MnN4 Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery

The development of inexpensive and highly efficient nonprecious metal catalysts to substitute Pt in the alkaline oxygen reduction reaction is an appealing idea in the energy field. Herein, a Mn oxygen reduction electrocatalyst with a half‐wave potential (E1/2) as high as 0.910 V under an alkaline ox...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 11; no. 6
Main Authors Han, Xu, Zhang, Tianyu, Chen, Wenxing, Dong, Bo, Meng, Ge, Zheng, Lirong, Yang, Can, Sun, Xiaoming, Zhuang, Zhongbin, Wang, Dingsheng, Han, Aijuan, Liu, Junfeng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of inexpensive and highly efficient nonprecious metal catalysts to substitute Pt in the alkaline oxygen reduction reaction is an appealing idea in the energy field. Herein, a Mn oxygen reduction electrocatalyst with a half‐wave potential (E1/2) as high as 0.910 V under an alkaline oxygen reduction reaction process is developed, and the dynamic atomic structure change of the highly efficient Mn single‐atomic site is investigated using operando X‐ray absorption spectroscopy. These results demonstrate that the low‐valence MnL+N4 is the active site during the oxygen reduction process. Density functional theory reveals that facile electron transfer from MnL+N4 to adsorbed *OH species plays a key role in the excellent electrocatalytic performance. Moreover, when assembled as the cathode in a zinc–air battery, this MnN4 material shows high power density and excellent durability, demonstrating its promising potential to substitute the Pt catalyst in practical devices. A manganese single‐atomic‐site catalyst with high performance in the oxygen reduction reaction and zinc–air batteries is reported. Operando X‐ray absorption spectroscopy reveals the formation of inactive high‐valence OHadsMnH+N4 in electrolytes, which progressively switches to active low‐valence MnL+N4 sites under applied potential. Theoretical calculations show that the atomically dispersed structure facilitates the electron transfer from MnN4 to *OH species.
AbstractList The development of inexpensive and highly efficient nonprecious metal catalysts to substitute Pt in the alkaline oxygen reduction reaction is an appealing idea in the energy field. Herein, a Mn oxygen reduction electrocatalyst with a half‐wave potential (E1/2) as high as 0.910 V under an alkaline oxygen reduction reaction process is developed, and the dynamic atomic structure change of the highly efficient Mn single‐atomic site is investigated using operando X‐ray absorption spectroscopy. These results demonstrate that the low‐valence MnL+N4 is the active site during the oxygen reduction process. Density functional theory reveals that facile electron transfer from MnL+N4 to adsorbed *OH species plays a key role in the excellent electrocatalytic performance. Moreover, when assembled as the cathode in a zinc–air battery, this MnN4 material shows high power density and excellent durability, demonstrating its promising potential to substitute the Pt catalyst in practical devices.
The development of inexpensive and highly efficient nonprecious metal catalysts to substitute Pt in the alkaline oxygen reduction reaction is an appealing idea in the energy field. Herein, a Mn oxygen reduction electrocatalyst with a half‐wave potential (E1/2) as high as 0.910 V under an alkaline oxygen reduction reaction process is developed, and the dynamic atomic structure change of the highly efficient Mn single‐atomic site is investigated using operando X‐ray absorption spectroscopy. These results demonstrate that the low‐valence MnL+N4 is the active site during the oxygen reduction process. Density functional theory reveals that facile electron transfer from MnL+N4 to adsorbed *OH species plays a key role in the excellent electrocatalytic performance. Moreover, when assembled as the cathode in a zinc–air battery, this MnN4 material shows high power density and excellent durability, demonstrating its promising potential to substitute the Pt catalyst in practical devices. A manganese single‐atomic‐site catalyst with high performance in the oxygen reduction reaction and zinc–air batteries is reported. Operando X‐ray absorption spectroscopy reveals the formation of inactive high‐valence OHadsMnH+N4 in electrolytes, which progressively switches to active low‐valence MnL+N4 sites under applied potential. Theoretical calculations show that the atomically dispersed structure facilitates the electron transfer from MnN4 to *OH species.
Author Zheng, Lirong
Yang, Can
Han, Aijuan
Meng, Ge
Wang, Dingsheng
Zhuang, Zhongbin
Liu, Junfeng
Zhang, Tianyu
Sun, Xiaoming
Chen, Wenxing
Dong, Bo
Han, Xu
Author_xml – sequence: 1
  givenname: Xu
  surname: Han
  fullname: Han, Xu
  organization: Beijing University of Chemical Technology
– sequence: 2
  givenname: Tianyu
  orcidid: 0000-0002-1250-9395
  surname: Zhang
  fullname: Zhang, Tianyu
  organization: Beijing University of Chemical Technology
– sequence: 3
  givenname: Wenxing
  surname: Chen
  fullname: Chen, Wenxing
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Bo
  surname: Dong
  fullname: Dong, Bo
  organization: Beijing University of Chemical Technology
– sequence: 5
  givenname: Ge
  surname: Meng
  fullname: Meng, Ge
  organization: Tsinghua University
– sequence: 6
  givenname: Lirong
  surname: Zheng
  fullname: Zheng, Lirong
  email: zhenglr@ihep.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Can
  surname: Yang
  fullname: Yang, Can
  organization: Beijing University of Chemical Technology
– sequence: 8
  givenname: Xiaoming
  surname: Sun
  fullname: Sun, Xiaoming
  organization: Beijing University of Chemical Technology
– sequence: 9
  givenname: Zhongbin
  surname: Zhuang
  fullname: Zhuang, Zhongbin
  organization: Beijing University of Chemical Technology
– sequence: 10
  givenname: Dingsheng
  surname: Wang
  fullname: Wang, Dingsheng
  organization: Tsinghua University
– sequence: 11
  givenname: Aijuan
  surname: Han
  fullname: Han, Aijuan
  email: hanaijuan@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
– sequence: 12
  givenname: Junfeng
  orcidid: 0000-0002-7455-6314
  surname: Liu
  fullname: Liu, Junfeng
  email: ljf@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
BookMark eNo9kEtOwzAQhi1UJErplrUl1i1-NXHYharQSn0gHhs2ketMgqvUKU5aiNhwB47AQbgLF-AKpBR1NvOP9M38o_8YNWxuAaFTSrqUEHauwC67jLBa-z1-gJrUo6LjSUEae83ZEWoXxYLUJQJKOG-it4n9-fyaCjx7rVKw-BbitS5NbvEgA126XKtSZVVRXuDZCpyycY5HdgNFaVL1x-UJDuuNDeA7U0KBawQPTfqEb8AluVsqqwEbix-N1d_vH6Fx-FKVJbjqBB0mKiug_d9b6OFqcN8fdsaz61E_HHdSzj3e0YqoOAliHWjBPcIZ8bnkVIlEznt-oiQh88QHwagMWM0xIgNPMwUkAelxwlvobHd35fLndf16tMjXztaWERNSUipkz6-pYEe9mAyqaOXMUrkqoiTaBhxtA472AUfhYDrZT_wXGQ51iA
ContentType Journal Article
Copyright 2020 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202002753
DatabaseName Wiley Online Library Open Access
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM202002753
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
– fundername: 111 Project
  funderid: B16028
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0206500; 2016YFA0202801; 2018YFA0702000
– fundername: Fundamental Research Funds for the Central Universities
– fundername: Beijing Natural Science Foundation
  funderid: 2204089
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-g3363-ca0adf9dc9c436032073831a4f8b57fa800bf7e421892f9d20896c2ae0fe86303
IEDL.DBID 24P
ISSN 1614-6832
IngestDate Fri Jul 25 12:18:17 EDT 2025
Wed Jan 22 16:30:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3363-ca0adf9dc9c436032073831a4f8b57fa800bf7e421892f9d20896c2ae0fe86303
Notes The copyright line for this article was changed on 12 January 2021 after original online publication.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7455-6314
0000-0002-1250-9395
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202002753
PQID 2488114857
PQPubID 886389
PageCount 9
ParticipantIDs proquest_journals_2488114857
wiley_primary_10_1002_aenm_202002753_AENM202002753
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 8
2018; 28
2019; 3
2019; 5
2020; 20
2019; 11
2020; 120
2015; 10
2020; 59
2020; 13
2011; 13
2020; 11
2015; 9
2012; 12
2017; 357
2019; 243
2014; 136
2020; 19
2016; 55
2018; 24
2017; 50
2020; 7
2018; 8
2018; 3
2018; 2
2015; 115
2018; 1
2020
2016; 354
2013; 135
2018; 30
2016; 29
2018; 11
2016; 351
2016; 8
2019; 574
2016; 9
2018; 57
2020; 29
References_xml – volume: 9
  start-page: 2418
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 65
  year: 2016
  publication-title: Nano Energy
– volume: 357
  start-page: 479
  year: 2017
  publication-title: Science
– volume: 13
  start-page: 1856
  year: 2020
  publication-title: Nano Res.
– volume: 24
  year: 2018
  publication-title: Chem. ‐ Eur. J.
– volume: 13
  start-page: 3082
  year: 2020
  publication-title: Nano Res.
– volume: 120
  start-page: 683
  year: 2020
  publication-title: Chem. Rev.
– volume: 2
  start-page: 134
  year: 2018
  publication-title: Nat. Catal.
– volume: 8
  start-page: 957
  year: 2017
  publication-title: Nat. Commun.
– volume: 55
  start-page: 7963
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 57
  start-page: 8525
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– year: 2020
  publication-title: Sci. China Mater.
– volume: 1
  start-page: 935
  year: 2018
  publication-title: Nat. Catal.
– volume: 3
  start-page: 1806
  year: 2019
  publication-title: Chem. Rev.
– volume: 29
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 2433
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 19
  start-page: 1215
  year: 2020
  publication-title: Nat. Mater.
– volume: 13
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 915
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 20
  start-page: 6206
  year: 2020
  publication-title: Nano Lett.
– volume: 8
  start-page: 718
  year: 2016
  publication-title: Nat. Chem.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 135
  start-page: 8525
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2831
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 3165
  year: 2020
  publication-title: Nano Res.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 59
  start-page: 2688
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 2650
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 2963
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 12
  start-page: 4025
  year: 2012
  publication-title: Nano Lett.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 59
  start-page: 2705
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 354
  start-page: 1414
  year: 2016
  publication-title: Science
– volume: 11
  start-page: 1098
  year: 2019
  publication-title: Nat. Chem.
– volume: 243
  start-page: 195
  year: 2019
  publication-title: Appl. Catal., B
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 786
  year: 2019
  publication-title: Chem
– volume: 351
  start-page: 361
  year: 2016
  publication-title: Science
– volume: 10
  start-page: 444
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 140
  year: 2018
  publication-title: Nat. Energy
– volume: 115
  start-page: 4823
  year: 2015
  publication-title: Chem. Rev.
– volume: 11
  start-page: 893
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 574
  start-page: 81
  year: 2019
  publication-title: Nature
SSID ssj0000491033
Score 2.655391
Snippet The development of inexpensive and highly efficient nonprecious metal catalysts to substitute Pt in the alkaline oxygen reduction reaction is an appealing idea...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Atomic structure
Catalysts
Density functional theory
Electrocatalysts
Electron transfer
manganese catalysts
Metal air batteries
operando X‐ray absorption
oxygen reduction reaction
Oxygen reduction reactions
single‐atomic‐site catalysts
Substitutes
Zinc-oxygen batteries
zinc–air batteries
Title MnN4 Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202002753
https://www.proquest.com/docview/2488114857
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTsMwELWg3cAC8RWFUnnBNqrruPmwi6BVhehHlEoVm8iObdRNWjVFomLDHTgCB-EuXIArME7aNN2yjOR44fH4PY9n3iB0Td2ICC58S3oNbjEG1x3Om8zSukEdT7hCSPOi2-05nRG7HzfHhSr-TB8iD7gZz0jPa-PgXCT1jWgoV7GpJDdJBkC5d1HZ1NeapD7KBnmUBfhvg6T95IHZMMuB_btWbiS0vj3FFscsMtUUatqH6GDFEXGQGfUI7aj4GO0XlANP0Hs3_v367jHcf1vCFsCPRoHVrDFuZX1t0rDMMlnc4P5MAR7JKS5IasC4qcZBetbhIbDOBMMQbJI-8GBTSoAnMX6exNHPx2cwmeNMi3N5ikbt1tNtx1r1UbBebPNMG3HCpfZl5EfMdkzHdBfupQ3OtCearubAGYV2FQO09ymMo8TznYhyRbTyHMC4M1SKp7E6R9izAcyotCXhwKOk4kRqT1FN7AigTjoVVF2vYbhyhiSkcEiYa1fTrSCarms4y6Q0wkw0mYbGEmFuiTBo9br518V_frpEe9Rkn6T51VVUWsxf1RXQh4WopTukhsrBXfdh-AdaH8Ez
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTsMwEB2VsgAWiK_44wUso7qOmw8SiwqKWvoBQSshNsGJbdRNitoiqNhwB47ACTgBd-ECXIFx0h9bJJaRnCjy_N6Mx28ADpgb0VCEviW9vLA4x3RHiAK3tM4zxwvdMJTmRLfecMotfn5TuMnAx-guTMoPMS64GctI_LUxcFOQzk1YQ4WKzVVy02WAmHvYV1lVgyfM2nrHlVMU8SFjZ6XmSdkaDhaw7m1zbhkJKqT2ZeRH3HbMCHEXE7W84NoLC64WCKJC7SqO4c9nuI5Rz3ciJhTVynPQ6eN3Z2CWO8w1QxMYvxyXdRBw52kywB6hFLccNJgRVSRlud-__AvUTkPjJLadLcHiEJSSYqpFy5BR8QosTFEVrsJLPf5-_2xwcvE8QJ0jV4by1QiVlNJBOkkdaNDrH5GLB4UBUHbIFIcHrutoUkycK7lGmNsjuISYLhNyObm7QNoxuW3H0dfrW7HdJSn552ANWv-yv-uQjTux2gDi2Rg9mbQlFQjcpBJUak8xTe0IY6t0NmFntIfB0Pp6AUOvZPK8grsJLNnX4CHl7ghSlmYWGEkEY0kExVKjPn7a-stL-zBXbtZrQa3SqG7DPDOtL0lz9w5k-91HtYvYpR_uJdpC4O6_1fMHefP8Bw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTsMwEB0VkBAsEF_xxwtYRnUdNx8kFhW0opR-BFRCbIIT26ibtKJFULHhDhyBC3AD7sIFuALjpN8tEstIThR5fm_smTcAh8yNaChC35JeTlicY7ojRJ5bWueY44VuGEpzo1utOedNfnGbv83A57AXJuWHGB24GctI_LUx8I7U2TFpqFCx6SQ3RQYIuQdllRXVf8akrXtSPkMJHzFWKt6cnluDuQLWg22uLSNBhdS-jPyI246ZIO5inpYTXHth3tUCMVSoXcUx-vkM1zHq-U7EhKJaeQ76fPzuDMyZG0ZTRMZ4Y3Sqg3g7R5P59YikuOWgvQyZIinLTv_yFKadRMZJaCstw9IAk5JCqkQrkFHxKixOMBWuwWs1_vn4qnFSf-mjypErw_hqZEqK6Ryd5Bio3-0dk3pHYfyTbTJB4YHr2poUEt9KrhHldgkuIabIhDTGrQukFZO7Vhx9v70XWo8k5f7sr0PzX_Z3A2bjdqw2gXg2Bk8mbUkF4japBJXaU0xTO8LQKp0t2B3uYTAwvm7A0CmZNC_vbgFL9jXopNQdQUrSzAIjiWAkiaBQrFVHT9t_eekA5htnpeCyXKvswAIzhS9JafcuzPYen9QeIpdeuJ8oC4H7_9bOX-UF-zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mn%EF%A3%BFN4+Oxygen+Reduction+Electrocatalyst%3A+Operando+Investigation+of+Active+Sites+and+High+Performance+in+Zinc%E2%80%93Air+Battery&rft.jtitle=Advanced+energy+materials&rft.au=Xu%2C+Han&rft.au=Zhang%2C+Tianyu&rft.au=Chen%2C+Wenxing&rft.au=Dong%2C+Bo&rft.date=2021-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=6&rft_id=info:doi/10.1002%2Faenm.202002753&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon