Modification of Carbon Nanotubes via Birch Reaction for Enhanced HER Catalyst by Constructing Pearl Necklace‐Like NiCo2P2–CNT Composite
Combining transition metal phosphides (TMPs) with carbon nanotubes (CNTs) is a promising and proven approach to enhance their performance in the electrochemical hydrogen evolution reaction (HER), due to the excellent conductivity and stability of CNTs. Generally, the deep oxidation of CNTs to form o...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 51 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
20.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Combining transition metal phosphides (TMPs) with carbon nanotubes (CNTs) is a promising and proven approach to enhance their performance in the electrochemical hydrogen evolution reaction (HER), due to the excellent conductivity and stability of CNTs. Generally, the deep oxidation of CNTs to form oxygen‐containing groups on their surface is indispensable before combining them with TMPs. However, such approaches inevitably introduce a large number of defects to CNTs and apparently decrease their stability and electrical conductivity. Hence, fabricating TMP–CNT composites which does not come at the expense of CNTs' high electrical conductivity is quite desirable. In this work, alkylated CNTs (named as ACNT) functionalized via the Birch reaction are used to prepare the pearl necklace‐like NiCo2P2–ACNT composites for electrocatalysts toward HER in acidic and alkaline conditions, respectively. The X‐ray photoelectron spectroscopy, transmission electron microscope, and Fourier transform infrared spectroscopy characterizations indicate that the ACNTs are well modified with functional groups and keep their structural integrity, thereby maximizing their excellent conductivity. Compared to bare NiCo2P2 and the NiCo2P2–CNT composites prepared with mildly oxidized CNTs and deeply oxidized CNTs, the NiCo2P2–ACNTs show far better HER performance and much faster kinetics.
Alkylated carbon nanotubes (ACNTs) are obtained by modifying CNTs via the Birch reaction. The ACNTs preserve integrated tubular structures as well as high conductivities, which leads to enhanced hydrogen evolution reaction activity by constructing a pearl necklace‐like NiCo2P2–ACNT composite. |
---|---|
AbstractList | Combining transition metal phosphides (TMPs) with carbon nanotubes (CNTs) is a promising and proven approach to enhance their performance in the electrochemical hydrogen evolution reaction (HER), due to the excellent conductivity and stability of CNTs. Generally, the deep oxidation of CNTs to form oxygen‐containing groups on their surface is indispensable before combining them with TMPs. However, such approaches inevitably introduce a large number of defects to CNTs and apparently decrease their stability and electrical conductivity. Hence, fabricating TMP–CNT composites which does not come at the expense of CNTs' high electrical conductivity is quite desirable. In this work, alkylated CNTs (named as ACNT) functionalized via the Birch reaction are used to prepare the pearl necklace‐like NiCo2P2–ACNT composites for electrocatalysts toward HER in acidic and alkaline conditions, respectively. The X‐ray photoelectron spectroscopy, transmission electron microscope, and Fourier transform infrared spectroscopy characterizations indicate that the ACNTs are well modified with functional groups and keep their structural integrity, thereby maximizing their excellent conductivity. Compared to bare NiCo2P2 and the NiCo2P2–CNT composites prepared with mildly oxidized CNTs and deeply oxidized CNTs, the NiCo2P2–ACNTs show far better HER performance and much faster kinetics.
Alkylated carbon nanotubes (ACNTs) are obtained by modifying CNTs via the Birch reaction. The ACNTs preserve integrated tubular structures as well as high conductivities, which leads to enhanced hydrogen evolution reaction activity by constructing a pearl necklace‐like NiCo2P2–ACNT composite. Combining transition metal phosphides (TMPs) with carbon nanotubes (CNTs) is a promising and proven approach to enhance their performance in the electrochemical hydrogen evolution reaction (HER), due to the excellent conductivity and stability of CNTs. Generally, the deep oxidation of CNTs to form oxygen‐containing groups on their surface is indispensable before combining them with TMPs. However, such approaches inevitably introduce a large number of defects to CNTs and apparently decrease their stability and electrical conductivity. Hence, fabricating TMP–CNT composites which does not come at the expense of CNTs' high electrical conductivity is quite desirable. In this work, alkylated CNTs (named as ACNT) functionalized via the Birch reaction are used to prepare the pearl necklace‐like NiCo2P2–ACNT composites for electrocatalysts toward HER in acidic and alkaline conditions, respectively. The X‐ray photoelectron spectroscopy, transmission electron microscope, and Fourier transform infrared spectroscopy characterizations indicate that the ACNTs are well modified with functional groups and keep their structural integrity, thereby maximizing their excellent conductivity. Compared to bare NiCo2P2 and the NiCo2P2–CNT composites prepared with mildly oxidized CNTs and deeply oxidized CNTs, the NiCo2P2–ACNTs show far better HER performance and much faster kinetics. |
Author | Yang, Shengchun Zhang, Yanjun Gao, Saisai Zhang, Yin Wang, Bin |
Author_xml | – sequence: 1 givenname: Saisai surname: Gao fullname: Gao, Saisai organization: Xi'an Jiaotong University – sequence: 2 givenname: Yin surname: Zhang fullname: Zhang, Yin organization: Xi'an Jiaotong University – sequence: 3 givenname: Yanjun surname: Zhang fullname: Zhang, Yanjun organization: Xi'an Jiaotong University – sequence: 4 givenname: Bin surname: Wang fullname: Wang, Bin organization: Xi'an Jiaotong University – sequence: 5 givenname: Shengchun orcidid: 0000-0003-1547-798X surname: Yang fullname: Yang, Shengchun email: ysch1209@mail.xjtu.edu.cn organization: Suzhou Academy of Xi'an Jiaotong University |
BookMark | eNo9kMFPwjAUxhujiYBePTfxDLZr121HXVBMBhLE89J1HRRGi-3QcOPuxcT_kL_EIobT-17e7_te8rXBuTZaAnCDUQ8jFNy5VV33AoRjREkcn4EWZph0WRwk5yeN0SVoO7dAiOCARi3wNTSlqpTgjTIamgqm3BZejbg2zaaQDn4oDh-UFXM4kVz8YZWxsK_nXAtZwkF_4k0Nr7eugcUWpka7xm48qWdwLLmt4UiKZc2F3O--M7WUcKRSE4yD_e4nHU29YbU2TjXyClxUvHby-n92wNtjf5oOutnL03N6n3VnhLC4mwgkoiKpBGWsCJMyqGRCSo4IjWlISRn7a0STkHiOsqgICWOCFpSIMCIYU9IBt8fctTXvG-mafGE2VvuXeYBDH8IQwp5KjtSnquU2X1u14nabY5Qf2s4PbeentvPXYZadNvIL9dd5Rw |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/smll.201804388 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL201804388 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2017M623161 – fundername: World‐Class Universities – fundername: Characteristic Development Guidance Funds for the Central Universities – fundername: Fundamental Research Funds of Xi'an Jiaotong University – fundername: National Natural Science Foundation of China funderid: 51802255; 51572215 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-g3368-9c0c7b9fc466b59d2fe93da03484543d8c7b74953c0c467b5366c4b43c5731143 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Sun Jul 13 05:28:11 EDT 2025 Wed Jan 22 16:52:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3368-9c0c7b9fc466b59d2fe93da03484543d8c7b74953c0c467b5366c4b43c5731143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1547-798X |
PQID | 2158456001 |
PQPubID | 1046358 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2158456001 wiley_primary_10_1002_smll_201804388_SMLL201804388 |
PublicationCentury | 2000 |
PublicationDate | December 20, 2018 |
PublicationDateYYYYMMDD | 2018-12-20 |
PublicationDate_xml | – month: 12 year: 2018 text: December 20, 2018 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 42 2009; 47 2017; 8 2013; 23 2002; 11 1999; 285 2004; 4 2017; 356 2014; 136 2018; 6 2014; 4 2014; 2 2018; 1 2015; 44 2010; 110 2014; 16 2010; 396 2006; 440 2014; 8 2014; 50 2014; 126 2014; 53 2015; 15 2011; 257 2015; 14 2015; 6 2011; 2 2015; 3 2015; 127 2005; 43 2017; 29 1999; 103 2017; 252 2015; 8 2016; 16 2015; 7 2011; 133 2016; 6 2014; 149 2015; 25 2014; 508 2015; 27 2003; 107 2016; 3 2017; 13 1996; 272 2013; 135 2008; 46 2015; 119 2016; 138 2003; 302 2016; 28 2016; 26 2017; 226 |
References_xml | – volume: 11 start-page: 962 year: 2002 publication-title: Smart Mater. Struct. – volume: 5 start-page: 6994 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1605502 year: 2017 publication-title: Adv. Mater. – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 1700068 year: 2017 publication-title: Small – volume: 508 start-page: 309 year: 2014 publication-title: Nature – volume: 8 start-page: 3022 year: 2015 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1500454 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 7 start-page: 28412 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 8411 year: 2017 publication-title: Chem. Sci. – volume: 2 start-page: 6266 year: 2014 publication-title: J. Mater. Chem. A – volume: 8 start-page: 11101 year: 2014 publication-title: ACS Nano – volume: 396 start-page: 1003 year: 2010 publication-title: Anal. Bioanal. Chem. – volume: 1 start-page: 2421 year: 2018 publication-title: ACS Appl. Nano Mater. – volume: 42 start-page: 4184 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 1693 year: 2014 publication-title: ACS Catal. – volume: 135 start-page: 9267 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 107 start-page: 712 year: 2003 publication-title: J. Phys. Chem. B – volume: 3 start-page: 1941 year: 2015 publication-title: J. Mater. Chem. A – volume: 16 start-page: 7718 year: 2016 publication-title: Nano Lett.. – volume: 356 start-page: 165 year: 2017 publication-title: J. Catal. – volume: 46 start-page: 833 year: 2008 publication-title: Carbon – volume: 119 start-page: 27938 year: 2015 publication-title: J. Phys. Chem. C – volume: 53 start-page: 5427 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 53 start-page: 12120 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 13087 year: 2015 publication-title: J. Mater. Chem. A – volume: 25 start-page: 7337 year: 2015 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 6710 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 257 start-page: 2401 year: 2011 publication-title: Appl. Surf. Sci. – volume: 50 start-page: 11554 year: 2014 publication-title: Chem. Commun. – volume: 285 start-page: 687 year: 1999 publication-title: Science – volume: 28 start-page: 143 year: 2016 publication-title: Nano Energy – volume: 3 start-page: 14942 year: 2015 publication-title: J. Mater. Chem. A – volume: 53 start-page: 14433 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 46 start-page: 196 year: 2008 publication-title: Carbon – volume: 6 start-page: 6146 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 302 start-page: 1528 year: 2003 publication-title: Science – volume: 126 start-page: 12802 year: 2014 publication-title: Angew. Chem. – volume: 149 start-page: 324 year: 2014 publication-title: Electrochim. Acta – volume: 4 start-page: 1257 year: 2004 publication-title: Nano Lett. – volume: 15 start-page: 634 year: 2015 publication-title: Nano Energy – volume: 133 start-page: 7296 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1245 year: 2015 publication-title: Nat. Mater. – volume: 126 start-page: 9731 year: 2014 publication-title: Angew. Chem. – volume: 43 start-page: 873 year: 2005 publication-title: Carbon – volume: 3 start-page: 19706 year: 2015 publication-title: J. Mater. Chem. A – volume: 2 start-page: 382 year: 2011 publication-title: Nat. Commun. – volume: 4 start-page: 4065 year: 2014 publication-title: ACS Catal. – volume: 26 start-page: 4067 year: 2016 publication-title: Adv. Funct. Mater. – volume: 440 start-page: 295 year: 2006 publication-title: Nature – volume: 226 start-page: 69 year: 2017 publication-title: Electrochim. Acta – volume: 103 start-page: 8116 year: 1999 publication-title: J. Phys. Chem. B – volume: 6 start-page: 6512 year: 2015 publication-title: Nat. Commun. – volume: 272 start-page: 523 year: 1996 publication-title: Science – volume: 127 start-page: 8306 year: 2015 publication-title: Angew. Chem. – volume: 252 start-page: 101 year: 2017 publication-title: Electrochim. Acta – volume: 28 start-page: 1427 year: 2016 publication-title: Adv. Mater. – volume: 110 start-page: 6446 year: 2010 publication-title: Chem. Rev. – volume: 27 start-page: 3769 year: 2015 publication-title: Chem. Mater. – volume: 47 start-page: 2970 year: 2009 publication-title: Carbon – volume: 127 start-page: 6349 year: 2015 publication-title: Angew. Chem. – volume: 6 start-page: 8069 year: 2016 publication-title: ACS Catal. – volume: 23 start-page: 5326 year: 2013 publication-title: Adv. Funct. Mater. – volume: 136 start-page: 7587 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 14686 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 5917 year: 2014 publication-title: Phys. Chem. Chem. Phys. |
SSID | ssj0031247 |
Score | 2.380449 |
Snippet | Combining transition metal phosphides (TMPs) with carbon nanotubes (CNTs) is a promising and proven approach to enhance their performance in the... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Alkylation Birch reaction Carbon nanotubes Composite materials Electrical resistivity Electrocatalysts Electrons Fourier transforms Functional groups hydrogen evolution reaction Hydrogen evolution reactions Nanotechnology NiCo2P2 nanoparticles Oxidation pearl necklace‐like structure Phosphides Photoelectrons Reaction kinetics Spectrum analysis Stability Structural integrity Transition metals |
Title | Modification of Carbon Nanotubes via Birch Reaction for Enhanced HER Catalyst by Constructing Pearl Necklace‐Like NiCo2P2–CNT Composite |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201804388 https://www.proquest.com/docview/2158456001 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQEwx8I8qXPLAGUttJkxGqogq1FSogsUU-xylVS4LagAQTOwsS_5Bfwl3SlsIIS-QosZL4cs_v7PMzY0cWArcmIHFUGEs8hNYBxEAnAVBurCEQmgLFdsdv3qiLW-92bhV_qQ8xG3Ajzyjwmhxcw_jkWzR0fD-kqYNqQHNZtNqXEraIFXVn-lESO69idxXssxwS3pqqNrri5Gf1H_xynqUW3cz5KtPTFyyzSwbHjzkcm5df2o3_-YI1tjLhoPy0_GnW2YJNN9jynDLhJntrZzElERV241nC63oEWEIwzvJHsGP-1Nf8rI9ewru2XBzBkf_yRnpX5BTwZqOLlXKSPMk5PHPaGbTUqk17HIF4NOQdawY0iv_5-t7qDyzv9OuZuBSfrx_1zjUnpKKMMrvFbs4b1_WmM9m3welJ6SN-GtfUIEyM8n3wwlgkNpSxdqUKlKdkHODVGuW14n2I0-BJ3zcKlDReTWJ8JrfZYpqldodxjRbUyktU7KEpZRW0MRikQqIxEkoCWWH7U7tFE-cbR8hi8EHE5CpMFAaIHkrpjqgUaRYRNX00a_roqt1qzc52_1Jpjy1RmRJdhLvPFrFB7QHSlRwOi1_yC8-r5Sc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_CMKBeYAx7Sp7WSTAwfYbrWl2QgtW6m3YDtOWW2bVN0UVE69c0HiSXgVHqFPwkyyu7QckXrgEuXPiTX_Y48_A7x0JvI7whSeinNJh9h5hmygVxij_FybSGhOFAdp2N9V7_aCvSX4OV8L0-JDLAbcWDMae80KzgPS639QQ6eHBzx3sBHxZFY0q6vccadfKGubvt7eJBa_EmKrN-r2vdnGAt6-lCEpuPVtx8SFVWFogjgXhYtlrn2pIhUomUf0tMOFl_QeGRITyDC0yihpg46kBELSd6_Bdd5GnOH6N4cLxCpJ7rLZz4W8pMdQX3OcSF-sX-7vpYj2YlzcOLatO_BrTpK2nmWydlKbNfv1L7TI_4pmd-H2LMzGN61e3IMlV96HWxfAFx_At0GVc51UI5pYFdjVx4bOyN9U9YlxU_w81vh2TF3HoWvXfyCF-NgrPzVlE9jvDalRzaguNZpT5M1PWzjech_J1xwfYOrshCcqzs--J-OJw3TcrcR7cX72o5uOkI0xF825h7B7JdR4BMtlVbrHgJpERqugUHlAsiM3jLaW8nBTaEr2ikiuwOpcULKZfZlmFKjRjzhYXQHRcDw7atFJshaHWmTM6mzB6uzDIEkWV0_-pdELuNEfDZIs2U53nsJNvs91PcJfhWUirntG0Vltnjf6gPDxqoXpNwsWQHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RkKr2UPpUoVB8aI-BYDvZ5NBD2YeWshuhLUjcUtux6WohQWxoRU_ce6nUP8Jf4S_wS5hJdrfQYyUOvUR5x5r3xONvAN5ZHfkNrp0n40zgJraeRhvoOa2lnykdcUWJYj8Ju_vy00FwMAeX07UwNT7E7IcbaUZlr0nBTzK38Qc0dHx8RFMHmxHNZUWTssode_4dk7bxh-0Wcvg95532XrPrTfoKeIdChKjfxjcNHTsjw1AHccadjUWmfCEjGUiRRXi1QXWXeB_aER2IMDRSS2GChsD8QeB7H8CCDP2YmkW0BjPAKoHesmrngk7SI6SvKUykzzfujvdOQHs7LK78WmcRrqYUqctZRutnpV43P_4Ci_yfSPYUnkyCbPax1opnMGfz5_D4FvTiC_jZLzKqkqoEkxWONdWpxj30NkV5pu2YfRsqtjXEobOBrVd_MAzwWTv_WhVNsG57gA-VhOlSMn3OqPVpDcabHzL0NKdHLLFmRNMU1xe_esORZcmwWfBdfn3xu5nsMTLFVDJnX8L-vVDjFcznRW5fA1MoMUoGTmYBio7Y1MoYzMK1U5jquUgswcpUTtKJdRmnGKbhhyhUXQJeMTw9qbFJ0hqFmqfE6nTG6vRzv9ebHS3_y0Nr8HC31Ul728nOG3hEp6moh_srMI-0tasYmpX6baUNDL7ctyzdAOOgPyc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+of+Carbon+Nanotubes+via+Birch+Reaction+for+Enhanced+HER+Catalyst+by+Constructing+Pearl+Necklace%E2%80%90Like+NiCo2P2%E2%80%93CNT+Composite&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Gao%2C+Saisai&rft.au=Zhang%2C+Yin&rft.au=Zhang%2C+Yanjun&rft.au=Wang%2C+Bin&rft.date=2018-12-20&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=51&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201804388&rft.externalDBID=10.1002%252Fsmll.201804388&rft.externalDocID=SMLL201804388 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |