pYFdjVx4bOyN9U9YlxU_w81vh2TF3HoWvXfyCF-NgrPzVlE9jvDalRzaguNZpT5M1PWzjech_J1xwfYOrshCcqzs--J-OJw3TcrcR7cX72o5uOkI0xF825h7B7JdR4BMtlVbrHgJpERqugUHlAsiM3jLaW8nBTaEr2ikiuwOpcULKZfZlmFKjRjzhYXQHRcDw7atFJshaHWmTM6mzB6uzDIEkWV0_-pdELuNEfDZIs2U53nsJNvs91PcJfhWUirntG0Vltnjf6gPDxqoXpNwsWQHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RkKr2UPpUoVB8aI-BYDvZ5NBD2YeWshuhLUjcUtux6WohQWxoRU_ce6nUP8Jf4S_wS5hJdrfQYyUOvUR5x5r3xONvAN5ZHfkNrp0n40zgJraeRhvoOa2lnykdcUWJYj8Ju_vy00FwMAeX07UwNT7E7IcbaUZlr0nBTzK38Qc0dHx8RFMHmxHNZUWTssode_4dk7bxh-0Wcvg95532XrPrTfoKeIdChKjfxjcNHTsjw1AHccadjUWmfCEjGUiRRXi1QXWXeB_aER2IMDRSS2GChsD8QeB7H8CCDP2YmkW0BjPAKoHesmrngk7SI6SvKUykzzfujvdOQHs7LK78WmcRrqYUqctZRutnpV43P_4Ci_yfSPYUnkyCbPax1opnMGfz5_D4FvTiC_jZLzKqkqoEkxWONdWpxj30NkV5pu2YfRsqtjXEobOBrVd_MAzwWTv_WhVNsG57gA-VhOlSMn3OqPVpDcabHzL0NKdHLLFmRNMU1xe_esORZcmwWfBdfn3xu5nsMTLFVDJnX8L-vVDjFcznRW5fA1MoMUoGTmYBio7Y1MoYzMK1U5jquUgswcpUTtKJdRmnGKbhhyhUXQJeMTw9qbFJ0hqFmqfE6nTG6vRzv9ebHS3_y0Nr8HC31Ul728nOG3hEp6moh_srMI-0tasYmpX6baUNDL7ctyzdAOOgPyc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+of+Carbon+Nanotubes+via+Birch+Reaction+for+Enhanced+HER+Catalyst+by+Constructing+Pearl+Necklace%E2%80%90Like+NiCo2P2%E2%80%93CNT+Composite&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Gao%2C+Saisai&rft.au=Zhang%2C+Yin&rft.au=Zhang%2C+Yanjun&rft.au=Wang%2C+Bin&rft.date=2018-12-20&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=51&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201804388&rft.externalDBID=10.1002%252Fsmll.201804388&rft.externalDocID=SMLL201804388
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon