Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO2 Reduction to Formate

Selective CO2 reduction to formic acid or formate is the most technologically and economically viable approach to realize electrochemical CO2 valorization. Main group metal–based (Sn, Bi, In, Pb, and Sb) nanostructured materials hold great promise, but are still confronted with several challenges. H...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 11
Main Authors Han, Na, Ding, Pan, He, Le, Li, Youyong, Li, Yanguang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2020
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.201902338

Cover

Loading…
Abstract Selective CO2 reduction to formic acid or formate is the most technologically and economically viable approach to realize electrochemical CO2 valorization. Main group metal–based (Sn, Bi, In, Pb, and Sb) nanostructured materials hold great promise, but are still confronted with several challenges. Here, the current status, challenges, and future opportunities of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate are reviewed. Firstly, the fundamentals of electrochemical CO2 reduction are presented, including the technoeconomic viability of different products, possible reaction pathways, standard experimental procedure, and performance figures of merit. This is then followed by detailed discussions about different types of main group metal–based electrocatalyst materials, with an emphasis on underlying material design principles for promoting the reaction activity, selectivity, and stability. Subsequently, recent efforts on flow cells and membrane electrode assembly cells are reviewed so as to promote the current density as well as mechanistic studies using in situ characterization techniques. To conclude a short perspective is offered about the future opportunities and directions of this exciting field. Main group metal–based nanostructured materials hold great potential for electrochemical CO2 reduction to formate. Here, their current status and challenges are reviewed with an emphasis on underlying material design principles for promoting the reaction activity, selectivity, and stability. A short perspective is also offered about the future opportunities and directions of this exciting field.
AbstractList Selective CO2 reduction to formic acid or formate is the most technologically and economically viable approach to realize electrochemical CO2 valorization. Main group metal–based (Sn, Bi, In, Pb, and Sb) nanostructured materials hold great promise, but are still confronted with several challenges. Here, the current status, challenges, and future opportunities of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate are reviewed. Firstly, the fundamentals of electrochemical CO2 reduction are presented, including the technoeconomic viability of different products, possible reaction pathways, standard experimental procedure, and performance figures of merit. This is then followed by detailed discussions about different types of main group metal–based electrocatalyst materials, with an emphasis on underlying material design principles for promoting the reaction activity, selectivity, and stability. Subsequently, recent efforts on flow cells and membrane electrode assembly cells are reviewed so as to promote the current density as well as mechanistic studies using in situ characterization techniques. To conclude a short perspective is offered about the future opportunities and directions of this exciting field.
Selective CO2 reduction to formic acid or formate is the most technologically and economically viable approach to realize electrochemical CO2 valorization. Main group metal–based (Sn, Bi, In, Pb, and Sb) nanostructured materials hold great promise, but are still confronted with several challenges. Here, the current status, challenges, and future opportunities of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate are reviewed. Firstly, the fundamentals of electrochemical CO2 reduction are presented, including the technoeconomic viability of different products, possible reaction pathways, standard experimental procedure, and performance figures of merit. This is then followed by detailed discussions about different types of main group metal–based electrocatalyst materials, with an emphasis on underlying material design principles for promoting the reaction activity, selectivity, and stability. Subsequently, recent efforts on flow cells and membrane electrode assembly cells are reviewed so as to promote the current density as well as mechanistic studies using in situ characterization techniques. To conclude a short perspective is offered about the future opportunities and directions of this exciting field. Main group metal–based nanostructured materials hold great potential for electrochemical CO2 reduction to formate. Here, their current status and challenges are reviewed with an emphasis on underlying material design principles for promoting the reaction activity, selectivity, and stability. A short perspective is also offered about the future opportunities and directions of this exciting field.
Author He, Le
Li, Yanguang
Han, Na
Li, Youyong
Ding, Pan
Author_xml – sequence: 1
  givenname: Na
  surname: Han
  fullname: Han, Na
  organization: Soochow University
– sequence: 2
  givenname: Pan
  surname: Ding
  fullname: Ding, Pan
  organization: Soochow University
– sequence: 3
  givenname: Le
  surname: He
  fullname: He, Le
  organization: Soochow University
– sequence: 4
  givenname: Youyong
  surname: Li
  fullname: Li, Youyong
  email: yyli@suda.edu.cn
  organization: Soochow University
– sequence: 5
  givenname: Yanguang
  orcidid: 0000-0003-0506-0451
  surname: Li
  fullname: Li, Yanguang
  email: yanguang@suda.edu.cn
  organization: Soochow University
BookMark eNo9kMtOwzAQRS1UJErplrUl1il-5bUsVVuQ-kAI1pYTjyFVEhc7EeqOf-AP-RJcFXU2M1e6d0ZzrtGgtS0gdEvJhBLC7hW0zYQRmhPGeXaBhjShIkoyQQbnmbMrNPZ-R0KJnBLOh2j37GxTefDYGrxWVYuXzvZ7vIZO1b_fPw_Kg8Yb1Vrfub7sehfkWnXgKlV7bKzD8xrKztnyA5qqVDWebRl-AR3MlW1xZ_HCuiYkbtClCRkY__cRelvMX2eP0Wq7fJpNV9E750kWpQACSqFoboq4MBqM4UUuhCkE01kS85hwQXRGtS5ioUieCqVSokWWszjTwEfo7rR37-xnD76TO9u7NpyUjKdpwsLvcXDlJ9dXVcNB7l3VKHeQlMgjT3nkKc885XS-WZ8V_wO4KW8X
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201902338
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM201902338
Genre reviewArticle
GrantInformation_xml – fundername: Collaborative Innovation Center of Suzhou Nano Science
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: Chinese Ministry of Science and Technology
  funderid: 2017YFA0204800
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-g3368-7ee4ec4a19fb5bfdeff3b944fb42d865350340d81ddb54a0974aa70d489258de3
ISSN 1614-6832
IngestDate Fri Jul 25 12:12:51 EDT 2025
Wed Jan 22 16:34:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g3368-7ee4ec4a19fb5bfdeff3b944fb42d865350340d81ddb54a0974aa70d489258de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0506-0451
PQID 2377624915
PQPubID 886389
PageCount 19
ParticipantIDs proquest_journals_2377624915
wiley_primary_10_1002_aenm_201902338_AENM201902338
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2019; 11
2019; 10
2019; 12
2006; 36
1997; 277
2014; 136
2018; 6
2018; 9
2018; 8
2018; 2
2010; 1
2018; 5
2012; 134
2018; 4
2015; 137
1997; 55
2018; 1
2019; 25
2013; 113
2018; 30
2012; 26
2010; 3
2016; 49
1985; 14
2019; 7
2018; 28
2019; 4
1990; 35
2019; 31
2019; 2
2013; 500
2019; 37
1986; 15
2015; 54
2006; 594
1997; 27
2013; 340
2016; 18
2018; 27
2011; 133
2016; 163
2014; 43
2017; 139
2016; 4
2016; 6
2016; 7
2004; 274
1975; 27
2018; 115
2017; 56
1986; 27
2008; 47
2016; 29
2014; 30
2016; 28
2018; 11
2018; 10
2016; 9
2016; 24
2017; 5
2017; 7
2017; 1
2018; 360
2017; 3
2017; 4
2002; 111
2017; 46
1984; 29
2011; 15
2008; 1
2019; 123
2007; 37
1995; 63
2018; 130
2017; 31
2014; 4
2014; 2
2017; 39
2016; 352
1994; 39
2009; 325
2012; 63
2015; 15
2015; 6
2015; 17
2015; 5
2015; 3
2011; 40
2013; 42
2008
2015; 9
2015; 8
2011; 331
2006; 81
2012; 3
2017; 16
2010; 132
2019
2013; 135
2018; 51
2012; 6
2009; 2
2012; 5
2018; 53
2009; 38
2018; 57
References_xml – volume: 5
  start-page: 7184
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 2842
  year: 2016
  publication-title: ACS Catal.
– volume: 57
  start-page: 2165
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 8
  start-page: 23
  year: 2015
  publication-title: Nano Res.
– volume: 5
  start-page: 8171
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 465
  year: 2015
  publication-title: ACS Catal.
– volume: 81
  start-page: 191
  year: 2006
  publication-title: Prog. Surf. Sci.
– volume: 12
  start-page: 1443
  year: 2019
  publication-title: ChemSusChem
– volume: 63
  start-page: 541
  year: 2012
  publication-title: Annu. Rev. Phys. Chem.
– volume: 3
  start-page: 3029
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 134
  start-page: 1986
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 505
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  start-page: 7593
  year: 2014
  publication-title: Langmuir
– volume: 42
  start-page: 2423
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 388
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 47
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 16
  start-page: 16
  year: 2017
  publication-title: Nat. Mater.
– volume: 36
  start-page: 161
  year: 2006
  publication-title: J. Appl. Electrochem.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 244
  year: 2018
  publication-title: Nat. Catal.
– volume: 5
  start-page: 519
  year: 2015
  publication-title: Nat. Clim. Change
– volume: 54
  start-page: 2146
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 652
  year: 2017
  publication-title: Chem
– volume: 12
  start-page: 1091
  year: 2019
  publication-title: ChemSusChem
– volume: 43
  start-page: 631
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 20
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 243
  year: 2017
  publication-title: Nat. Clim. Change
– volume: 135
  start-page: 8798
  year: 2013
  publication-title: J. Am. Chem. Soc.
– year: 2008
– volume: 4
  start-page: 3742
  year: 2014
  publication-title: ACS Catal.
– volume: 49
  start-page: 2023
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 352
  start-page: 1210
  year: 2016
  publication-title: Science
– year: 2019
– volume: 3
  start-page: 1311
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 922
  year: 2018
  publication-title: Nat. Catal.
– volume: 5
  start-page: 4479
  year: 2015
  publication-title: ACS Catal.
– volume: 1
  start-page: 421
  year: 2018
  publication-title: Nat. Catal.
– volume: 9
  start-page: 1320
  year: 2018
  publication-title: Nat. Commun.
– volume: 31
  start-page: 270
  year: 2017
  publication-title: Nano Energy
– volume: 39
  start-page: 44
  year: 2017
  publication-title: Nano Energy
– volume: 27
  start-page: 209
  year: 1975
  publication-title: Bull. Nagoya Inst. Technol.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 875
  year: 1997
  publication-title: J. Appl. Electrochem.
– volume: 7
  start-page: 4505
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 47
  start-page: 3962
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 25
  start-page: 445
  year: 2019
  publication-title: J. Electrochem.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1510
  year: 2018
  publication-title: ACS Catal.
– volume: 5
  start-page: 253
  year: 2018
  publication-title: ChemElectroChem
– volume: 10
  start-page: 974
  year: 2018
  publication-title: Nat. Chem.
– volume: 4
  start-page: 2571
  year: 2018
  publication-title: Chem
– volume: 3
  start-page: 1207
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 805
  year: 2008
  publication-title: ChemSusChem
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 331
  start-page: 568
  year: 2011
  publication-title: Science
– volume: 7
  start-page: 5381
  year: 2017
  publication-title: ACS Catal.
– volume: 4
  start-page: 776
  year: 2019
  publication-title: Nat. Energy
– volume: 6
  start-page: 4714
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 931
  year: 2018
  publication-title: ACS Catal.
– volume: 15
  start-page: 5449
  year: 2015
  publication-title: Nano Lett.
– volume: 12
  start-page: 1950
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 185
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 123
  start-page: 2165
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 7498
  year: 2015
  publication-title: ACS Catal.
– volume: 37
  start-page: 497
  year: 2019
  publication-title: Chin. J. Chem.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 63
  start-page: 217
  year: 1995
  publication-title: Denki Kagaku
– volume: 8
  start-page: 1490
  year: 2018
  publication-title: ACS Catal.
– volume: 29
  start-page: 439
  year: 2016
  publication-title: Nano Energy
– volume: 2
  start-page: 598
  year: 2009
  publication-title: Nat. Geosci.
– volume: 115
  start-page: 278
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 277
  start-page: 494
  year: 1997
  publication-title: Science
– volume: 7
  start-page: 5071
  year: 2017
  publication-title: ACS Catal.
– volume: 12
  start-page: 2455
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 825
  year: 2018
  publication-title: Joule
– volume: 132
  start-page: 9534
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 5021
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 271
  year: 1997
  publication-title: Prog. Surf. Sci.
– volume: 5
  start-page: 7050
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 89
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 27
  start-page: 1566
  year: 2018
  publication-title: J. Energy Chem.
– volume: 113
  start-page: 6621
  year: 2013
  publication-title: Chem. Rev.
– volume: 360
  start-page: 783
  year: 2018
  publication-title: Science
– volume: 2
  start-page: 1647
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 325
  start-page: 1654
  year: 2009
  publication-title: Science
– volume: 4
  start-page: 466
  year: 2019
  publication-title: Nat. Energy
– volume: 26
  start-page: 7051
  year: 2012
  publication-title: Energy Fuels
– volume: 28
  start-page: 3423
  year: 2016
  publication-title: Adv. Mater.
– volume: 274
  start-page: 237
  year: 2004
  publication-title: Appl. Catal., A
– volume: 7
  start-page: 4822
  year: 2017
  publication-title: ACS Catal.
– volume: 1
  start-page: 3451
  year: 2010
  publication-title: J. Phys. Chem. Lett.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 70
  year: 2017
  publication-title: Nat. Mater.
– volume: 10
  start-page: 2807
  year: 2019
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7824
  year: 2016
  publication-title: ACS Catal.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 794
  year: 2017
  publication-title: Joule
– volume: 56
  start-page: 3645
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 910
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 4443
  year: 2016
  publication-title: ACS Catal.
– volume: 111
  start-page: 83
  year: 2002
  publication-title: J. Power Sources
– volume: 139
  start-page: 4290
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 3703
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 130
  year: 2018
  publication-title: Angew. Chem.
– volume: 163
  start-page: H410
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 32
  year: 2018
  publication-title: Nat. Catal.
– volume: 24
  start-page: 1
  year: 2016
  publication-title: Nano Energy
– volume: 2
  start-page: 198
  year: 2019
  publication-title: Nat. Catal.
– volume: 15
  start-page: 2095
  year: 2011
  publication-title: J. Solid State Electrochem.
– volume: 2
  start-page: 3081
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 4073
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 37
  start-page: 93
  year: 2019
  publication-title: J. Energy Chem.
– volume: 11
  start-page: 2531
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 35
  start-page: 1777
  year: 1990
  publication-title: Electrochim. Acta
– volume: 46
  start-page: 337
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 111
  year: 2018
  publication-title: Nat. Catal.
– volume: 17
  start-page: 5114
  year: 2015
  publication-title: Green Chem.
– volume: 136
  start-page: 1734
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 57
  year: 2015
  publication-title: Front. Chem. Sci. Eng.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 403
  year: 1986
  publication-title: Appl. Catal.
– volume: 57
  start-page: 6883
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 500
  start-page: 287
  year: 2013
  publication-title: Nature
– volume: 6
  start-page: 2032
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 251
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 136
  start-page: 8361
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 892
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 60
  year: 2019
  publication-title: Nat. Energy
– volume: 6
  start-page: 511
  year: 2012
  publication-title: Nat. Photonics
– volume: 37
  start-page: 255
  year: 2007
  publication-title: J. Appl. Electrochem.
– volume: 594
  start-page: 1
  year: 2006
  publication-title: J. Electroanal. Chem.
– volume: 340
  year: 2013
  publication-title: Science
– volume: 7
  start-page: 1267
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1459
  year: 1984
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 108
  year: 2010
  publication-title: Electrocatalysis
– volume: 5
  start-page: 2814
  year: 2015
  publication-title: ACS Catal.
– volume: 53
  start-page: 808
  year: 2018
  publication-title: Nano Energy
– volume: 9
  start-page: 415
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1442
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 1695
  year: 1985
  publication-title: Chem. Lett.
– volume: 9
  start-page: 358
  year: 2016
  publication-title: ChemSusChem
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 15
  start-page: 897
  year: 1986
  publication-title: Chem. Lett.
– volume: 39
  start-page: 1833
  year: 1994
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 3148
  year: 2015
  publication-title: ACS Catal.
– volume: 57
  year: 2018
  publication-title: Inorg. Chem.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 8
  start-page: 3092
  year: 2015
  publication-title: ChemSusChem
– volume: 9
  start-page: 1972
  year: 2016
  publication-title: ChemSusChem
– volume: 136
  start-page: 7845
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 3250
  year: 2016
  publication-title: Green Chem.
SSID ssj0000491033
Score 2.6986737
SecondaryResourceType review_article
Snippet Selective CO2 reduction to formic acid or formate is the most technologically and economically viable approach to realize electrochemical CO2 valorization....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Antimony
Bismuth
Carbon dioxide
electrochemical CO2 reduction
Flow stability
formate
Formic acid
Lead
main group metals
Nanostructured materials
nanostructures
Selectivity
Tin
Viability
Title Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO2 Reduction to Formate
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902338
https://www.proquest.com/docview/2377624915
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcZ2mHoE80T3DoqpbmQ5ZGN3FgFFEaoAmQTSBFsmiBSkXiDMmUMXv-YX9JTyRFS01QtFkEgZZk--7TPYi77xB6R3IrSCpVwpkVCa-ITXLDdNJSoRuTS6rczMjiKF2c8k9n4mw0uu1VLV0u1fvq-sG-ksdoFdZAr22X7H9oNj4UFuAc9AtH0DAc_0nHx-cNqMmEOpZvddhaKgxE1F0VA_sIfkq3VrTxXLGXbcV5IZf-B7oyw7mfhVN15AF7nynIXXti2TY6PXCR7aBqaNYVDxjfPfije-LKpvlWrmj398P4lOMVIBd-zHME16GrLQALdNUEjxo2JCD7jBVZwYaCx0_SLGxbmv6aZ2aKhpf0ATbp-eDooe4ZeE8YK03dsghAMEOZJ4cZMmnHK8Xfr_XEv_OjIn7-BK1RSDjoGK3N9ovDL3G_DjKpCWGuX6P7fx0HKKEfhl8yyFb6OY8LWk6eo_WQbeCZh84LNDL1S_Ssx0H5Cn3vQIQbi1sQYQci7ED06-bOwQcP4YMjfDDAB_8BHwzwwRE-eNngAJ_X6PRgfrK3SMIAjuQrY2mWwNvKTcXlJLdKKKuNtUzlnFvFqc5SwQRhnGhIebQSXBLITaWcEs2znIpMG_YGjeumNm8RhqiH6SqF8FJQPtVcMs1Tw5TOK8KUlRtouxNZGd6wi5KyKfhqELzYQNSJsfzpOVhKz7ZNy1bwZRR8OdDl5mNu2kJPV6DeRmMQrdmBuHOpdgMkfgPwUX1b
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promises+of+Main+Group+Metal%E2%80%93Based+Nanostructured+Materials+for+Electrochemical+CO2+Reduction+to+Formate&rft.jtitle=Advanced+energy+materials&rft.au=Han%2C+Na&rft.au=Ding%2C+Pan&rft.au=He%2C+Le&rft.au=Li%2C+Youyong&rft.date=2020-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201902338&rft.externalDBID=10.1002%252Faenm.201902338&rft.externalDocID=AENM201902338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon