Light‐Switchable Oxygen Vacancies in Ultrafine Bi5O7Br Nanotubes for Boosting Solar‐Driven Nitrogen Fixation in Pure Water
Solar‐driven reduction of dinitrogen (N2) to ammonia (NH3) is severely hampered by the kinetically complex and energetically challenging multielectron reaction. Oxygen vacancies (OVs) with abundant localized electrons on the surface of bismuth oxybromide‐based semiconductors are demonstrated to have...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 31 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
18.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar‐driven reduction of dinitrogen (N2) to ammonia (NH3) is severely hampered by the kinetically complex and energetically challenging multielectron reaction. Oxygen vacancies (OVs) with abundant localized electrons on the surface of bismuth oxybromide‐based semiconductors are demonstrated to have the ability to capture and activate N2, providing an alternative pathway to overcome such limitations. However, bismuth oxybromide materials are susceptible to photocorrosion, and the surface OVs are easily oxidized and therefore lose their activities. For realistic photocatalytic N2 fixation, fabricating and enhancing the stability of sustainable OVs on semiconductors is indispensable. This study shows the first synthesis of self‐assembled 5 nm diameter Bi5O7Br nanotubes with strong nanotube structure, suitable absorption edge, and many exposed surface sites, which are favorable for furnishing sufficient visible light‐induced OVs to realize excellent and stable photoreduction of atmospheric N2 into NH3 in pure water. The NH3 generation rate is as high as 1.38 mmol h−1 g−1, accompanied by an apparent quantum efficiency over 2.3% at 420 nm. The results presented herein provide new insights into rational design and engineering for the creation of highly active catalysts with light‐switchable OVs toward efficient, stable, and sustainable visible light N2 fixation in mild conditions.
A facile wet chemical method for water‐assisted self‐assembly of 5 nm diameter Bi5O7Br nanotubes is reported. The obtained 5 nm Bi5O7Br‐NT is characterized with large surface area (>96 m2 g−1), suitable absorption edge, and sufficient surface oxygen vacancies of light switch. As a result, 5 nm Bi5O7Br‐NT delivers an excellent visible light driven photocatalytic N2 fixation performance with a NH3 generation rate of 1.38 mmol h−1 g−1 in pure water. |
---|---|
AbstractList | Solar‐driven reduction of dinitrogen (N2) to ammonia (NH3) is severely hampered by the kinetically complex and energetically challenging multielectron reaction. Oxygen vacancies (OVs) with abundant localized electrons on the surface of bismuth oxybromide‐based semiconductors are demonstrated to have the ability to capture and activate N2, providing an alternative pathway to overcome such limitations. However, bismuth oxybromide materials are susceptible to photocorrosion, and the surface OVs are easily oxidized and therefore lose their activities. For realistic photocatalytic N2 fixation, fabricating and enhancing the stability of sustainable OVs on semiconductors is indispensable. This study shows the first synthesis of self‐assembled 5 nm diameter Bi5O7Br nanotubes with strong nanotube structure, suitable absorption edge, and many exposed surface sites, which are favorable for furnishing sufficient visible light‐induced OVs to realize excellent and stable photoreduction of atmospheric N2 into NH3 in pure water. The NH3 generation rate is as high as 1.38 mmol h−1 g−1, accompanied by an apparent quantum efficiency over 2.3% at 420 nm. The results presented herein provide new insights into rational design and engineering for the creation of highly active catalysts with light‐switchable OVs toward efficient, stable, and sustainable visible light N2 fixation in mild conditions.
A facile wet chemical method for water‐assisted self‐assembly of 5 nm diameter Bi5O7Br nanotubes is reported. The obtained 5 nm Bi5O7Br‐NT is characterized with large surface area (>96 m2 g−1), suitable absorption edge, and sufficient surface oxygen vacancies of light switch. As a result, 5 nm Bi5O7Br‐NT delivers an excellent visible light driven photocatalytic N2 fixation performance with a NH3 generation rate of 1.38 mmol h−1 g−1 in pure water. Solar‐driven reduction of dinitrogen (N2) to ammonia (NH3) is severely hampered by the kinetically complex and energetically challenging multielectron reaction. Oxygen vacancies (OVs) with abundant localized electrons on the surface of bismuth oxybromide‐based semiconductors are demonstrated to have the ability to capture and activate N2, providing an alternative pathway to overcome such limitations. However, bismuth oxybromide materials are susceptible to photocorrosion, and the surface OVs are easily oxidized and therefore lose their activities. For realistic photocatalytic N2 fixation, fabricating and enhancing the stability of sustainable OVs on semiconductors is indispensable. This study shows the first synthesis of self‐assembled 5 nm diameter Bi5O7Br nanotubes with strong nanotube structure, suitable absorption edge, and many exposed surface sites, which are favorable for furnishing sufficient visible light‐induced OVs to realize excellent and stable photoreduction of atmospheric N2 into NH3 in pure water. The NH3 generation rate is as high as 1.38 mmol h−1 g−1, accompanied by an apparent quantum efficiency over 2.3% at 420 nm. The results presented herein provide new insights into rational design and engineering for the creation of highly active catalysts with light‐switchable OVs toward efficient, stable, and sustainable visible light N2 fixation in mild conditions. |
Author | Yang, Zixin Ye, Jinhua Hai, Xiao Xiang, Yonggang Ding, Xing Wang, Shengyao Chen, Hao Meng, Xianguang Chang, Kun |
Author_xml | – sequence: 1 givenname: Shengyao surname: Wang fullname: Wang, Shengyao organization: Ministry of Education – sequence: 2 givenname: Xiao surname: Hai fullname: Hai, Xiao organization: Hokkaido University – sequence: 3 givenname: Xing surname: Ding fullname: Ding, Xing organization: Huazhong Agricultural University – sequence: 4 givenname: Kun surname: Chang fullname: Chang, Kun organization: National Institute for Materials Science (NIMS) – sequence: 5 givenname: Yonggang surname: Xiang fullname: Xiang, Yonggang organization: Huazhong Agricultural University – sequence: 6 givenname: Xianguang surname: Meng fullname: Meng, Xianguang organization: North China University of Science and Technology – sequence: 7 givenname: Zixin surname: Yang fullname: Yang, Zixin organization: Huazhong Agricultural University – sequence: 8 givenname: Hao surname: Chen fullname: Chen, Hao email: hchenhao@mail.hzau.edu.cn organization: Ministry of Education – sequence: 9 givenname: Jinhua orcidid: 0000-0002-8105-8903 surname: Ye fullname: Ye, Jinhua email: Jinhua.Ye@nims.go.jp organization: School of Material Science and Engineering Tianjin University |
BookMark | eNo9kM9Kw0AQhxdRsK1ePS94Tp3NbjbJsfU_1FbQ6jFMk026Je7qZqvtRXwEn9EnMaEiDDMM8-Mb-Ppk31ijCDlhMGQA4RkWLzgMgcVtxWKP9FgUskBAGu2THqQ8ClIpkkPSb5oVAKQSZI98TnS19D9f3w8f2udLXNSKzjbbShn6hDmaXKuGakPntXdYaqPoWEezeOzoFI3160V7Lq2jY2sbr01FH2yNruVdOP3eQqbaO9vRrvQGvbamg92vnaLP6JU7Igcl1o06_psDMr-6fDy_CSaz69vz0SSoOJciyAvJJceCFUnJuGClZAoRVMIjyJmQALyIMRYcZchZVBZpHkNeCJBCtS3lA3K64746-7ZWjc9Wdu1M-zJjaZhICGXcpdJd6kPXapu9Ov2CbpsxyDrBWSc4-xecjS7uRv8b_wUu8HUt |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SR 8BQ 8FD JG9 |
DOI | 10.1002/adma.201701774 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201701774 |
Genre | article |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 201406250019; 201606760019 – fundername: 973 Program funderid: 2014CB239301 – fundername: Fundamental Research Funds for the Central Universities of China funderid: 2015PY120; 2015PY047; 2016PY088 – fundername: National Science Foundation of China funderid: 21633004; 51572101; 21607047; 21502059 – fundername: World Premier International Research Center Initiative |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-g3364-cd6363ad1d8f1341f61eaa0e8350c146003d7a743a62315fd9c70cd4064e40693 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Sat Jul 26 03:35:28 EDT 2025 Wed Jan 22 17:06:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3364-cd6363ad1d8f1341f61eaa0e8350c146003d7a743a62315fd9c70cd4064e40693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8105-8903 |
PQID | 1928602679 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_journals_1928602679 wiley_primary_10_1002_adma_201701774_ADMA201701774 |
PublicationCentury | 2000 |
PublicationDate | August 18, 2017 |
PublicationDateYYYYMMDD | 2017-08-18 |
PublicationDate_xml | – month: 08 year: 2017 text: August 18, 2017 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2013; 25 2015; 3 2015; 346 1980; 21 2014; 26 2011; 11 2016; 187 2004 2017; 29 2003; 18 2009; 131 2011; 17 2011; 3 2015; 8 2014; 136 2014; 43 2017; 139 2014; 1 2017; 50 2016; 7 2015; 27 2014; 4 2015; 137 1984; 15 2013; 12 2010; 114 2013; 136–137 2013; 52 2016; 113 1999; 11 2016; 352 2013; 135 1977; 99 1985; 315 2016; 138 2007; 63 2011; 47 2016; 28 2012; 4 2012; 22 2014; 6 2016; 8 2014; 53 2016; 22 |
References_xml | – volume: 1 start-page: 90 year: 2014 publication-title: Environ. Sci.: Nano. – volume: 3 start-page: 15108 year: 2015 publication-title: J. Mater. Chem. A. – volume: 99 start-page: 7189 year: 1977 publication-title: J. Am. Chem. Soc. – volume: 187 start-page: 281 year: 2016 publication-title: Appl. Catal., B – volume: 15 start-page: 18 year: 1984 publication-title: Chem. Informationsdienst – volume: 4 start-page: 954 year: 2014 publication-title: ACS Catal. – volume: 53 start-page: 9802 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 18722 year: 2016 publication-title: Chem. Eur. J. – volume: 136 start-page: 10226 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 3594 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 10033 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 8473 year: 2014 publication-title: Nanoscale – volume: 352 start-page: 448 year: 2016 publication-title: Science – volume: 137 start-page: 2030 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 346 start-page: 311 year: 2015 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 836 year: 2013 publication-title: Nat. Mater. – volume: 7 start-page: 11480 year: 2016 publication-title: Nat. Commun. – volume: 139 start-page: 4737 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 154 year: 1999 publication-title: Adv. Mater. – volume: 8 start-page: 821 year: 2015 publication-title: Nano Res. – volume: 113 start-page: 5530 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – year: 2004 – volume: 27 start-page: 3444 year: 2015 publication-title: Adv. Mater. – volume: 22 start-page: 22840 year: 2012 publication-title: J. Mater. Chem. – volume: 8 start-page: 1986 year: 2016 publication-title: Nanoscale – volume: 114 start-page: 4041 year: 2010 publication-title: Sicence – volume: 43 start-page: 547 year: 2014 publication-title: Chem. Rev. – volume: 8 start-page: 27661 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 6369 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 315 start-page: 311 year: 1985 publication-title: Nature – volume: 26 start-page: 5976 year: 2014 publication-title: Adv. Mater. – volume: 18 start-page: 2320 year: 2003 publication-title: Chem. Commun. – volume: 11 start-page: 2865 year: 2011 publication-title: Nano Lett. – volume: 6 start-page: 14168 year: 2014 publication-title: Nanoscale – volume: 47 start-page: 6951 year: 2011 publication-title: Chem. Commun. – volume: 25 start-page: 5075 year: 2013 publication-title: Adv. Mater. – volume: 139 start-page: 3513 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 201 year: 1980 publication-title: Catal Rev. Sci. Eng. – volume: 28 start-page: 4059 year: 2016 publication-title: Adv. Mater. – volume: 50 start-page: 112 year: 2017 publication-title: Acc. Chem. Res. – volume: 135 start-page: 10411 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 63 start-page: 109 year: 2007 publication-title: Acta Crystallogr. Sect. C: Cryst. Struct. Commun. – volume: 138 start-page: 14962 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 9471 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 812 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 29 start-page: 1604799 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 201 year: 2017 publication-title: J. Mater. Chem. A – volume: 26 start-page: 4920 year: 2014 publication-title: Adv. Mater. – volume: 136–137 start-page: 112 year: 2013 publication-title: Appl. Catal., B – volume: 17 start-page: 8039 year: 2011 publication-title: Chem. Eur. J. – volume: 22 start-page: 13819 year: 2016 publication-title: Chem. Eur. J. – volume: 4 start-page: 934 year: 2012 publication-title: Nat. Chem. – volume: 135 start-page: 15750 year: 2013 publication-title: J. Am. Chem. Soc. |
SSID | ssj0009606 |
Score | 2.680713 |
Snippet | Solar‐driven reduction of dinitrogen (N2) to ammonia (NH3) is severely hampered by the kinetically complex and energetically challenging multielectron... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Ammonia Bi5O7Br nanotubes Bismuth Design engineering Fixation Nanotubes nitrogen fixation oxygen vacancies photocatalysis Photochemistry Quantum efficiency Semiconductors Vacancies visible light |
Title | Light‐Switchable Oxygen Vacancies in Ultrafine Bi5O7Br Nanotubes for Boosting Solar‐Driven Nitrogen Fixation in Pure Water |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201701774 https://www.proquest.com/docview/1928602679 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ29TsMwEMct1AkGvhGFgjywpk3q1EnHllJViBZEKXSL7NhBEahBaSIKA-IReEaehLukn4ywOYrsJPb58vPJ_h8hZ3bAGSqHGXXpcsPmGku6ZtQ1d7Xv2kwFGIfs9nhnYF8Oa8OlU_y5PsQ84IYzI_PXOMGFHFcWoqFCZbpBqCcOCANOGDdsIRXdLvSjEM8zsT0GT-e2O1NtNKuV1eorfLlMqdlvpr1FxOwF890lT-U0kWX__Zd243--YJtsThmUNnKj2SFrerRLNpaUCffIxxUu2r8_v_qvIYwrnq-i15M3sDZ6L_wso--YhiM6eE5iEUA92gxr104zpuCuoySVcBtwmDajaIwbq2kfl9DQXitG90p7YRJH2Fo7nGS2gY3dpLGmDwC_8T4ZtC_uzjvGNFWD8cgYtw1fccaZUJZyA5SIC7ilhTA18J3pgzMG36EcAbQiALesWqDqvmP6CmjC1nj2lh2Qwiga6UNCpeMCowHFAlnajqOkqSSDVZVUiinlV4ukNBsqbzrfxh5wap5Mq14k1azPvZdcrcPLdZmrHva2N-9tr9HqNuZXR3-pdEzWsYwBZsstkUISp_oECCWRp5kV_gBsPt-x |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsNAEB1xFEDBjbjZAkqD43XWTkGREKIASUBAgM7Y3jWyQDFyHHEUiE_gV_gVPoEvYcZOwlEiUdD50I7snZmdN6PdNwDrZiA4MYdpBc8WmikUXam8VlDCVr5tchlQHbLeENWmuX-RvxiA195ZmIwfol9wI89I12tycCpIb32yhroyJQ4iQnHEMN19lQfq4Q6ztvb2XhlVvGEYld3TnarWbSygXXEuTM2Xggvuypy0AyI0C0ROua6uEI3oPi4daOnScjG2uggOcvlAFnxL9yXGPlPRSVGOcgdhmNqIE11_-fiTsYoSgpTej-P_CtPu8UTqxtb37_2GaL_i4jSwVSbgrTcl2X6W681O4m36jz_YIv_VnE3CeBdms2LmF1MwoFrTMPaFfHEGnmpUl3h_fjm5C9F06QgZO7x_QIdiZ66fNi1us7DFmjdJ7AY4jpXC_KFVihlGpCjpePgaET8rRVGb9o6zE6oSoLxyTBGENcIkjkhaJbxPzZ-EHXVixc4R38ez0PyTCZiDoVbUUvPAPMtGGIpAHcGzaVnS06XHMXH0pORS-sYCLPdsw-kuKW0HoXjWL6ywAEaqZOc2IyRxMuppwyHtOn3tOsVyvdi_W_zNoDUYqZ7Wa05tr3GwBKP0nOrpOXsZhpK4o1YQkCXeauoCDC7_2n4-ACxCOwg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB7xIyF6KLS0Ki0_e6BHB8frrO1DDwkmIgRCRBrKzbW9a2RRxchxBPSAeAQehVfhFXgSZuz8kB4r5cDNfzta78zsfDva_QZgx4wEJ-YwzQlsoZlC0ZWqaI4Stgptk8uI8pDHLXHQNQ_PK-dz8Dg6C1PwQ4wTbuQZ-XxNDn4lo90Jaagvc94g4hNHCDPcVtlUt9e4aOv_aLio4e-GUd__uXegDesKaBecC1MLpeCC-7Is7Yj4zCJRVr6vKwQjeogzBxq6tHwMrT5ig3Ilkk5o6aHE0GcqOijKUe48LOKHDhWLcE8nhFW0HsjZ_Tj-rjDtEU2kbuxO93cK0L6GxXlcq6_A02hEiu0sl6VBFpTCv_-QRb6lIVuF90OQzaqFV3yAOdX7CO9eUS-uwd0RZSWe7x861zEaLh0gYyc3t-hO7MwP85LFfRb3WPdPlvoRtmO1uHJi1VKG8SjJBgG-RrzPaknSp53jrEM5ApTnphQ_WCvO0oSk1eOb3PhJWHuQKvYL0X36CbozGYDPsNBLeuoLsMCyEYQiTEfobFqWDHQZcFw2BlJyKUNjHTZGpuENJ5S-h0C8qBbmrIOR69i7KuhIvIJ42vBIu95Yu17VPa6O777-T6NtWGq7de-o0Wp-g2V6TMn0sr0BC1k6UJuIxrJgK3cABr9nbT4vGFM5tw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light%E2%80%90Switchable+Oxygen+Vacancies+in+Ultrafine+Bi5O7Br+Nanotubes+for+Boosting+Solar%E2%80%90Driven+Nitrogen+Fixation+in+Pure+Water&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Shengyao&rft.au=Xiao+Hai&rft.au=Ding%2C+Xing&rft.au=Chang%2C+Kun&rft.date=2017-08-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=31&rft_id=info:doi/10.1002%2Fadma.201701774&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |