Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO2 Reduction to Formate
Selective CO2 reduction to formic acid or formate is the most technologically and economically viable approach to realize electrochemical CO2 valorization. Main group metal–based (Sn, Bi, In, Pb, and Sb) nanostructured materials hold great promise, but are still confronted with several challenges. H...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.201902338 |
Cover
Loading…
Abstract | Selective CO2 reduction to formic acid or formate is the most technologically and economically viable approach to realize electrochemical CO2 valorization. Main group metal–based (Sn, Bi, In, Pb, and Sb) nanostructured materials hold great promise, but are still confronted with several challenges. Here, the current status, challenges, and future opportunities of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate are reviewed. Firstly, the fundamentals of electrochemical CO2 reduction are presented, including the technoeconomic viability of different products, possible reaction pathways, standard experimental procedure, and performance figures of merit. This is then followed by detailed discussions about different types of main group metal–based electrocatalyst materials, with an emphasis on underlying material design principles for promoting the reaction activity, selectivity, and stability. Subsequently, recent efforts on flow cells and membrane electrode assembly cells are reviewed so as to promote the current density as well as mechanistic studies using in situ characterization techniques. To conclude a short perspective is offered about the future opportunities and directions of this exciting field.
Main group metal–based nanostructured materials hold great potential for electrochemical CO2 reduction to formate. Here, their current status and challenges are reviewed with an emphasis on underlying material design principles for promoting the reaction activity, selectivity, and stability. A short perspective is also offered about the future opportunities and directions of this exciting field. |
---|---|
AbstractList | Selective CO2 reduction to formic acid or formate is the most technologically and economically viable approach to realize electrochemical CO2 valorization. Main group metal–based (Sn, Bi, In, Pb, and Sb) nanostructured materials hold great promise, but are still confronted with several challenges. Here, the current status, challenges, and future opportunities of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate are reviewed. Firstly, the fundamentals of electrochemical CO2 reduction are presented, including the technoeconomic viability of different products, possible reaction pathways, standard experimental procedure, and performance figures of merit. This is then followed by detailed discussions about different types of main group metal–based electrocatalyst materials, with an emphasis on underlying material design principles for promoting the reaction activity, selectivity, and stability. Subsequently, recent efforts on flow cells and membrane electrode assembly cells are reviewed so as to promote the current density as well as mechanistic studies using in situ characterization techniques. To conclude a short perspective is offered about the future opportunities and directions of this exciting field. Selective CO2 reduction to formic acid or formate is the most technologically and economically viable approach to realize electrochemical CO2 valorization. Main group metal–based (Sn, Bi, In, Pb, and Sb) nanostructured materials hold great promise, but are still confronted with several challenges. Here, the current status, challenges, and future opportunities of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate are reviewed. Firstly, the fundamentals of electrochemical CO2 reduction are presented, including the technoeconomic viability of different products, possible reaction pathways, standard experimental procedure, and performance figures of merit. This is then followed by detailed discussions about different types of main group metal–based electrocatalyst materials, with an emphasis on underlying material design principles for promoting the reaction activity, selectivity, and stability. Subsequently, recent efforts on flow cells and membrane electrode assembly cells are reviewed so as to promote the current density as well as mechanistic studies using in situ characterization techniques. To conclude a short perspective is offered about the future opportunities and directions of this exciting field. Main group metal–based nanostructured materials hold great potential for electrochemical CO2 reduction to formate. Here, their current status and challenges are reviewed with an emphasis on underlying material design principles for promoting the reaction activity, selectivity, and stability. A short perspective is also offered about the future opportunities and directions of this exciting field. |
Author | He, Le Li, Yanguang Han, Na Li, Youyong Ding, Pan |
Author_xml | – sequence: 1 givenname: Na surname: Han fullname: Han, Na organization: Soochow University – sequence: 2 givenname: Pan surname: Ding fullname: Ding, Pan organization: Soochow University – sequence: 3 givenname: Le surname: He fullname: He, Le organization: Soochow University – sequence: 4 givenname: Youyong surname: Li fullname: Li, Youyong email: yyli@suda.edu.cn organization: Soochow University – sequence: 5 givenname: Yanguang orcidid: 0000-0003-0506-0451 surname: Li fullname: Li, Yanguang email: yanguang@suda.edu.cn organization: Soochow University |
BookMark | eNo9kMtOwzAQRS1UJErplrUl1il-5bUsVVuQ-kAI1pYTjyFVEhc7EeqOf-AP-RJcFXU2M1e6d0ZzrtGgtS0gdEvJhBLC7hW0zYQRmhPGeXaBhjShIkoyQQbnmbMrNPZ-R0KJnBLOh2j37GxTefDYGrxWVYuXzvZ7vIZO1b_fPw_Kg8Yb1Vrfub7sehfkWnXgKlV7bKzD8xrKztnyA5qqVDWebRl-AR3MlW1xZ_HCuiYkbtClCRkY__cRelvMX2eP0Wq7fJpNV9E750kWpQACSqFoboq4MBqM4UUuhCkE01kS85hwQXRGtS5ioUieCqVSokWWszjTwEfo7rR37-xnD76TO9u7NpyUjKdpwsLvcXDlJ9dXVcNB7l3VKHeQlMgjT3nkKc885XS-WZ8V_wO4KW8X |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201902338 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM201902338 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Collaborative Innovation Center of Suzhou Nano Science – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: Chinese Ministry of Science and Technology funderid: 2017YFA0204800 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-g3368-7ee4ec4a19fb5bfdeff3b944fb42d865350340d81ddb54a0974aa70d489258de3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:12:51 EDT 2025 Wed Jan 22 16:34:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g3368-7ee4ec4a19fb5bfdeff3b944fb42d865350340d81ddb54a0974aa70d489258de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0506-0451 |
PQID | 2377624915 |
PQPubID | 886389 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2377624915 wiley_primary_10_1002_aenm_201902338_AENM201902338 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2019; 11 2019; 10 2019; 12 2006; 36 1997; 277 2014; 136 2018; 6 2018; 9 2018; 8 2018; 2 2010; 1 2018; 5 2012; 134 2018; 4 2015; 137 1997; 55 2018; 1 2019; 25 2013; 113 2018; 30 2012; 26 2010; 3 2016; 49 1985; 14 2019; 7 2018; 28 2019; 4 1990; 35 2019; 31 2019; 2 2013; 500 2019; 37 1986; 15 2015; 54 2006; 594 1997; 27 2013; 340 2016; 18 2018; 27 2011; 133 2016; 163 2014; 43 2017; 139 2016; 4 2016; 6 2016; 7 2004; 274 1975; 27 2018; 115 2017; 56 1986; 27 2008; 47 2016; 29 2014; 30 2016; 28 2018; 11 2018; 10 2016; 9 2016; 24 2017; 5 2017; 7 2017; 1 2018; 360 2017; 3 2017; 4 2002; 111 2017; 46 1984; 29 2011; 15 2008; 1 2019; 123 2007; 37 1995; 63 2018; 130 2017; 31 2014; 4 2014; 2 2017; 39 2016; 352 1994; 39 2009; 325 2012; 63 2015; 15 2015; 6 2015; 17 2015; 5 2015; 3 2011; 40 2013; 42 2008 2015; 9 2015; 8 2011; 331 2006; 81 2012; 3 2017; 16 2010; 132 2019 2013; 135 2018; 51 2012; 6 2009; 2 2012; 5 2018; 53 2009; 38 2018; 57 |
References_xml | – volume: 5 start-page: 7184 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 2842 year: 2016 publication-title: ACS Catal. – volume: 57 start-page: 2165 year: 2018 publication-title: Ind. Eng. Chem. Res. – volume: 8 start-page: 23 year: 2015 publication-title: Nano Res. – volume: 5 start-page: 8171 year: 2012 publication-title: Energy Environ. Sci. – volume: 5 start-page: 465 year: 2015 publication-title: ACS Catal. – volume: 81 start-page: 191 year: 2006 publication-title: Prog. Surf. Sci. – volume: 12 start-page: 1443 year: 2019 publication-title: ChemSusChem – volume: 63 start-page: 541 year: 2012 publication-title: Annu. Rev. Phys. Chem. – volume: 3 start-page: 3029 year: 2015 publication-title: J. Mater. Chem. A – volume: 134 start-page: 1986 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 505 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 30 start-page: 7593 year: 2014 publication-title: Langmuir – volume: 42 start-page: 2423 year: 2013 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 388 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 47 year: 2019 publication-title: Nano‐Micro Lett. – volume: 16 start-page: 16 year: 2017 publication-title: Nat. Mater. – volume: 36 start-page: 161 year: 2006 publication-title: J. Appl. Electrochem. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 244 year: 2018 publication-title: Nat. Catal. – volume: 5 start-page: 519 year: 2015 publication-title: Nat. Clim. Change – volume: 54 start-page: 2146 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 652 year: 2017 publication-title: Chem – volume: 12 start-page: 1091 year: 2019 publication-title: ChemSusChem – volume: 43 start-page: 631 year: 2014 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 20 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 243 year: 2017 publication-title: Nat. Clim. Change – volume: 135 start-page: 8798 year: 2013 publication-title: J. Am. Chem. Soc. – year: 2008 – volume: 4 start-page: 3742 year: 2014 publication-title: ACS Catal. – volume: 49 start-page: 2023 year: 2016 publication-title: Acc. Chem. Res. – volume: 352 start-page: 1210 year: 2016 publication-title: Science – year: 2019 – volume: 3 start-page: 1311 year: 2010 publication-title: Energy Environ. Sci. – volume: 1 start-page: 922 year: 2018 publication-title: Nat. Catal. – volume: 5 start-page: 4479 year: 2015 publication-title: ACS Catal. – volume: 1 start-page: 421 year: 2018 publication-title: Nat. Catal. – volume: 9 start-page: 1320 year: 2018 publication-title: Nat. Commun. – volume: 31 start-page: 270 year: 2017 publication-title: Nano Energy – volume: 39 start-page: 44 year: 2017 publication-title: Nano Energy – volume: 27 start-page: 209 year: 1975 publication-title: Bull. Nagoya Inst. Technol. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 27 start-page: 875 year: 1997 publication-title: J. Appl. Electrochem. – volume: 7 start-page: 4505 year: 2019 publication-title: J. Mater. Chem. A – volume: 47 start-page: 3962 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 25 start-page: 445 year: 2019 publication-title: J. Electrochem. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 1510 year: 2018 publication-title: ACS Catal. – volume: 5 start-page: 253 year: 2018 publication-title: ChemElectroChem – volume: 10 start-page: 974 year: 2018 publication-title: Nat. Chem. – volume: 4 start-page: 2571 year: 2018 publication-title: Chem – volume: 3 start-page: 1207 year: 2010 publication-title: Energy Environ. Sci. – volume: 1 start-page: 805 year: 2008 publication-title: ChemSusChem – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 331 start-page: 568 year: 2011 publication-title: Science – volume: 7 start-page: 5381 year: 2017 publication-title: ACS Catal. – volume: 4 start-page: 776 year: 2019 publication-title: Nat. Energy – volume: 6 start-page: 4714 year: 2018 publication-title: J. Mater. Chem. A – volume: 8 start-page: 931 year: 2018 publication-title: ACS Catal. – volume: 15 start-page: 5449 year: 2015 publication-title: Nano Lett. – volume: 12 start-page: 1950 year: 2019 publication-title: Energy Environ. Sci. – volume: 38 start-page: 185 year: 2009 publication-title: Chem. Soc. Rev. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 123 start-page: 2165 year: 2019 publication-title: J. Phys. Chem. C – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 7498 year: 2015 publication-title: ACS Catal. – volume: 37 start-page: 497 year: 2019 publication-title: Chin. J. Chem. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 63 start-page: 217 year: 1995 publication-title: Denki Kagaku – volume: 8 start-page: 1490 year: 2018 publication-title: ACS Catal. – volume: 29 start-page: 439 year: 2016 publication-title: Nano Energy – volume: 2 start-page: 598 year: 2009 publication-title: Nat. Geosci. – volume: 115 start-page: 278 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 277 start-page: 494 year: 1997 publication-title: Science – volume: 7 start-page: 5071 year: 2017 publication-title: ACS Catal. – volume: 12 start-page: 2455 year: 2019 publication-title: Energy Environ. Sci. – volume: 2 start-page: 825 year: 2018 publication-title: Joule – volume: 132 start-page: 9534 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 5021 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 271 year: 1997 publication-title: Prog. Surf. Sci. – volume: 5 start-page: 7050 year: 2012 publication-title: Energy Environ. Sci. – volume: 38 start-page: 89 year: 2009 publication-title: Chem. Soc. Rev. – volume: 27 start-page: 1566 year: 2018 publication-title: J. Energy Chem. – volume: 113 start-page: 6621 year: 2013 publication-title: Chem. Rev. – volume: 360 start-page: 783 year: 2018 publication-title: Science – volume: 2 start-page: 1647 year: 2014 publication-title: J. Mater. Chem. A – volume: 325 start-page: 1654 year: 2009 publication-title: Science – volume: 4 start-page: 466 year: 2019 publication-title: Nat. Energy – volume: 26 start-page: 7051 year: 2012 publication-title: Energy Fuels – volume: 28 start-page: 3423 year: 2016 publication-title: Adv. Mater. – volume: 274 start-page: 237 year: 2004 publication-title: Appl. Catal., A – volume: 7 start-page: 4822 year: 2017 publication-title: ACS Catal. – volume: 1 start-page: 3451 year: 2010 publication-title: J. Phys. Chem. Lett. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 70 year: 2017 publication-title: Nat. Mater. – volume: 10 start-page: 2807 year: 2019 publication-title: Nat. Commun. – volume: 6 start-page: 7824 year: 2016 publication-title: ACS Catal. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 start-page: 794 year: 2017 publication-title: Joule – volume: 56 start-page: 3645 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 910 year: 2018 publication-title: Acc. Chem. Res. – volume: 6 start-page: 4443 year: 2016 publication-title: ACS Catal. – volume: 111 start-page: 83 year: 2002 publication-title: J. Power Sources – volume: 139 start-page: 4290 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 3703 year: 2011 publication-title: Chem. Soc. Rev. – volume: 130 year: 2018 publication-title: Angew. Chem. – volume: 163 start-page: H410 year: 2016 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 32 year: 2018 publication-title: Nat. Catal. – volume: 24 start-page: 1 year: 2016 publication-title: Nano Energy – volume: 2 start-page: 198 year: 2019 publication-title: Nat. Catal. – volume: 15 start-page: 2095 year: 2011 publication-title: J. Solid State Electrochem. – volume: 2 start-page: 3081 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 4073 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 37 start-page: 93 year: 2019 publication-title: J. Energy Chem. – volume: 11 start-page: 2531 year: 2018 publication-title: Energy Environ. Sci. – volume: 35 start-page: 1777 year: 1990 publication-title: Electrochim. Acta – volume: 46 start-page: 337 year: 2017 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 111 year: 2018 publication-title: Nat. Catal. – volume: 17 start-page: 5114 year: 2015 publication-title: Green Chem. – volume: 136 start-page: 1734 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 57 year: 2015 publication-title: Front. Chem. Sci. Eng. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 27 start-page: 403 year: 1986 publication-title: Appl. Catal. – volume: 57 start-page: 6883 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 500 start-page: 287 year: 2013 publication-title: Nature – volume: 6 start-page: 2032 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 251 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 136 start-page: 8361 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 892 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 60 year: 2019 publication-title: Nat. Energy – volume: 6 start-page: 511 year: 2012 publication-title: Nat. Photonics – volume: 37 start-page: 255 year: 2007 publication-title: J. Appl. Electrochem. – volume: 594 start-page: 1 year: 2006 publication-title: J. Electroanal. Chem. – volume: 340 year: 2013 publication-title: Science – volume: 7 start-page: 1267 year: 2019 publication-title: J. Mater. Chem. A – volume: 29 start-page: 1459 year: 1984 publication-title: Electrochim. Acta – volume: 1 start-page: 108 year: 2010 publication-title: Electrocatalysis – volume: 5 start-page: 2814 year: 2015 publication-title: ACS Catal. – volume: 53 start-page: 808 year: 2018 publication-title: Nano Energy – volume: 9 start-page: 415 year: 2018 publication-title: Nat. Commun. – volume: 12 start-page: 1442 year: 2019 publication-title: Energy Environ. Sci. – volume: 14 start-page: 1695 year: 1985 publication-title: Chem. Lett. – volume: 9 start-page: 358 year: 2016 publication-title: ChemSusChem – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 15 start-page: 897 year: 1986 publication-title: Chem. Lett. – volume: 39 start-page: 1833 year: 1994 publication-title: Electrochim. Acta – volume: 5 start-page: 3148 year: 2015 publication-title: ACS Catal. – volume: 57 year: 2018 publication-title: Inorg. Chem. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 8 start-page: 3092 year: 2015 publication-title: ChemSusChem – volume: 9 start-page: 1972 year: 2016 publication-title: ChemSusChem – volume: 136 start-page: 7845 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 3250 year: 2016 publication-title: Green Chem. |
SSID | ssj0000491033 |
Score | 2.6986737 |
SecondaryResourceType | review_article |
Snippet | Selective CO2 reduction to formic acid or formate is the most technologically and economically viable approach to realize electrochemical CO2 valorization.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Antimony Bismuth Carbon dioxide electrochemical CO2 reduction Flow stability formate Formic acid Lead main group metals Nanostructured materials nanostructures Selectivity Tin Viability |
Title | Promises of Main Group Metal–Based Nanostructured Materials for Electrochemical CO2 Reduction to Formate |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902338 https://www.proquest.com/docview/2377624915 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZcZ2mHoE80T3DoqpbmQ5ZGN3FgFFEaoAmQTSBFsmiBSkXiDMmUMXv-YX9JTyRFS01QtFkEgZZk--7TPYi77xB6R3IrSCpVwpkVCa-ITXLDdNJSoRuTS6rczMjiKF2c8k9n4mw0uu1VLV0u1fvq-sG-ksdoFdZAr22X7H9oNj4UFuAc9AtH0DAc_0nHx-cNqMmEOpZvddhaKgxE1F0VA_sIfkq3VrTxXLGXbcV5IZf-B7oyw7mfhVN15AF7nynIXXti2TY6PXCR7aBqaNYVDxjfPfije-LKpvlWrmj398P4lOMVIBd-zHME16GrLQALdNUEjxo2JCD7jBVZwYaCx0_SLGxbmv6aZ2aKhpf0ATbp-eDooe4ZeE8YK03dsghAMEOZJ4cZMmnHK8Xfr_XEv_OjIn7-BK1RSDjoGK3N9ovDL3G_DjKpCWGuX6P7fx0HKKEfhl8yyFb6OY8LWk6eo_WQbeCZh84LNDL1S_Ssx0H5Cn3vQIQbi1sQYQci7ED06-bOwQcP4YMjfDDAB_8BHwzwwRE-eNngAJ_X6PRgfrK3SMIAjuQrY2mWwNvKTcXlJLdKKKuNtUzlnFvFqc5SwQRhnGhIebQSXBLITaWcEs2znIpMG_YGjeumNm8RhqiH6SqF8FJQPtVcMs1Tw5TOK8KUlRtouxNZGd6wi5KyKfhqELzYQNSJsfzpOVhKz7ZNy1bwZRR8OdDl5mNu2kJPV6DeRmMQrdmBuHOpdgMkfgPwUX1b |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promises+of+Main+Group+Metal%E2%80%93Based+Nanostructured+Materials+for+Electrochemical+CO2+Reduction+to+Formate&rft.jtitle=Advanced+energy+materials&rft.au=Han%2C+Na&rft.au=Ding%2C+Pan&rft.au=He%2C+Le&rft.au=Li%2C+Youyong&rft.date=2020-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201902338&rft.externalDBID=10.1002%252Faenm.201902338&rft.externalDocID=AENM201902338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |