Bimetallic Cobalt‐Based Phosphide Zeolitic Imidazolate Framework: CoPx Phase‐Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting
Cobalt‐based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical...
Saved in:
Published in | Advanced energy materials Vol. 7; no. 2 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cobalt‐based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co‐host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen‐doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis‐based energy conversion.
Mixed CoPx phase behavior of copper‐doped cobalt phosphide within zeolitic imidazolate framework catalysts presents extraordinary water‐splitting capability. Theoretical calculation reveals that a much lower free energy of hydrogen adsorption and less covalently bonded atoms upon copper doping are the decisive origins of enhanced catalytic activity. |
---|---|
AbstractList | Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co-host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen-doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm-2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm-2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis-based energy conversion. Cobalt‐based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co‐host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen‐doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis‐based energy conversion. Mixed CoPx phase behavior of copper‐doped cobalt phosphide within zeolitic imidazolate framework catalysts presents extraordinary water‐splitting capability. Theoretical calculation reveals that a much lower free energy of hydrogen adsorption and less covalently bonded atoms upon copper doping are the decisive origins of enhanced catalytic activity. |
Author | Ye, Ranfeng Zhu, Chengzhou Song, Junhua Du, Dan Xu, Bo Z. Fu, Shaofang Lin, Yuehe Engelhard, Mark H. Beckman, Scott P. |
Author_xml | – sequence: 1 givenname: Junhua surname: Song fullname: Song, Junhua organization: Washington State University – sequence: 2 givenname: Chengzhou surname: Zhu fullname: Zhu, Chengzhou organization: Washington State University – sequence: 3 givenname: Bo Z. surname: Xu fullname: Xu, Bo Z. organization: Washington State University – sequence: 4 givenname: Shaofang surname: Fu fullname: Fu, Shaofang organization: Washington State University – sequence: 5 givenname: Mark H. surname: Engelhard fullname: Engelhard, Mark H. organization: Pacific Northwest National Laboratory – sequence: 6 givenname: Ranfeng surname: Ye fullname: Ye, Ranfeng organization: Washington State University – sequence: 7 givenname: Dan surname: Du fullname: Du, Dan organization: Washington State University – sequence: 8 givenname: Scott P. surname: Beckman fullname: Beckman, Scott P. organization: Washington State University – sequence: 9 givenname: Yuehe surname: Lin fullname: Lin, Yuehe email: Yuehe.lin@wsu.edu organization: Pacific Northwest National Laboratory |
BookMark | eNo9kU1u2zAQhYkiAZo62XZNIGun_BFlqTvHlZMA-QPaokA3Ak2ObCYUqVJ0HGWVI-RAPU1PEhouPJuZAb43b4D3CR047wChz5ScUULYFwmuPWOE5oQKIT6gI5rTbJwXGTnYz5x9RCd9_0BSZSUlnB-hv-emhSitNQrP_ELa-O_17Vz2oPH9yvfdymjAv8FbExNx1RotX7yVEfA8yBY2Pjx-TcL754QnVRJ_gw6cBhdxZUHFYJS0iXB6raJ5MnHA0ml8Oejgl-DwNPoWT3XvQxeNd7hyEJYDbnzAVdMYZbaX7p4gpB_xr2Qc8PcufRONWx6jw0baHk7-9xH6Oa9-zC7H13cXV7Pp9XjJeS7GhSqZ1Iw0ueKcNZooKKUUE71gJF80XFABKlMFFBPWMC2UykVBZFYCLeWELPgIne7udsH_WUMf6we_Di5Z1rTIKc9EyYpElTtqYywMdRdMK8NQU1JvE6q3CdX7hOppdXuz3_g7AeiPCA |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201601555 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 4307525231 AENM201601555 |
Genre | article |
GrantInformation_xml | – fundername: Washington State University – fundername: Department of Energy's Office of Biological and Environmental Research – fundername: Battelle funderid: DE‐AC05‐76RL01830 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-g3365-8c92ad20f6c332fd0ce9aa57db206bf3515ec4c8e872f2d5cc6580a49e19a70b3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:12:57 EDT 2025 Wed Jan 22 16:35:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g3365-8c92ad20f6c332fd0ce9aa57db206bf3515ec4c8e872f2d5cc6580a49e19a70b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1861345928 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1861345928 wiley_primary_10_1002_aenm_201601555_AENM201601555 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012 2012; 16 16 2013; 25 2014 2015; 5 51 2005 2014; 127 7 2010; 102 2015; 54 2015 2014; 44 35 2014 2015 2015; 53 6 137 2007 2013 2012 2011 2011 2014; 317 5 11 11 133 4 2015; 8 2011 2014; 10 136 2015; 7 2013 2016; 135 6 2009; 34 2014 2015; 136 27 2015; 27 2015; 137 2014 2015; 7 137 2015; 44 2015 2016; 5 45 2013; 135 2013; 113 2016; 138 2014; 8 2008 2008; 321 20 2016; 45 2014 2014; 53 7 2014; 10 2014; 31 2016; 22 |
References_xml | – volume: 136 27 start-page: 7587 7636 year: 2014 2015 publication-title: J. Am. Chem. Soc. Chem. Mater. – volume: 137 start-page: 4347 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 135 6 start-page: 9267 714 year: 2013 2016 publication-title: J. Am. Chem. Soc. ACS Catal. – volume: 27 start-page: 7549 year: 2015 publication-title: Chem. Mater. – volume: 53 7 start-page: 7860 2608 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Energy Environ. Sci. – volume: 27 start-page: 5010 year: 2015 publication-title: Adv. Mater. – volume: 5 45 start-page: 13801 1781 year: 2015 2016 publication-title: Sci. Rep. Chem. Soc. Rev. – volume: 44 35 start-page: 586 499 year: 2015 2014 publication-title: Renewable Sustainable Energy Rev. Renewable Sustainable Energy Rev. – volume: 138 start-page: 1359 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 517 year: 2016 publication-title: Chem. Soc. Rev. – volume: 53 6 137 start-page: 6407 6512 15753 year: 2014 2015 2015 publication-title: Angew. Chem. Int. Ed. Nat. Commun. J. Am. Chem. Soc. – volume: 8 start-page: 6297 year: 2014 publication-title: ACS Nano – volume: 54 start-page: 5331 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 135 start-page: 8525 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 5807 year: 2013 publication-title: Adv. Mater. – volume: 137 start-page: 5590 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 10974 year: 2015 publication-title: Nanoscale – volume: 7 start-page: 1920 year: 2015 publication-title: ChemCatChem – volume: 113 start-page: 7981 year: 2013 publication-title: Chem. Rev. – volume: 8 start-page: 731 year: 2015 publication-title: Energy Environ. Sci. – volume: 317 5 11 11 133 4 start-page: 100 7768 963 4168 7296 1693 year: 2007 2013 2012 2011 2011 2014 publication-title: Science Nanoscale Nat. Mater. Nano. Lett. J. Am. Chem. Soc. ACS Catal. – volume: 10 136 start-page: 780 13925 year: 2011 2014 publication-title: Nat. Mater. J. Am. Chem. Soc. – volume: 10 start-page: 1932 year: 2014 publication-title: Small – volume: 321 20 start-page: 1072 7081 year: 2008 2008 publication-title: Science Chem. Mater. – volume: 102 start-page: 103 year: 2010 publication-title: Clim. Change. – volume: 16 16 start-page: 2154 4141 year: 2012 2012 publication-title: Renewable Sustainable Energy Rev. Renewable Sustainable Energy Rev. – volume: 7 137 start-page: 609 2688 year: 2014 2015 publication-title: Energy Environ. Sci. J. Am. Chem. Soc. – volume: 27 start-page: 3769 year: 2015 publication-title: Chem. Mater. – volume: 5 51 start-page: 4477 7851 year: 2014 2015 publication-title: Nat. Commun. Chem. Commnun. – volume: 127 7 start-page: 14871 2624 year: 2005 2014 publication-title: J. Am. Chem. Soc. Energy Environ. Sci. – volume: 34 start-page: 703 year: 2009 publication-title: Int. J. Hydrogen Energy – volume: 31 start-page: 746 year: 2014 publication-title: Renewable Sustainable Energy Rev. – volume: 22 start-page: 4000 year: 2016 publication-title: Chem. Eur. J. |
SSID | ssj0000491033 |
Score | 2.6264675 |
Snippet | Cobalt‐based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities... Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Adsorption bimetallic phosphides Conductivity electrical conductivity hydrogen adsorption water splitting zeolitic imidazolate frameworks |
Title | Bimetallic Cobalt‐Based Phosphide Zeolitic Imidazolate Framework: CoPx Phase‐Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201601555 https://www.proquest.com/docview/1861345928 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dbtMwFICtst3ABeJXDAbyBXdRR-L8c9d2RQXRMambqHYTObG9VFqTqU0Q9IpH4IF4Gh6AZ-DYTtxUIAS7iVrXdtqerz4_PT5G6GVmO0Jw1-sLTuTfjH7cpx48dUPbE5z7PPLlRuHpSTA5997N_Xmv97OTtVRX6VG2-eO-kptIFdpArnKX7H9I1kwKDfAY5AtXkDBc_0nGw8WSg_Es61SPZF2PyqQuDEE5Mes0L9fX-YJx64LrPDfr7XLB6Ab82YpLo1UnZsmwwKg8_QwDYJyZ5Lg5ILeyxuqwHCXPUVnIErH6zAkZdZ98YasS3qI1qMqlNWDrcqWXobHeVijzGMeqUIWc6cMnGQS7sj5SWZ1xBiawSrzu2siDNi2B6wmWsqv8Mk00qE0jrou8NmrlIq91_gAvLjd5Wbftc9U8LK2LIwOraprltBS0uXcT-HDCTuBDr9VgWfSDqAmP8m6brgDVLvBhh2PS0fRGD_6mRnRZWsoLWavACaRd6W8VZpskYHr6f--rywuPT6bm9Vton4BbA-vy_uB4-n5mooLgrzm2q3aFtJ-urTRqk1e7N9nxibqelTKNzu6hu41Pgwca0Puox4sH6E6n0uVD9H2LKtao_vj6TUGKDaS4hRR3IMUG0tdYIooVojDYwIm3cOIunBjgxC2cWMKJt3BiDScGOLGBEzdwYgUnNnA-QudvxmejSb85OKR_6cqszSiLCWXEFkHmukQwO-MxpX7IUmIHqXDBhueZl0U8CokgzM8ysMNt6sXciWlop-5jtFeUBX-CMGMBjyNH-GEaeJQ6ccyjQHiuIBw8C-YdoMNWCEmzMqwTJwIj2fNjEh0gogSTXOvaMYmuEk4SKcrEiDLZoePpTQY9Q7e3P5JDtFetav4c7OUqfdFA9gvcycMo |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetallic+Cobalt%E2%80%90Based+Phosphide+Zeolitic+Imidazolate+Framework%3A+CoPx+Phase%E2%80%90Dependent+Electrical+Conductivity+and+Hydrogen+Atom+Adsorption+Energy+for+Efficient+Overall+Water+Splitting&rft.jtitle=Advanced+energy+materials&rft.au=Song%2C+Junhua&rft.au=Zhu%2C+Chengzhou&rft.au=Xu%2C+Bo+Z.&rft.au=Fu%2C+Shaofang&rft.date=2017-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=7&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201601555&rft.externalDBID=10.1002%252Faenm.201601555&rft.externalDocID=AENM201601555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |