Light‐Switchable Oxygen Vacancies in Ultrafine Bi5O7Br Nanotubes for Boosting Solar‐Driven Nitrogen Fixation in Pure Water

Solar‐driven reduction of dinitrogen (N2) to ammonia (NH3) is severely hampered by the kinetically complex and energetically challenging multielectron reaction. Oxygen vacancies (OVs) with abundant localized electrons on the surface of bismuth oxybromide‐based semiconductors are demonstrated to have...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 31
Main Authors Wang, Shengyao, Hai, Xiao, Ding, Xing, Chang, Kun, Xiang, Yonggang, Meng, Xianguang, Yang, Zixin, Chen, Hao, Ye, Jinhua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 18.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar‐driven reduction of dinitrogen (N2) to ammonia (NH3) is severely hampered by the kinetically complex and energetically challenging multielectron reaction. Oxygen vacancies (OVs) with abundant localized electrons on the surface of bismuth oxybromide‐based semiconductors are demonstrated to have the ability to capture and activate N2, providing an alternative pathway to overcome such limitations. However, bismuth oxybromide materials are susceptible to photocorrosion, and the surface OVs are easily oxidized and therefore lose their activities. For realistic photocatalytic N2 fixation, fabricating and enhancing the stability of sustainable OVs on semiconductors is indispensable. This study shows the first synthesis of self‐assembled 5 nm diameter Bi5O7Br nanotubes with strong nanotube structure, suitable absorption edge, and many exposed surface sites, which are favorable for furnishing sufficient visible light‐induced OVs to realize excellent and stable photoreduction of atmospheric N2 into NH3 in pure water. The NH3 generation rate is as high as 1.38 mmol h−1 g−1, accompanied by an apparent quantum efficiency over 2.3% at 420 nm. The results presented herein provide new insights into rational design and engineering for the creation of highly active catalysts with light‐switchable OVs toward efficient, stable, and sustainable visible light N2 fixation in mild conditions. A facile wet chemical method for water‐assisted self‐assembly of 5 nm diameter Bi5O7Br nanotubes is reported. The obtained 5 nm Bi5O7Br‐NT is characterized with large surface area (>96 m2 g−1), suitable absorption edge, and sufficient surface oxygen vacancies of light switch. As a result, 5 nm Bi5O7Br‐NT delivers an excellent visible light driven photocatalytic N2 fixation performance with a NH3 generation rate of 1.38 mmol h−1 g−1 in pure water.
AbstractList Solar‐driven reduction of dinitrogen (N2) to ammonia (NH3) is severely hampered by the kinetically complex and energetically challenging multielectron reaction. Oxygen vacancies (OVs) with abundant localized electrons on the surface of bismuth oxybromide‐based semiconductors are demonstrated to have the ability to capture and activate N2, providing an alternative pathway to overcome such limitations. However, bismuth oxybromide materials are susceptible to photocorrosion, and the surface OVs are easily oxidized and therefore lose their activities. For realistic photocatalytic N2 fixation, fabricating and enhancing the stability of sustainable OVs on semiconductors is indispensable. This study shows the first synthesis of self‐assembled 5 nm diameter Bi5O7Br nanotubes with strong nanotube structure, suitable absorption edge, and many exposed surface sites, which are favorable for furnishing sufficient visible light‐induced OVs to realize excellent and stable photoreduction of atmospheric N2 into NH3 in pure water. The NH3 generation rate is as high as 1.38 mmol h−1 g−1, accompanied by an apparent quantum efficiency over 2.3% at 420 nm. The results presented herein provide new insights into rational design and engineering for the creation of highly active catalysts with light‐switchable OVs toward efficient, stable, and sustainable visible light N2 fixation in mild conditions. A facile wet chemical method for water‐assisted self‐assembly of 5 nm diameter Bi5O7Br nanotubes is reported. The obtained 5 nm Bi5O7Br‐NT is characterized with large surface area (>96 m2 g−1), suitable absorption edge, and sufficient surface oxygen vacancies of light switch. As a result, 5 nm Bi5O7Br‐NT delivers an excellent visible light driven photocatalytic N2 fixation performance with a NH3 generation rate of 1.38 mmol h−1 g−1 in pure water.
Solar‐driven reduction of dinitrogen (N2) to ammonia (NH3) is severely hampered by the kinetically complex and energetically challenging multielectron reaction. Oxygen vacancies (OVs) with abundant localized electrons on the surface of bismuth oxybromide‐based semiconductors are demonstrated to have the ability to capture and activate N2, providing an alternative pathway to overcome such limitations. However, bismuth oxybromide materials are susceptible to photocorrosion, and the surface OVs are easily oxidized and therefore lose their activities. For realistic photocatalytic N2 fixation, fabricating and enhancing the stability of sustainable OVs on semiconductors is indispensable. This study shows the first synthesis of self‐assembled 5 nm diameter Bi5O7Br nanotubes with strong nanotube structure, suitable absorption edge, and many exposed surface sites, which are favorable for furnishing sufficient visible light‐induced OVs to realize excellent and stable photoreduction of atmospheric N2 into NH3 in pure water. The NH3 generation rate is as high as 1.38 mmol h−1 g−1, accompanied by an apparent quantum efficiency over 2.3% at 420 nm. The results presented herein provide new insights into rational design and engineering for the creation of highly active catalysts with light‐switchable OVs toward efficient, stable, and sustainable visible light N2 fixation in mild conditions.
Author Yang, Zixin
Ye, Jinhua
Hai, Xiao
Xiang, Yonggang
Ding, Xing
Wang, Shengyao
Chen, Hao
Meng, Xianguang
Chang, Kun
Author_xml – sequence: 1
  givenname: Shengyao
  surname: Wang
  fullname: Wang, Shengyao
  organization: Ministry of Education
– sequence: 2
  givenname: Xiao
  surname: Hai
  fullname: Hai, Xiao
  organization: Hokkaido University
– sequence: 3
  givenname: Xing
  surname: Ding
  fullname: Ding, Xing
  organization: Huazhong Agricultural University
– sequence: 4
  givenname: Kun
  surname: Chang
  fullname: Chang, Kun
  organization: National Institute for Materials Science (NIMS)
– sequence: 5
  givenname: Yonggang
  surname: Xiang
  fullname: Xiang, Yonggang
  organization: Huazhong Agricultural University
– sequence: 6
  givenname: Xianguang
  surname: Meng
  fullname: Meng, Xianguang
  organization: North China University of Science and Technology
– sequence: 7
  givenname: Zixin
  surname: Yang
  fullname: Yang, Zixin
  organization: Huazhong Agricultural University
– sequence: 8
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  email: hchenhao@mail.hzau.edu.cn
  organization: Ministry of Education
– sequence: 9
  givenname: Jinhua
  orcidid: 0000-0002-8105-8903
  surname: Ye
  fullname: Ye, Jinhua
  email: Jinhua.Ye@nims.go.jp
  organization: School of Material Science and Engineering Tianjin University
BookMark eNo9kM9Kw0AQhxdRsK1ePS94Tp3NbjbJsfU_1FbQ6jFMk026Je7qZqvtRXwEn9EnMaEiDDMM8-Mb-Ppk31ijCDlhMGQA4RkWLzgMgcVtxWKP9FgUskBAGu2THqQ8ClIpkkPSb5oVAKQSZI98TnS19D9f3w8f2udLXNSKzjbbShn6hDmaXKuGakPntXdYaqPoWEezeOzoFI3160V7Lq2jY2sbr01FH2yNruVdOP3eQqbaO9vRrvQGvbamg92vnaLP6JU7Igcl1o06_psDMr-6fDy_CSaz69vz0SSoOJciyAvJJceCFUnJuGClZAoRVMIjyJmQALyIMRYcZchZVBZpHkNeCJBCtS3lA3K64746-7ZWjc9Wdu1M-zJjaZhICGXcpdJd6kPXapu9Ov2CbpsxyDrBWSc4-xecjS7uRv8b_wUu8HUt
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SR
8BQ
8FD
JG9
DOI 10.1002/adma.201701774
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201701774
Genre article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 201406250019; 201606760019
– fundername: 973 Program
  funderid: 2014CB239301
– fundername: Fundamental Research Funds for the Central Universities of China
  funderid: 2015PY120; 2015PY047; 2016PY088
– fundername: National Science Foundation of China
  funderid: 21633004; 51572101; 21607047; 21502059
– fundername: World Premier International Research Center Initiative
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-g3364-cd6363ad1d8f1341f61eaa0e8350c146003d7a743a62315fd9c70cd4064e40693
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Sat Jul 26 03:35:28 EDT 2025
Wed Jan 22 17:06:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3364-cd6363ad1d8f1341f61eaa0e8350c146003d7a743a62315fd9c70cd4064e40693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8105-8903
PQID 1928602679
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_journals_1928602679
wiley_primary_10_1002_adma_201701774_ADMA201701774
PublicationCentury 2000
PublicationDate August 18, 2017
PublicationDateYYYYMMDD 2017-08-18
PublicationDate_xml – month: 08
  year: 2017
  text: August 18, 2017
  day: 18
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2013; 25
2015; 3
2015; 346
1980; 21
2014; 26
2011; 11
2016; 187
2004
2017; 29
2003; 18
2009; 131
2011; 17
2011; 3
2015; 8
2014; 136
2014; 43
2017; 139
2014; 1
2017; 50
2016; 7
2015; 27
2014; 4
2015; 137
1984; 15
2013; 12
2010; 114
2013; 136–137
2013; 52
2016; 113
1999; 11
2016; 352
2013; 135
1977; 99
1985; 315
2016; 138
2007; 63
2011; 47
2016; 28
2012; 4
2012; 22
2014; 6
2016; 8
2014; 53
2016; 22
References_xml – volume: 1
  start-page: 90
  year: 2014
  publication-title: Environ. Sci.: Nano.
– volume: 3
  start-page: 15108
  year: 2015
  publication-title: J. Mater. Chem. A.
– volume: 99
  start-page: 7189
  year: 1977
  publication-title: J. Am. Chem. Soc.
– volume: 187
  start-page: 281
  year: 2016
  publication-title: Appl. Catal., B
– volume: 15
  start-page: 18
  year: 1984
  publication-title: Chem. Informationsdienst
– volume: 4
  start-page: 954
  year: 2014
  publication-title: ACS Catal.
– volume: 53
  start-page: 9802
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 18722
  year: 2016
  publication-title: Chem. Eur. J.
– volume: 136
  start-page: 10226
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 3594
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 10033
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 8473
  year: 2014
  publication-title: Nanoscale
– volume: 352
  start-page: 448
  year: 2016
  publication-title: Science
– volume: 137
  start-page: 2030
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 346
  start-page: 311
  year: 2015
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 836
  year: 2013
  publication-title: Nat. Mater.
– volume: 7
  start-page: 11480
  year: 2016
  publication-title: Nat. Commun.
– volume: 139
  start-page: 4737
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 154
  year: 1999
  publication-title: Adv. Mater.
– volume: 8
  start-page: 821
  year: 2015
  publication-title: Nano Res.
– volume: 113
  start-page: 5530
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2004
– volume: 27
  start-page: 3444
  year: 2015
  publication-title: Adv. Mater.
– volume: 22
  start-page: 22840
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 1986
  year: 2016
  publication-title: Nanoscale
– volume: 114
  start-page: 4041
  year: 2010
  publication-title: Sicence
– volume: 43
  start-page: 547
  year: 2014
  publication-title: Chem. Rev.
– volume: 8
  start-page: 27661
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 137
  start-page: 6369
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 315
  start-page: 311
  year: 1985
  publication-title: Nature
– volume: 26
  start-page: 5976
  year: 2014
  publication-title: Adv. Mater.
– volume: 18
  start-page: 2320
  year: 2003
  publication-title: Chem. Commun.
– volume: 11
  start-page: 2865
  year: 2011
  publication-title: Nano Lett.
– volume: 6
  start-page: 14168
  year: 2014
  publication-title: Nanoscale
– volume: 47
  start-page: 6951
  year: 2011
  publication-title: Chem. Commun.
– volume: 25
  start-page: 5075
  year: 2013
  publication-title: Adv. Mater.
– volume: 139
  start-page: 3513
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 201
  year: 1980
  publication-title: Catal Rev. Sci. Eng.
– volume: 28
  start-page: 4059
  year: 2016
  publication-title: Adv. Mater.
– volume: 50
  start-page: 112
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 135
  start-page: 10411
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 63
  start-page: 109
  year: 2007
  publication-title: Acta Crystallogr. Sect. C: Cryst. Struct. Commun.
– volume: 138
  start-page: 14962
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 9471
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 812
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  start-page: 1604799
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 201
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 4920
  year: 2014
  publication-title: Adv. Mater.
– volume: 136–137
  start-page: 112
  year: 2013
  publication-title: Appl. Catal., B
– volume: 17
  start-page: 8039
  year: 2011
  publication-title: Chem. Eur. J.
– volume: 22
  start-page: 13819
  year: 2016
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 934
  year: 2012
  publication-title: Nat. Chem.
– volume: 135
  start-page: 15750
  year: 2013
  publication-title: J. Am. Chem. Soc.
SSID ssj0009606
Score 2.680713
Snippet Solar‐driven reduction of dinitrogen (N2) to ammonia (NH3) is severely hampered by the kinetically complex and energetically challenging multielectron...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Ammonia
Bi5O7Br nanotubes
Bismuth
Design engineering
Fixation
Nanotubes
nitrogen fixation
oxygen vacancies
photocatalysis
Photochemistry
Quantum efficiency
Semiconductors
Vacancies
visible light
Title Light‐Switchable Oxygen Vacancies in Ultrafine Bi5O7Br Nanotubes for Boosting Solar‐Driven Nitrogen Fixation in Pure Water
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201701774
https://www.proquest.com/docview/1928602679
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ29TsMwEMct1AkGvhGFgjywpk3q1EnHllJViBZEKXSL7NhBEahBaSIKA-IReEaehLukn4ywOYrsJPb58vPJ_h8hZ3bAGSqHGXXpcsPmGku6ZtQ1d7Xv2kwFGIfs9nhnYF8Oa8OlU_y5PsQ84IYzI_PXOMGFHFcWoqFCZbpBqCcOCANOGDdsIRXdLvSjEM8zsT0GT-e2O1NtNKuV1eorfLlMqdlvpr1FxOwF890lT-U0kWX__Zd243--YJtsThmUNnKj2SFrerRLNpaUCffIxxUu2r8_v_qvIYwrnq-i15M3sDZ6L_wso--YhiM6eE5iEUA92gxr104zpuCuoySVcBtwmDajaIwbq2kfl9DQXitG90p7YRJH2Fo7nGS2gY3dpLGmDwC_8T4ZtC_uzjvGNFWD8cgYtw1fccaZUJZyA5SIC7ilhTA18J3pgzMG36EcAbQiALesWqDqvmP6CmjC1nj2lh2Qwiga6UNCpeMCowHFAlnajqOkqSSDVZVUiinlV4ukNBsqbzrfxh5wap5Mq14k1azPvZdcrcPLdZmrHva2N-9tr9HqNuZXR3-pdEzWsYwBZsstkUISp_oECCWRp5kV_gBsPt-x
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsNAEB1xFEDBjbjZAkqD43XWTkGREKIASUBAgM7Y3jWyQDFyHHEUiE_gV_gVPoEvYcZOwlEiUdD50I7snZmdN6PdNwDrZiA4MYdpBc8WmikUXam8VlDCVr5tchlQHbLeENWmuX-RvxiA195ZmIwfol9wI89I12tycCpIb32yhroyJQ4iQnHEMN19lQfq4Q6ztvb2XhlVvGEYld3TnarWbSygXXEuTM2Xggvuypy0AyI0C0ROua6uEI3oPi4daOnScjG2uggOcvlAFnxL9yXGPlPRSVGOcgdhmNqIE11_-fiTsYoSgpTej-P_CtPu8UTqxtb37_2GaL_i4jSwVSbgrTcl2X6W681O4m36jz_YIv_VnE3CeBdms2LmF1MwoFrTMPaFfHEGnmpUl3h_fjm5C9F06QgZO7x_QIdiZ66fNi1us7DFmjdJ7AY4jpXC_KFVihlGpCjpePgaET8rRVGb9o6zE6oSoLxyTBGENcIkjkhaJbxPzZ-EHXVixc4R38ez0PyTCZiDoVbUUvPAPMtGGIpAHcGzaVnS06XHMXH0pORS-sYCLPdsw-kuKW0HoXjWL6ywAEaqZOc2IyRxMuppwyHtOn3tOsVyvdi_W_zNoDUYqZ7Wa05tr3GwBKP0nOrpOXsZhpK4o1YQkCXeauoCDC7_2n4-ACxCOwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB7xIyF6KLS0Ki0_e6BHB8frrO1DDwkmIgRCRBrKzbW9a2RRxchxBPSAeAQehVfhFXgSZuz8kB4r5cDNfzta78zsfDva_QZgx4wEJ-YwzQlsoZlC0ZWqaI4Stgptk8uI8pDHLXHQNQ_PK-dz8Dg6C1PwQ4wTbuQZ-XxNDn4lo90Jaagvc94g4hNHCDPcVtlUt9e4aOv_aLio4e-GUd__uXegDesKaBecC1MLpeCC-7Is7Yj4zCJRVr6vKwQjeogzBxq6tHwMrT5ig3Ilkk5o6aHE0GcqOijKUe48LOKHDhWLcE8nhFW0HsjZ_Tj-rjDtEU2kbuxO93cK0L6GxXlcq6_A02hEiu0sl6VBFpTCv_-QRb6lIVuF90OQzaqFV3yAOdX7CO9eUS-uwd0RZSWe7x861zEaLh0gYyc3t-hO7MwP85LFfRb3WPdPlvoRtmO1uHJi1VKG8SjJBgG-RrzPaknSp53jrEM5ApTnphQ_WCvO0oSk1eOb3PhJWHuQKvYL0X36CbozGYDPsNBLeuoLsMCyEYQiTEfobFqWDHQZcFw2BlJyKUNjHTZGpuENJ5S-h0C8qBbmrIOR69i7KuhIvIJ42vBIu95Yu17VPa6O777-T6NtWGq7de-o0Wp-g2V6TMn0sr0BC1k6UJuIxrJgK3cABr9nbT4vGFM5tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light%E2%80%90Switchable+Oxygen+Vacancies+in+Ultrafine+Bi5O7Br+Nanotubes+for+Boosting+Solar%E2%80%90Driven+Nitrogen+Fixation+in+Pure+Water&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Shengyao&rft.au=Xiao+Hai&rft.au=Ding%2C+Xing&rft.au=Chang%2C+Kun&rft.date=2017-08-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=31&rft_id=info:doi/10.1002%2Fadma.201701774&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon