MnN4 Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery
The development of inexpensive and highly efficient nonprecious metal catalysts to substitute Pt in the alkaline oxygen reduction reaction is an appealing idea in the energy field. Herein, a Mn oxygen reduction electrocatalyst with a half‐wave potential (E1/2) as high as 0.910 V under an alkaline ox...
Saved in:
Published in | Advanced energy materials Vol. 11; no. 6 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of inexpensive and highly efficient nonprecious metal catalysts to substitute Pt in the alkaline oxygen reduction reaction is an appealing idea in the energy field. Herein, a Mn oxygen reduction electrocatalyst with a half‐wave potential (E1/2) as high as 0.910 V under an alkaline oxygen reduction reaction process is developed, and the dynamic atomic structure change of the highly efficient Mn single‐atomic site is investigated using operando X‐ray absorption spectroscopy. These results demonstrate that the low‐valence MnL+N4 is the active site during the oxygen reduction process. Density functional theory reveals that facile electron transfer from MnL+N4 to adsorbed *OH species plays a key role in the excellent electrocatalytic performance. Moreover, when assembled as the cathode in a zinc–air battery, this MnN4 material shows high power density and excellent durability, demonstrating its promising potential to substitute the Pt catalyst in practical devices.
A manganese single‐atomic‐site catalyst with high performance in the oxygen reduction reaction and zinc–air batteries is reported. Operando X‐ray absorption spectroscopy reveals the formation of inactive high‐valence OHadsMnH+N4 in electrolytes, which progressively switches to active low‐valence MnL+N4 sites under applied potential. Theoretical calculations show that the atomically dispersed structure facilitates the electron transfer from MnN4 to *OH species. |
---|---|
AbstractList | The development of inexpensive and highly efficient nonprecious metal catalysts to substitute Pt in the alkaline oxygen reduction reaction is an appealing idea in the energy field. Herein, a Mn oxygen reduction electrocatalyst with a half‐wave potential (E1/2) as high as 0.910 V under an alkaline oxygen reduction reaction process is developed, and the dynamic atomic structure change of the highly efficient Mn single‐atomic site is investigated using operando X‐ray absorption spectroscopy. These results demonstrate that the low‐valence MnL+N4 is the active site during the oxygen reduction process. Density functional theory reveals that facile electron transfer from MnL+N4 to adsorbed *OH species plays a key role in the excellent electrocatalytic performance. Moreover, when assembled as the cathode in a zinc–air battery, this MnN4 material shows high power density and excellent durability, demonstrating its promising potential to substitute the Pt catalyst in practical devices. The development of inexpensive and highly efficient nonprecious metal catalysts to substitute Pt in the alkaline oxygen reduction reaction is an appealing idea in the energy field. Herein, a Mn oxygen reduction electrocatalyst with a half‐wave potential (E1/2) as high as 0.910 V under an alkaline oxygen reduction reaction process is developed, and the dynamic atomic structure change of the highly efficient Mn single‐atomic site is investigated using operando X‐ray absorption spectroscopy. These results demonstrate that the low‐valence MnL+N4 is the active site during the oxygen reduction process. Density functional theory reveals that facile electron transfer from MnL+N4 to adsorbed *OH species plays a key role in the excellent electrocatalytic performance. Moreover, when assembled as the cathode in a zinc–air battery, this MnN4 material shows high power density and excellent durability, demonstrating its promising potential to substitute the Pt catalyst in practical devices. A manganese single‐atomic‐site catalyst with high performance in the oxygen reduction reaction and zinc–air batteries is reported. Operando X‐ray absorption spectroscopy reveals the formation of inactive high‐valence OHadsMnH+N4 in electrolytes, which progressively switches to active low‐valence MnL+N4 sites under applied potential. Theoretical calculations show that the atomically dispersed structure facilitates the electron transfer from MnN4 to *OH species. |
Author | Zheng, Lirong Yang, Can Han, Aijuan Meng, Ge Wang, Dingsheng Zhuang, Zhongbin Liu, Junfeng Zhang, Tianyu Sun, Xiaoming Chen, Wenxing Dong, Bo Han, Xu |
Author_xml | – sequence: 1 givenname: Xu surname: Han fullname: Han, Xu organization: Beijing University of Chemical Technology – sequence: 2 givenname: Tianyu orcidid: 0000-0002-1250-9395 surname: Zhang fullname: Zhang, Tianyu organization: Beijing University of Chemical Technology – sequence: 3 givenname: Wenxing surname: Chen fullname: Chen, Wenxing organization: Beijing Institute of Technology – sequence: 4 givenname: Bo surname: Dong fullname: Dong, Bo organization: Beijing University of Chemical Technology – sequence: 5 givenname: Ge surname: Meng fullname: Meng, Ge organization: Tsinghua University – sequence: 6 givenname: Lirong surname: Zheng fullname: Zheng, Lirong email: zhenglr@ihep.ac.cn organization: Chinese Academy of Sciences – sequence: 7 givenname: Can surname: Yang fullname: Yang, Can organization: Beijing University of Chemical Technology – sequence: 8 givenname: Xiaoming surname: Sun fullname: Sun, Xiaoming organization: Beijing University of Chemical Technology – sequence: 9 givenname: Zhongbin surname: Zhuang fullname: Zhuang, Zhongbin organization: Beijing University of Chemical Technology – sequence: 10 givenname: Dingsheng surname: Wang fullname: Wang, Dingsheng organization: Tsinghua University – sequence: 11 givenname: Aijuan surname: Han fullname: Han, Aijuan email: hanaijuan@mail.buct.edu.cn organization: Beijing University of Chemical Technology – sequence: 12 givenname: Junfeng orcidid: 0000-0002-7455-6314 surname: Liu fullname: Liu, Junfeng email: ljf@mail.buct.edu.cn organization: Beijing University of Chemical Technology |
BookMark | eNo9kEtOwzAQhi1UJErplrUl1i1-NXHYharQSn0gHhs2ketMgqvUKU5aiNhwB47AQbgLF-AKpBR1NvOP9M38o_8YNWxuAaFTSrqUEHauwC67jLBa-z1-gJrUo6LjSUEae83ZEWoXxYLUJQJKOG-it4n9-fyaCjx7rVKw-BbitS5NbvEgA126XKtSZVVRXuDZCpyycY5HdgNFaVL1x-UJDuuNDeA7U0KBawQPTfqEb8AluVsqqwEbix-N1d_vH6Fx-FKVJbjqBB0mKiug_d9b6OFqcN8fdsaz61E_HHdSzj3e0YqoOAliHWjBPcIZ8bnkVIlEznt-oiQh88QHwagMWM0xIgNPMwUkAelxwlvobHd35fLndf16tMjXztaWERNSUipkz6-pYEe9mAyqaOXMUrkqoiTaBhxtA472AUfhYDrZT_wXGQ51iA |
ContentType | Journal Article |
Copyright | 2020 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202002753 |
DatabaseName | Wiley Online Library Open Access Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM202002753 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China – fundername: 111 Project funderid: B16028 – fundername: National Key Research and Development Program of China funderid: 2017YFA0206500; 2016YFA0202801; 2018YFA0702000 – fundername: Fundamental Research Funds for the Central Universities – fundername: Beijing Natural Science Foundation funderid: 2204089 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-g3363-ca0adf9dc9c436032073831a4f8b57fa800bf7e421892f9d20896c2ae0fe86303 |
IEDL.DBID | 24P |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:18:17 EDT 2025 Wed Jan 22 16:30:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3363-ca0adf9dc9c436032073831a4f8b57fa800bf7e421892f9d20896c2ae0fe86303 |
Notes | The copyright line for this article was changed on 12 January 2021 after original online publication. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7455-6314 0000-0002-1250-9395 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202002753 |
PQID | 2488114857 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2488114857 wiley_primary_10_1002_aenm_202002753_AENM202002753 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 8 2018; 28 2019; 3 2019; 5 2020; 20 2019; 11 2020; 120 2015; 10 2020; 59 2020; 13 2011; 13 2020; 11 2015; 9 2012; 12 2017; 357 2019; 243 2014; 136 2020; 19 2016; 55 2018; 24 2017; 50 2020; 7 2018; 8 2018; 3 2018; 2 2015; 115 2018; 1 2020 2016; 354 2013; 135 2018; 30 2016; 29 2018; 11 2016; 351 2016; 8 2019; 574 2016; 9 2018; 57 2020; 29 |
References_xml | – volume: 9 start-page: 2418 year: 2016 publication-title: Energy Environ. Sci. – volume: 29 start-page: 65 year: 2016 publication-title: Nano Energy – volume: 357 start-page: 479 year: 2017 publication-title: Science – volume: 13 start-page: 1856 year: 2020 publication-title: Nano Res. – volume: 24 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 13 start-page: 3082 year: 2020 publication-title: Nano Res. – volume: 120 start-page: 683 year: 2020 publication-title: Chem. Rev. – volume: 2 start-page: 134 year: 2018 publication-title: Nat. Catal. – volume: 8 start-page: 957 year: 2017 publication-title: Nat. Commun. – volume: 55 start-page: 7963 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2015 publication-title: ACS Nano – volume: 57 start-page: 8525 year: 2018 publication-title: Angew. Chem., Int. Ed. – year: 2020 publication-title: Sci. China Mater. – volume: 1 start-page: 935 year: 2018 publication-title: Nat. Catal. – volume: 3 start-page: 1806 year: 2019 publication-title: Chem. Rev. – volume: 29 year: 2020 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 2433 year: 2016 publication-title: Energy Environ. Sci. – volume: 19 start-page: 1215 year: 2020 publication-title: Nat. Mater. – volume: 13 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 915 year: 2017 publication-title: Acc. Chem. Res. – volume: 20 start-page: 6206 year: 2020 publication-title: Nano Lett. – volume: 8 start-page: 718 year: 2016 publication-title: Nat. Chem. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 135 start-page: 8525 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2831 year: 2020 publication-title: Nat. Commun. – volume: 13 start-page: 3165 year: 2020 publication-title: Nano Res. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 59 start-page: 2688 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 55 start-page: 2650 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 2963 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 12 start-page: 4025 year: 2012 publication-title: Nano Lett. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 59 start-page: 2705 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 354 start-page: 1414 year: 2016 publication-title: Science – volume: 11 start-page: 1098 year: 2019 publication-title: Nat. Chem. – volume: 243 start-page: 195 year: 2019 publication-title: Appl. Catal., B – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 786 year: 2019 publication-title: Chem – volume: 351 start-page: 361 year: 2016 publication-title: Science – volume: 10 start-page: 444 year: 2015 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 140 year: 2018 publication-title: Nat. Energy – volume: 115 start-page: 4823 year: 2015 publication-title: Chem. Rev. – volume: 11 start-page: 893 year: 2018 publication-title: Energy Environ. Sci. – volume: 574 start-page: 81 year: 2019 publication-title: Nature |
SSID | ssj0000491033 |
Score | 2.655391 |
Snippet | The development of inexpensive and highly efficient nonprecious metal catalysts to substitute Pt in the alkaline oxygen reduction reaction is an appealing idea... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Atomic structure Catalysts Density functional theory Electrocatalysts Electron transfer manganese catalysts Metal air batteries operando X‐ray absorption oxygen reduction reaction Oxygen reduction reactions single‐atomic‐site catalysts Substitutes Zinc-oxygen batteries zinc–air batteries |
Title | MnN4 Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202002753 https://www.proquest.com/docview/2488114857 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTsMwELWg3cAC8RWFUnnBNqrruPmwi6BVhehHlEoVm8iObdRNWjVFomLDHTgCB-EuXIArME7aNN2yjOR44fH4PY9n3iB0Td2ICC58S3oNbjEG1x3Om8zSukEdT7hCSPOi2-05nRG7HzfHhSr-TB8iD7gZz0jPa-PgXCT1jWgoV7GpJDdJBkC5d1HZ1NeapD7KBnmUBfhvg6T95IHZMMuB_btWbiS0vj3FFscsMtUUatqH6GDFEXGQGfUI7aj4GO0XlANP0Hs3_v367jHcf1vCFsCPRoHVrDFuZX1t0rDMMlnc4P5MAR7JKS5IasC4qcZBetbhIbDOBMMQbJI-8GBTSoAnMX6exNHPx2cwmeNMi3N5ikbt1tNtx1r1UbBebPNMG3HCpfZl5EfMdkzHdBfupQ3OtCearubAGYV2FQO09ymMo8TznYhyRbTyHMC4M1SKp7E6R9izAcyotCXhwKOk4kRqT1FN7AigTjoVVF2vYbhyhiSkcEiYa1fTrSCarms4y6Q0wkw0mYbGEmFuiTBo9br518V_frpEe9Rkn6T51VVUWsxf1RXQh4WopTukhsrBXfdh-AdaH8Ez |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTsMwEB2VsgAWiK_44wUso7qOmw8SiwqKWvoBQSshNsGJbdRNitoiqNhwB47ACTgBd-ECXIFx0h9bJJaRnCjy_N6Mx28ADpgb0VCEviW9vLA4x3RHiAK3tM4zxwvdMJTmRLfecMotfn5TuMnAx-guTMoPMS64GctI_LUxcFOQzk1YQ4WKzVVy02WAmHvYV1lVgyfM2nrHlVMU8SFjZ6XmSdkaDhaw7m1zbhkJKqT2ZeRH3HbMCHEXE7W84NoLC64WCKJC7SqO4c9nuI5Rz3ciJhTVynPQ6eN3Z2CWO8w1QxMYvxyXdRBw52kywB6hFLccNJgRVSRlud-__AvUTkPjJLadLcHiEJSSYqpFy5BR8QosTFEVrsJLPf5-_2xwcvE8QJ0jV4by1QiVlNJBOkkdaNDrH5GLB4UBUHbIFIcHrutoUkycK7lGmNsjuISYLhNyObm7QNoxuW3H0dfrW7HdJSn552ANWv-yv-uQjTux2gDi2Rg9mbQlFQjcpBJUak8xTe0IY6t0NmFntIfB0Pp6AUOvZPK8grsJLNnX4CHl7ghSlmYWGEkEY0kExVKjPn7a-stL-zBXbtZrQa3SqG7DPDOtL0lz9w5k-91HtYvYpR_uJdpC4O6_1fMHefP8Bw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTsMwEB0VkBAsEF_xxwtYRnUdNx8kFhW0opR-BFRCbIIT26ibtKJFULHhDhyBC3AD7sIFuALjpN8tEstIThR5fm_smTcAh8yNaChC35JeTlicY7ojRJ5bWueY44VuGEpzo1utOedNfnGbv83A57AXJuWHGB24GctI_LUx8I7U2TFpqFCx6SQ3RQYIuQdllRXVf8akrXtSPkMJHzFWKt6cnluDuQLWg22uLSNBhdS-jPyI246ZIO5inpYTXHth3tUCMVSoXcUx-vkM1zHq-U7EhKJaeQ76fPzuDMyZG0ZTRMZ4Y3Sqg3g7R5P59YikuOWgvQyZIinLTv_yFKadRMZJaCstw9IAk5JCqkQrkFHxKixOMBWuwWs1_vn4qnFSf-mjypErw_hqZEqK6Ryd5Bio3-0dk3pHYfyTbTJB4YHr2poUEt9KrhHldgkuIabIhDTGrQukFZO7Vhx9v70XWo8k5f7sr0PzX_Z3A2bjdqw2gXg2Bk8mbUkF4japBJXaU0xTO8LQKp0t2B3uYTAwvm7A0CmZNC_vbgFL9jXopNQdQUrSzAIjiWAkiaBQrFVHT9t_eekA5htnpeCyXKvswAIzhS9JafcuzPYen9QeIpdeuJ8oC4H7_9bOX-UF-zk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mn%EF%A3%BFN4+Oxygen+Reduction+Electrocatalyst%3A+Operando+Investigation+of+Active+Sites+and+High+Performance+in+Zinc%E2%80%93Air+Battery&rft.jtitle=Advanced+energy+materials&rft.au=Xu%2C+Han&rft.au=Zhang%2C+Tianyu&rft.au=Chen%2C+Wenxing&rft.au=Dong%2C+Bo&rft.date=2021-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=6&rft_id=info:doi/10.1002%2Faenm.202002753&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |