Bimetallic Cobalt‐Based Phosphide Zeolitic Imidazolate Framework: CoPx Phase‐Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting

Cobalt‐based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 7; no. 2
Main Authors Song, Junhua, Zhu, Chengzhou, Xu, Bo Z., Fu, Shaofang, Engelhard, Mark H., Ye, Ranfeng, Du, Dan, Beckman, Scott P., Lin, Yuehe
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cobalt‐based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co‐host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen‐doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis‐based energy conversion. Mixed CoPx phase behavior of copper‐doped cobalt phosphide within zeolitic imidazolate framework catalysts presents extraordinary water‐splitting capability. Theoretical calculation reveals that a much lower free energy of hydrogen adsorption and less covalently bonded atoms upon copper doping are the decisive origins of enhanced catalytic activity.
AbstractList Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co-host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen-doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm-2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm-2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis-based energy conversion.
Cobalt‐based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co‐host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance has been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen‐doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis‐based energy conversion. Mixed CoPx phase behavior of copper‐doped cobalt phosphide within zeolitic imidazolate framework catalysts presents extraordinary water‐splitting capability. Theoretical calculation reveals that a much lower free energy of hydrogen adsorption and less covalently bonded atoms upon copper doping are the decisive origins of enhanced catalytic activity.
Author Ye, Ranfeng
Zhu, Chengzhou
Song, Junhua
Du, Dan
Xu, Bo Z.
Fu, Shaofang
Lin, Yuehe
Engelhard, Mark H.
Beckman, Scott P.
Author_xml – sequence: 1
  givenname: Junhua
  surname: Song
  fullname: Song, Junhua
  organization: Washington State University
– sequence: 2
  givenname: Chengzhou
  surname: Zhu
  fullname: Zhu, Chengzhou
  organization: Washington State University
– sequence: 3
  givenname: Bo Z.
  surname: Xu
  fullname: Xu, Bo Z.
  organization: Washington State University
– sequence: 4
  givenname: Shaofang
  surname: Fu
  fullname: Fu, Shaofang
  organization: Washington State University
– sequence: 5
  givenname: Mark H.
  surname: Engelhard
  fullname: Engelhard, Mark H.
  organization: Pacific Northwest National Laboratory
– sequence: 6
  givenname: Ranfeng
  surname: Ye
  fullname: Ye, Ranfeng
  organization: Washington State University
– sequence: 7
  givenname: Dan
  surname: Du
  fullname: Du, Dan
  organization: Washington State University
– sequence: 8
  givenname: Scott P.
  surname: Beckman
  fullname: Beckman, Scott P.
  organization: Washington State University
– sequence: 9
  givenname: Yuehe
  surname: Lin
  fullname: Lin, Yuehe
  email: Yuehe.lin@wsu.edu
  organization: Pacific Northwest National Laboratory
BookMark eNo9kU1u2zAQhYkiAZo62XZNIGun_BFlqTvHlZMA-QPaokA3Ak2ObCYUqVJ0HGWVI-RAPU1PEhouPJuZAb43b4D3CR047wChz5ScUULYFwmuPWOE5oQKIT6gI5rTbJwXGTnYz5x9RCd9_0BSZSUlnB-hv-emhSitNQrP_ELa-O_17Vz2oPH9yvfdymjAv8FbExNx1RotX7yVEfA8yBY2Pjx-TcL754QnVRJ_gw6cBhdxZUHFYJS0iXB6raJ5MnHA0ml8Oejgl-DwNPoWT3XvQxeNd7hyEJYDbnzAVdMYZbaX7p4gpB_xr2Qc8PcufRONWx6jw0baHk7-9xH6Oa9-zC7H13cXV7Pp9XjJeS7GhSqZ1Iw0ueKcNZooKKUUE71gJF80XFABKlMFFBPWMC2UykVBZFYCLeWELPgIne7udsH_WUMf6we_Di5Z1rTIKc9EyYpElTtqYywMdRdMK8NQU1JvE6q3CdX7hOppdXuz3_g7AeiPCA
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201601555
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 4307525231
AENM201601555
Genre article
GrantInformation_xml – fundername: Washington State University
– fundername: Department of Energy's Office of Biological and Environmental Research
– fundername: Battelle
  funderid: DE‐AC05‐76RL01830
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-g3365-8c92ad20f6c332fd0ce9aa57db206bf3515ec4c8e872f2d5cc6580a49e19a70b3
ISSN 1614-6832
IngestDate Fri Jul 25 12:12:57 EDT 2025
Wed Jan 22 16:35:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g3365-8c92ad20f6c332fd0ce9aa57db206bf3515ec4c8e872f2d5cc6580a49e19a70b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1861345928
PQPubID 886389
PageCount 9
ParticipantIDs proquest_journals_1861345928
wiley_primary_10_1002_aenm_201601555_AENM201601555
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012 2012; 16 16
2013; 25
2014 2015; 5 51
2005 2014; 127 7
2010; 102
2015; 54
2015 2014; 44 35
2014 2015 2015; 53 6 137
2007 2013 2012 2011 2011 2014; 317 5 11 11 133 4
2015; 8
2011 2014; 10 136
2015; 7
2013 2016; 135 6
2009; 34
2014 2015; 136 27
2015; 27
2015; 137
2014 2015; 7 137
2015; 44
2015 2016; 5 45
2013; 135
2013; 113
2016; 138
2014; 8
2008 2008; 321 20
2016; 45
2014 2014; 53 7
2014; 10
2014; 31
2016; 22
References_xml – volume: 136 27
  start-page: 7587 7636
  year: 2014 2015
  publication-title: J. Am. Chem. Soc. Chem. Mater.
– volume: 137
  start-page: 4347
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 135 6
  start-page: 9267 714
  year: 2013 2016
  publication-title: J. Am. Chem. Soc. ACS Catal.
– volume: 27
  start-page: 7549
  year: 2015
  publication-title: Chem. Mater.
– volume: 53 7
  start-page: 7860 2608
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Energy Environ. Sci.
– volume: 27
  start-page: 5010
  year: 2015
  publication-title: Adv. Mater.
– volume: 5 45
  start-page: 13801 1781
  year: 2015 2016
  publication-title: Sci. Rep. Chem. Soc. Rev.
– volume: 44 35
  start-page: 586 499
  year: 2015 2014
  publication-title: Renewable Sustainable Energy Rev. Renewable Sustainable Energy Rev.
– volume: 138
  start-page: 1359
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 517
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 53 6 137
  start-page: 6407 6512 15753
  year: 2014 2015 2015
  publication-title: Angew. Chem. Int. Ed. Nat. Commun. J. Am. Chem. Soc.
– volume: 8
  start-page: 6297
  year: 2014
  publication-title: ACS Nano
– volume: 54
  start-page: 5331
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 135
  start-page: 8525
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 5807
  year: 2013
  publication-title: Adv. Mater.
– volume: 137
  start-page: 5590
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 10974
  year: 2015
  publication-title: Nanoscale
– volume: 7
  start-page: 1920
  year: 2015
  publication-title: ChemCatChem
– volume: 113
  start-page: 7981
  year: 2013
  publication-title: Chem. Rev.
– volume: 8
  start-page: 731
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 317 5 11 11 133 4
  start-page: 100 7768 963 4168 7296 1693
  year: 2007 2013 2012 2011 2011 2014
  publication-title: Science Nanoscale Nat. Mater. Nano. Lett. J. Am. Chem. Soc. ACS Catal.
– volume: 10 136
  start-page: 780 13925
  year: 2011 2014
  publication-title: Nat. Mater. J. Am. Chem. Soc.
– volume: 10
  start-page: 1932
  year: 2014
  publication-title: Small
– volume: 321 20
  start-page: 1072 7081
  year: 2008 2008
  publication-title: Science Chem. Mater.
– volume: 102
  start-page: 103
  year: 2010
  publication-title: Clim. Change.
– volume: 16 16
  start-page: 2154 4141
  year: 2012 2012
  publication-title: Renewable Sustainable Energy Rev. Renewable Sustainable Energy Rev.
– volume: 7 137
  start-page: 609 2688
  year: 2014 2015
  publication-title: Energy Environ. Sci. J. Am. Chem. Soc.
– volume: 27
  start-page: 3769
  year: 2015
  publication-title: Chem. Mater.
– volume: 5 51
  start-page: 4477 7851
  year: 2014 2015
  publication-title: Nat. Commun. Chem. Commnun.
– volume: 127 7
  start-page: 14871 2624
  year: 2005 2014
  publication-title: J. Am. Chem. Soc. Energy Environ. Sci.
– volume: 34
  start-page: 703
  year: 2009
  publication-title: Int. J. Hydrogen Energy
– volume: 31
  start-page: 746
  year: 2014
  publication-title: Renewable Sustainable Energy Rev.
– volume: 22
  start-page: 4000
  year: 2016
  publication-title: Chem. Eur. J.
SSID ssj0000491033
Score 2.6264675
Snippet Cobalt‐based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities...
Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Adsorption
bimetallic phosphides
Conductivity
electrical conductivity
hydrogen adsorption
water splitting
zeolitic imidazolate frameworks
Title Bimetallic Cobalt‐Based Phosphide Zeolitic Imidazolate Framework: CoPx Phase‐Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201601555
https://www.proquest.com/docview/1861345928
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dbtMwFICtst3ABeJXDAbyBXdRR-L8c9d2RQXRMambqHYTObG9VFqTqU0Q9IpH4IF4Gh6AZ-DYTtxUIAS7iVrXdtqerz4_PT5G6GVmO0Jw1-sLTuTfjH7cpx48dUPbE5z7PPLlRuHpSTA5997N_Xmv97OTtVRX6VG2-eO-kptIFdpArnKX7H9I1kwKDfAY5AtXkDBc_0nGw8WSg_Es61SPZF2PyqQuDEE5Mes0L9fX-YJx64LrPDfr7XLB6Ab82YpLo1UnZsmwwKg8_QwDYJyZ5Lg5ILeyxuqwHCXPUVnIErH6zAkZdZ98YasS3qI1qMqlNWDrcqWXobHeVijzGMeqUIWc6cMnGQS7sj5SWZ1xBiawSrzu2siDNi2B6wmWsqv8Mk00qE0jrou8NmrlIq91_gAvLjd5Wbftc9U8LK2LIwOraprltBS0uXcT-HDCTuBDr9VgWfSDqAmP8m6brgDVLvBhh2PS0fRGD_6mRnRZWsoLWavACaRd6W8VZpskYHr6f--rywuPT6bm9Vton4BbA-vy_uB4-n5mooLgrzm2q3aFtJ-urTRqk1e7N9nxibqelTKNzu6hu41Pgwca0Puox4sH6E6n0uVD9H2LKtao_vj6TUGKDaS4hRR3IMUG0tdYIooVojDYwIm3cOIunBjgxC2cWMKJt3BiDScGOLGBEzdwYgUnNnA-QudvxmejSb85OKR_6cqszSiLCWXEFkHmukQwO-MxpX7IUmIHqXDBhueZl0U8CokgzM8ysMNt6sXciWlop-5jtFeUBX-CMGMBjyNH-GEaeJQ6ccyjQHiuIBw8C-YdoMNWCEmzMqwTJwIj2fNjEh0gogSTXOvaMYmuEk4SKcrEiDLZoePpTQY9Q7e3P5JDtFetav4c7OUqfdFA9gvcycMo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetallic+Cobalt%E2%80%90Based+Phosphide+Zeolitic+Imidazolate+Framework%3A+CoPx+Phase%E2%80%90Dependent+Electrical+Conductivity+and+Hydrogen+Atom+Adsorption+Energy+for+Efficient+Overall+Water+Splitting&rft.jtitle=Advanced+energy+materials&rft.au=Song%2C+Junhua&rft.au=Zhu%2C+Chengzhou&rft.au=Xu%2C+Bo+Z.&rft.au=Fu%2C+Shaofang&rft.date=2017-01-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=7&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201601555&rft.externalDBID=10.1002%252Faenm.201601555&rft.externalDocID=AENM201601555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon