Photoassisted Construction of Holey Defective g‐C3N4 Photocatalysts for Efficient Visible‐Light‐Driven H2O2 Production

Holey defective g‐C3N4 photocatalysts, which are easily prepared via a novel photoassisted heating process, are reported. The photoassisted treatment not only helps to create abundant holes, endowing g‐C3N4 with more exposed catalytic active sites and crossplane diffusion channels to shorten the dif...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 9
Main Authors Shi, Li, Yang, Liuqing, Zhou, Wei, Liu, Yanyu, Yin, Lisha, Hai, Xiao, Song, Hui, Ye, Jinhua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Holey defective g‐C3N4 photocatalysts, which are easily prepared via a novel photoassisted heating process, are reported. The photoassisted treatment not only helps to create abundant holes, endowing g‐C3N4 with more exposed catalytic active sites and crossplane diffusion channels to shorten the diffusion distance of both reactants from the surface to bulk and charge carriers from the bulk to surface, but also introduces nitrogen vacancies in the tri‐s‐triazine repeating units of g‐C3N4, inducing the narrowing of intrinsic bandgap and the formation of defect states within bandgap to extend the visible‐light absorption range and suppress the radiative electron–hole recombination. As a result, the holey defective g‐C3N4 photocatalysts show much higher photocatalytic activity for H2O2 production with optimized enhancement up to ten times higher than pristine bulk g‐C3N4. The newly developed synthetic strategy adopted here enables the sufficient utilization of solar energy and shows rather promising for the modification of other materials for efficient energy‐related applications. A holey defective g‐C3N4 photocatalyst can be prepared through a novel photo‐assisted heating process, and it shows much higher photocatalytic activity for H2O2 production with optimized enhancement up to 10 times higher than pristine bulk g‐C3N4, which is due to the introduction of abundant holes and nitrogen vacancies.
AbstractList Holey defective g‐C3N4 photocatalysts, which are easily prepared via a novel photoassisted heating process, are reported. The photoassisted treatment not only helps to create abundant holes, endowing g‐C3N4 with more exposed catalytic active sites and crossplane diffusion channels to shorten the diffusion distance of both reactants from the surface to bulk and charge carriers from the bulk to surface, but also introduces nitrogen vacancies in the tri‐s‐triazine repeating units of g‐C3N4, inducing the narrowing of intrinsic bandgap and the formation of defect states within bandgap to extend the visible‐light absorption range and suppress the radiative electron–hole recombination. As a result, the holey defective g‐C3N4 photocatalysts show much higher photocatalytic activity for H2O2 production with optimized enhancement up to ten times higher than pristine bulk g‐C3N4. The newly developed synthetic strategy adopted here enables the sufficient utilization of solar energy and shows rather promising for the modification of other materials for efficient energy‐related applications.
Holey defective g‐C3N4 photocatalysts, which are easily prepared via a novel photoassisted heating process, are reported. The photoassisted treatment not only helps to create abundant holes, endowing g‐C3N4 with more exposed catalytic active sites and crossplane diffusion channels to shorten the diffusion distance of both reactants from the surface to bulk and charge carriers from the bulk to surface, but also introduces nitrogen vacancies in the tri‐s‐triazine repeating units of g‐C3N4, inducing the narrowing of intrinsic bandgap and the formation of defect states within bandgap to extend the visible‐light absorption range and suppress the radiative electron–hole recombination. As a result, the holey defective g‐C3N4 photocatalysts show much higher photocatalytic activity for H2O2 production with optimized enhancement up to ten times higher than pristine bulk g‐C3N4. The newly developed synthetic strategy adopted here enables the sufficient utilization of solar energy and shows rather promising for the modification of other materials for efficient energy‐related applications. A holey defective g‐C3N4 photocatalyst can be prepared through a novel photo‐assisted heating process, and it shows much higher photocatalytic activity for H2O2 production with optimized enhancement up to 10 times higher than pristine bulk g‐C3N4, which is due to the introduction of abundant holes and nitrogen vacancies.
Author Ye, Jinhua
Hai, Xiao
Yin, Lisha
Yang, Liuqing
Shi, Li
Zhou, Wei
Song, Hui
Liu, Yanyu
Author_xml – sequence: 1
  givenname: Li
  surname: Shi
  fullname: Shi, Li
  organization: National Institute for Materials Science (NIMS)
– sequence: 2
  givenname: Liuqing
  surname: Yang
  fullname: Yang, Liuqing
  organization: National Institute for Materials Science (NIMS)
– sequence: 3
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  organization: Tianjin University
– sequence: 4
  givenname: Yanyu
  surname: Liu
  fullname: Liu, Yanyu
  organization: Tianjin University
– sequence: 5
  givenname: Lisha
  surname: Yin
  fullname: Yin, Lisha
  organization: National Institute for Materials Science (NIMS)
– sequence: 6
  givenname: Xiao
  surname: Hai
  fullname: Hai, Xiao
  organization: National Institute for Materials Science (NIMS)
– sequence: 7
  givenname: Hui
  surname: Song
  fullname: Song, Hui
  organization: National Institute for Materials Science (NIMS)
– sequence: 8
  givenname: Jinhua
  orcidid: 0000-0001-6424-7959
  surname: Ye
  fullname: Ye, Jinhua
  email: Jinhua.YE@nims.go.jp
  organization: Collaborative Innovation Center of Chemical Science and Engineering
BookMark eNo9kMlOwzAURS1UJNrClrUl1ikeEideorRQpEArMWwtJ7FbV2lcYhdUiQWfwDfyJbgUdfUGnfuu3h2AXmtbBcAlRiOMELl266YZEYRTRHFMTkAfM0wjlhHeO_YYnYGBcysUGBKnffA5X1pvpXPGeVXD3LbOd9vKG9tCq-HUNmoHx0qrsHpXcPHz9Z3Txxj-ySrpZbNz3kFtOzjR2lRGtR6-GmfKRgW2MIulD3XcBXULp2RG4Lyz9cHhHJxq2Th18V-H4OV28pxPo2J2d5_fFNGCUkYiLkmmKeNS4oRUCc4kYYxnKU3SOJGSM0ZKnGZxWdVZUvO6ZrriJc0kTqskAHQIrg53N5192yrnxcpuuzZYCoIQJxjTFAeKH6gPE54Wm86sZbcTGIl9vGIfrzjGK54eiuI40V9pinZK
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.201703142
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL201703142
Genre article
GrantInformation_xml – fundername: National Basic Research Program of China
  funderid: 2014CB239301
– fundername: National Natural Science Foundation of China
  funderid: 21633004
– fundername: World Premier International Research Center Initiative (WPI Initiative) on Materials Nano‐architectonics (MANA), MEXT (Japan)
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-g3362-9a28f369aa152c518a26698735745aa9662b1784bcd85d9dd6fc9b38a17c55aa3
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Fri Jul 25 12:11:15 EDT 2025
Wed Jan 22 16:37:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3362-9a28f369aa152c518a26698735745aa9662b1784bcd85d9dd6fc9b38a17c55aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6424-7959
PQID 2009211371
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_journals_2009211371
wiley_primary_10_1002_smll_201703142_SMLL201703142
PublicationCentury 2000
PublicationDate March 1, 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 1, 2018
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2017; 5
2017; 7
2015; 5
2013; 1
2010; 35
2017; 4
2015; 3
2015; 347
2017; 27
2015; 11
2015; 54
2016; 10
2014; 26
2005; 20
2017; 29
2013; 142
2016; 180
2015; 8
2013; 6
2014; 136
2016; 12
2016; 55
2016; 6
2015; 25
2013; 15
2015; 27
2014; 4
2012; 3
2014; 2
2015; 44
2017; 56
2010; 132
2009; 8
2016; 116
2016; 138
2016; 28
2016; 27
2012; 116
2016; 26
2016; 8
2017; 204
2014; 10
2014; 53
References_xml – volume: 26
  start-page: 4121
  year: 2014
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1139
  year: 2012
  publication-title: Nat. Commun.
– volume: 6
  start-page: 31147
  year: 2016
  publication-title: Sci. Rep.
– volume: 7
  start-page: 2886
  year: 2017
  publication-title: ACS Catal.
– volume: 26
  start-page: 248
  year: 2016
  publication-title: Nano Energy
– volume: 35
  start-page: 1049
  year: 2010
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 1601190
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 681
  year: 2016
  publication-title: Catal. Sci. Technol.
– volume: 25
  start-page: 6885
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 1249
  year: 2015
  publication-title: Dalton Trans.
– volume: 27
  start-page: 1604328
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 54
  start-page: 12868
  year: 2015
  publication-title: Angew. Chem,. Int. Ed.
– volume: 4
  start-page: 1600246
  year: 2017
  publication-title: Adv. Sci.
– volume: 6
  start-page: 3756
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 76
  year: 2009
  publication-title: Nat. Mater.
– volume: 12
  start-page: 4431
  year: 2016
  publication-title: Small
– volume: 15
  start-page: 7657
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 28
  start-page: 6471
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 138
  year: 2016
  publication-title: Nano Energy
– volume: 116
  start-page: 11013
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 204
  start-page: 335
  year: 2017
  publication-title: Appl. Catal., B
– volume: 2
  start-page: 18924
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 2745
  year: 2016
  publication-title: ACS Nano
– volume: 11
  start-page: 1215
  year: 2015
  publication-title: Small
– volume: 347
  start-page: 970
  year: 2015
  publication-title: Science
– volume: 180
  start-page: 656
  year: 2016
  publication-title: Appl. Catal., B
– volume: 27
  start-page: 2150
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: 23435
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 20
  start-page: 2627
  year: 2005
  publication-title: Chem. Commun.
– volume: 7
  start-page: 1602251
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 142
  start-page: 553
  year: 2013
  publication-title: Appl. Catal., B
– volume: 26
  start-page: 8046
  year: 2014
  publication-title: Adv. Mater.
– volume: 136
  start-page: 1730
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 4572
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3230
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 2783
  year: 2014
  publication-title: Small
– volume: 55
  start-page: 1830
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 3708
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 11754
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 4943
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 10019
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1500116
  year: 2015
  publication-title: Adv. Sci.
– volume: 116
  start-page: 7159
  year: 2016
  publication-title: Chem. Rev.
– volume: 25
  start-page: 5360
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 13454
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  start-page: 5570
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 14693
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 941
  year: 2015
  publication-title: ACS Catal.
– volume: 29
  start-page: 1605148
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 774
  year: 2014
  publication-title: ACS Catal.
– volume: 8
  start-page: 2249
  year: 2016
  publication-title: Nanoscale
– volume: 132
  start-page: 7850
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 158
  year: 2016
  publication-title: Nano Energy
– volume: 2
  start-page: 1500006
  year: 2015
  publication-title: Adv. Sci.
SSID ssj0031247
Score 2.6684885
Snippet Holey defective g‐C3N4 photocatalysts, which are easily prepared via a novel photoassisted heating process, are reported. The photoassisted treatment not only...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Carbon nitride
Catalysis
Catalytic activity
Current carriers
Electromagnetic absorption
Energy consumption
g‐C3N4
Hydrogen peroxide
Nanotechnology
nitrogen defects
photoassisted
Photocatalysis
photocatalyst
Photocatalysts
Solar energy
Title Photoassisted Construction of Holey Defective g‐C3N4 Photocatalysts for Efficient Visible‐Light‐Driven H2O2 Production
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201703142
https://www.proquest.com/docview/2009211371
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQEwy8EYWCPLCmTewkjkfUhyJUSgUUdYvsJC6I0iBSBhADn8A38iVcO01oGWFKIvnKiX0fJ_b1uQidKoAczOfMIkJvM0rXtziLXYvqwhYed7hITJZv3w-H7vnIGy2c4i_4IaoFN20Zxl9rAxcyb_6QhuaPE7114BgCdu2EdcKWRkVXFX8UheBlqqtAzLI08VbJ2miT5rL4Er5cRKkmzHQ3kShfsMgueWi8zGQjfvvF3fifL9hCG3MMis8KpdlGK-l0B60vMBPuovfBXTbLAFhrLUiwLutZEs3iTOEwg_5wO1WFu8Tjr4_PFu272IiZJaHXfJZjQMS4Y0gqILbh23uwv0kKbXt6SQCu7WftbHFILgkeFNyz0MMeGnY7N63QmhdqsMZUn7riggSK-lwIQAOx5wQCwj4PGPWY6wkBf1REOixwZZwEXsKTxFcxlzQQDos9aED30eo0m6YHCPtUMSGV7RORusKTwrdZSiSzpUoVVbyG6uVERXNryyPDHOU4lDk1RMyIR08FV0dUsDKTSI91VI11dH3R61VPh38ROkJrcB8U6Wh1tAqTkB4DPpnJE6OD35-A4Wc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BTtwwEB1ROLQcKC1FQGnxoT1m2dhJHB96QCwoQNiilkXcUjuxFwRsEFmEQBz4hP4Kv8In9Es6djZb6LESh56iRHYSe2y_mfH4DcAngyoHjwT3qLTbjCqIPMHzwGM2sUUofCELF-XbjZJesH0YHk7AfXMWpuaHGDvc7Mxw67Wd4NYhvfqHNbQ6O7V7B75jYKejuModfX2FVlv1ZauDIv5M6ebG_nrijRILeH1mTwkJSWPDIiElolce-rFEmELjm4U8CKVEC4Aqn8eByos4LERRRCYXisXS53mIBRi-9wVM2TTilq6_823MWMUQLl0-F0RJz1J9NTyRbbr69H-faLSP9WIHbJuv4aHpkjqe5aR1OVSt_OYvtsj_qs9mYWakZpO1el68gQk9eAvTj8gX5-B276gclmg72IFeEJu5tOHSJaUhSYkNJB1takQg_V93P9dZNyCumvN6XVfDiqDSTzYcDwfCNzk4xiXmVGPZ1Ho98Nq5sHhCEvqVkr2aXhe_8A56z9L8eZgclAO9ACRihktl2hGVOpChklGba6p4WxltmBGLsNyMjGy0oFSZI8fyfcb9RaBOxNl5TUeS1cTTNLOyzcayzb7vpun4bulfKq3Ay2R_N83Sre7Oe3iFz-M6-m4ZJlEg-gOqY0P10U0AAj-ee_T8BhatPeE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RKlXlQP-ogNLWh_YYSOzEjg89IMJqKdvtCgriFuzEplXpBjWLEIgDj9BH4VV4hT5Jx85m-TkicegpSmQnsWfsb8YefwPwwaLJIbgUAVVum1HHPJCiiAPmElskMpKq9FG-fd7diT_vJXtTcNmehWn4ISYLbm5k-PnaDfCj0q5ck4bWvw7d1kHkCdjpOKxy05yeoNNWf9rIUMIfKe2sf1vrBuO8AsEBc4eEpKKpZVwqheBVJFGqEKXQ92aJiBOl0AGgOhJprIsyTUpZltwWUrNURaJIsADD9z6CxzEPpUsWkW1NCKsYoqVP54IgGTimr5YmMqQrt__3lkF70yz2uNZ5BldtjzThLD-Xj0d6uTi7Qxb5P3XZc5gdG9lktRkVL2DKDF_CzA3qxVdwPvhejSr0HJyal8TlLW2ZdEllSbfC9pHM2AYPyMHfiz9rrB8TX82veZ3Wo5qgyU_WPQsHgjfZ_YETzKHBsj235oHX7LdDE9KlXykZNOS6-IU52HmQ5r-G6WE1NPNAOLNCaRtyqkysEq14KAzVItTWWGblAiy1ipGPp5M699RYUcREtADUSzg_ashI8oZ2muZOtvlEtvn2l15vcrd4n0rv4ckg6-S9jf7mG3iKj9Mm9G4JplEe5i3aYiP9zqs_gf2HVp5_AwE8kA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoassisted+Construction+of+Holey+Defective+g%E2%80%90C3N4+Photocatalysts+for+Efficient+Visible%E2%80%90Light%E2%80%90Driven+H2O2+Production&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Shi%2C+Li&rft.au=Yang%2C+Liuqing&rft.au=Zhou%2C+Wei&rft.au=Liu%2C+Yanyu&rft.date=2018-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.201703142&rft.externalDBID=10.1002%252Fsmll.201703142&rft.externalDocID=SMLL201703142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon