The Solid Solution Sr1−xBaxGa2: Substitutional Disorder and Chemical Bonding Visited by NMR Spectroscopy and Quantum Mechanical Calculations

Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1−xBaxGa2 is shown by means of X‐ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centr...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 21; no. 40; pp. 13971 - 13982
Main Authors Pecher, Oliver, Mausolf, Bernhard, Lamberts, Kevin, Oligschläger, Dirk, Niewieszol (née Merkens), Carina, Englert, Ulli, Haarmann, Frank
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 28.09.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1−xBaxGa2 is shown by means of X‐ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10 % cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation‐dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs. Disorderly conduct: Intermetallic phases were investigated by combining solid‐state synthesis with elaborate experimental and theoretical techniques. Synthesis of Sr1‐xBaxGa2 solid solution samples provides crystalline material (see structure). Alignment of the crystallites in the magnetic field combined with NMR spectroscopy experiments and computational modelling prove different Ga bonding situations depending on substitutional disorder of the cations.
AbstractList Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1−xBaxGa2 is shown by means of X‐ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10 % cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation‐dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs.
Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1-xBaxGa2 is shown by means of X-ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10% cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation-dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs.
Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1−xBaxGa2 is shown by means of X‐ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10 % cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation‐dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs. Disorderly conduct: Intermetallic phases were investigated by combining solid‐state synthesis with elaborate experimental and theoretical techniques. Synthesis of Sr1‐xBaxGa2 solid solution samples provides crystalline material (see structure). Alignment of the crystallites in the magnetic field combined with NMR spectroscopy experiments and computational modelling prove different Ga bonding situations depending on substitutional disorder of the cations.
Author Oligschläger, Dirk
Lamberts, Kevin
Niewieszol (née Merkens), Carina
Haarmann, Frank
Mausolf, Bernhard
Pecher, Oliver
Englert, Ulli
Author_xml – sequence: 1
  givenname: Oliver
  surname: Pecher
  fullname: Pecher, Oliver
  organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany)
– sequence: 2
  givenname: Bernhard
  surname: Mausolf
  fullname: Mausolf, Bernhard
  organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany)
– sequence: 3
  givenname: Kevin
  surname: Lamberts
  fullname: Lamberts, Kevin
  organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany)
– sequence: 4
  givenname: Dirk
  surname: Oligschläger
  fullname: Oligschläger, Dirk
  organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany)
– sequence: 5
  givenname: Carina
  surname: Niewieszol (née Merkens)
  fullname: Niewieszol (née Merkens), Carina
  organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany)
– sequence: 6
  givenname: Ulli
  surname: Englert
  fullname: Englert, Ulli
  organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany)
– sequence: 7
  givenname: Frank
  surname: Haarmann
  fullname: Haarmann, Frank
  email: frank.haarmann@ac.rwth-aachen.de
  organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany)
BookMark eNp9kcFuEzEQhi1UJNLClbMlzls8dmyvudGlTUFNEKQUbpbXdhqXzTq1d0XyBpw48Ig8CZsE5chlRjPzfzMa_afopI2tR-glkHMghL62S786pwQ4AQXkCRoBp1AwKfgJGhE1loXgTD1Dpzk_EEKUYGyEft0uPZ7HJrhd7LsQWzxP8Ofn782F2UwMfYPnfZ270O1npsHvQo7J-YRN63A13Ax26F7E1oX2Ht-FHDrvcL3Fs-lnPF9726WYbVxv98Cn3rRdv8JTb5em3aOVaWzfmN36_Bw9XZgm-xf_8hn6cnV5W10XNx8n76u3N8U9Y4IU3vkFV8M7nlhOLTAjSqOsExIctUwoWZZeWOKYKqVydV1SO1YLYwDUQpY1O0OvDnvXKT72Pnf6IfZpeC9rSoksFUiA_6mGORUwJlwOKnVQ_QiN3-p1CiuTthqI3tmid7booy26ur6cHquBLQ5syJ3fHFmTvmshmeT662yiq2-8vPtwNdOM_QVZg5XX
CODEN CEUJED
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright Wiley Subscription Services, Inc. Sep 2015
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright Wiley Subscription Services, Inc. Sep 2015
DBID BSCLL
7SR
8BQ
8FD
JG9
K9.
DOI 10.1002/chem.201501910
DatabaseName Istex
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 13982
ExternalDocumentID 3808217901
CHEM201501910
ark_67375_WNG_CX58VJFN_3
Genre article
GrantInformation_xml – fundername: Excellence Initiative
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
7SR
8BQ
8FD
JG9
K9.
ID FETCH-LOGICAL-g3360-edef59653e0c52c13a68a9cd671d2c369788e6c0d39879dbb82c49faa119f78b3
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Thu Oct 10 18:21:19 EDT 2024
Thu Oct 10 18:51:41 EDT 2024
Sat Aug 24 01:08:19 EDT 2024
Wed Oct 30 09:56:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3360-edef59653e0c52c13a68a9cd671d2c369788e6c0d39879dbb82c49faa119f78b3
Notes istex:D41658D688396E0DCCA0F3DE190F9D8C1ABA092C
ark:/67375/WNG-CX58VJFN-3
ArticleID:CHEM201501910
Excellence Initiative
PQID 1712614057
PQPubID 986340
PageCount 12
ParticipantIDs proquest_journals_2207891711
proquest_journals_1712614057
wiley_primary_10_1002_chem_201501910_CHEM201501910
istex_primary_ark_67375_WNG_CX58VJFN_3
PublicationCentury 2000
PublicationDate September 28, 2015
PublicationDateYYYYMMDD 2015-09-28
PublicationDate_xml – month: 09
  year: 2015
  text: September 28, 2015
  day: 28
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References F. Haarmann, M. Armbrüster, Yu. Grin, Chem. Mater. 2007, 19, 1147-1153.
Normausschuß Materialprüfung (NMP) im DIN Deutsches Institut für Normung e. V., Deutsche Norm DIN 51007, Thermische Analyse (TA), Differenzthermoanalyse (DTA), Grundlagen, Beuth, Berlin, 1994
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
P. Blaha, K. Schwarz, P. Herzig, Phys. Rev. Lett. 1985, 54, 1192-1195.
H. Bärnighausen, Mathematical Chemistry 1980, 9, 139-175.
H. Wondratschek, U. Müller, International Tables for Crystallography, Volume A1: Symmetry Relations Between Space Groups, The International Union of Crystallography, Kluwer, Dordrecht, 2004.
H. M. Petrilli, P. E. Blöchl, P. Blaha, K. Schwarz, Phys. Rev. B 1998, 57, 14690-14697.
J. H. Westbrook, R. L. Fleischer, Intermetallic Compounds, Volume 4: Magnetic, Electrical and Optical Properties and Applications of Intermetallic Compounds, Wiley, Chichester, 2000.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
M. Armbrüster, K. Kovnir, M. Friedrich, D. Teschner, G. Wowsnick, M. Hahne, P. Gille, L. Szentmiklósi, M. Feuerbacher, M. Heggen, F. Girgsdies, R. Rosenthal, R. Schlögl, Yu. Grin, Nat. Mater. 2012, 11, 690-693.
J. Sootsman, D. Chung, M. Kanatzidis, Angew. Chem. Int. Ed. 2009, 48, 8616-8639
F. Haarmann, K. Koch, D. Grüner, W. Schnelle, O. Pecher, R. Cardoso-Gil, H. Borrmann, H. Rosner, Yu. Grin, Chem. Eur. J. 2009, 15, 1673-1684.
Normausschuß Materialprüfung (NMP) im DIN Deutsches Institut für Normung e. V., Deutsche Norm DIN 51005, Thermische Analyse (TA), Begriffe, Beuth, Berlin, 2005.
L. Vegard, Z. Phys. 1921, 5, 17-26.
G. Sauthoff, Intermetallics, Wiley-VCH, Weinheim, 1995.
A. L. Allred, J. Inorg. Nucl. Chem. 1961, 17, 215-221.
V. M. Goldschmidt, Ber. Dtsch. Chem. Ges. 1927, 60, 1263-1296.
G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122.
P. Jeglič, M. Komelj, M. Klanjšek, U. Tkalec, S. Vrtnik, M. Feuerbacher, J. Dolinšek, Phys. Rev. B 2007, 75, 014202.
R. Pöttgen, D. Johrendt, Z. Naturforsch. 2008, 63b, 1135-1148.
P. Herzig, Z. Fojud, O. J. Żogał, A. Pietraszko, A. Dukhnenko, S. Jurga, N. Shitsevalova, J. Appl. Phys. 2008, 103, 083534.
A. Simon, Angew. Chem. Int. Ed. Engl. 1997, 36, 1788-1806
Angew. Chem. 2009, 121, 8768-8792.
Angew. Chem. 2007, 119, 680-713.
A. D. Sharma, J. Donohue, Z. Kristallogr. 1962, 117, 293-300.
O. Pecher, F. Haarmann, Nachr. Chem. 2013, 61, 1018-1021
R. D. Shannon, Acta Crystallogr. 1976, 32A, 751-767.
C. Felser, G. Fecher, B. Balke, Angew. Chem. Int. Ed. 2007, 46, 668-699
Z.-A. Ren, Z.-X. Zhao, Adv. Mater. 2009, 21, 4584-4592.
Angew. Chem. 1997, 109, 1873-1891.
O. Pecher, F. Haarmann, Z. Kristallogr. 2012, Suppl. 32, 24.
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169-11186.
G. S. Nolas, Thermoelectrics: Basic Principles and New Materials Developments, Springer, Berlin, 2001.
J.- M. Dubois, E. Belin-Ferré, M. Feuerbacher, Introduction to the Science of Complex Metallic Alloys, in Complex Metallic Alloys: Fundamentals and Applications (Eds.: J.- M. Dubois, E. Belin-Ferré), Wiley-VCH, Weinheim, 2010.
Yu. Grin, U. Schwarz, W. Steurer Alloy Physics: A Comprehensive Reference, chapter 2: Crystal Structure and Chemical Bonding, Wiley-VCH, Weinheim, 2007.
Z. Fojud, P. Herzig, O. J. Żogał, A. Pietraszko, A. Dukhnenko, S. Jurga, N. Shitsevalova, Phys. Rev. B 2007, 75, 184102.
L. Akselrud, Yu. Grin, J. Appl. Crystallogr. 2014, 47, 803-805.
Angew. Chem. 1991, 103, 805-834.
M. F. Groh, M. Heise, M. Kaiser, M. Ruck, Nachr. Chem. 2013, 61, 26-29.
R. Nesper, Angew. Chem. Int. Ed. Engl. 1991, 30, 789-817
W. J. Boettinger, U. R. Kattner, K.-W. Moon, J. H. Perepezko, DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing, NIST Recommended Practice Guide, Special Publication 960-15, National Institute of Standards and Technology, Washington (DC, USA), 2006.
F. Haarmann, K. Koch, P. Jeglič, O. Pecher, H. Rosner, Yu. Grin, Chem. Eur. J. 2011, 17, 7560-7568.
F. R. Wagner, V. Bezugly, M. Kohout, Yu. Grin, Chem. Eur. J. 2007, 13, 5724-5741.
Yu. Grin, Wiss. Z. Tech. Univ. Dresden 2000, 49, 16-20.
R.-D. Hoffmann, R. Pöttgen, Z. Kristallogr. 2001, 216, 127-145.
U. Müller, Symmetriebeziehungen zwischen verwandten Kristallstrukturen, Vieweg & Teubner, Wiesbaden, 2011.
K. Urban, M. Feuerbacher, J. Non-Cryst. Solids 2004, 334-335, 143-150.
P. Blaha, K. Schwarz, P. H. Dederichs, Phys. Rev. B 1988, 37, 2792-2796.
M. Kohout, Faraday Discuss. 2007, 135, 43-54.
F. Haarmann, Quadrupolar NMR of Intermetallic Compounds, in Encyclopedia of Magnetic Resonance (Eds.: R. K. Harris, R. E. Wasylishen), Wiley, Chichester, 2011.
R. Ang, Z. C. Wang, C. L. Chen, J. Tang, N. Liu, Y. Liu, W. J. Lu, Y. P. Sun, T. Mori, Y. Ikuhara, Nat. Commun. 2015, 6, 6091.
W. Harms, M. Wendorff, C. Röhr, Z. Naturforsch. B 2006, 62, 177-194.
2004; 334‐335
2007; 19
2015; 6
2008; 63b
2009; 21
2000; 49
2012
2009 2009; 48 121
2011
2010
2013; 61
1988; 37
1976; 32A
2007
2014; 47
1995
2006
1994
2005
2004
2008; 103
2007; 75
2011; 17
2012; 11
2007; 13
1996; 54
1961; 17
1996; 77
1991 1991; 30 103
2007; 135
1962; 117
1921; 5
2006; 62
2001
2000
2007 2007; 46 119
1997; 78
1997 1997; 36 109
1980; 9
2008; 64
1985; 54
2009; 15
1927; 60
2001; 216
1998; 57
References_xml – year: 2011
– volume: 78
  start-page: 1396
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 63b
  start-page: 1135
  year: 2008
  end-page: 1148
  publication-title: Z. Naturforsch.
– volume: 60
  start-page: 1263
  year: 1927
  end-page: 1296
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 5
  start-page: 17
  year: 1921
  end-page: 26
  publication-title: Z. Phys.
– year: 2005
– volume: 9
  start-page: 139
  year: 1980
  end-page: 175
  publication-title: Mathematical Chemistry
– volume: 6
  start-page: 6091
  year: 2015
  publication-title: Nat. Commun.
– year: 2001
– year: 2007
– start-page: 24
  year: 2012
  publication-title: Z. Kristallogr.
– volume: 47
  start-page: 803
  year: 2014
  end-page: 805
  publication-title: J. Appl. Crystallogr.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  publication-title: Phys. Rev. B
– year: 2000
– volume: 75
  start-page: 184102
  year: 2007
  publication-title: Phys. Rev. B
– volume: 62
  start-page: 177
  year: 2006
  end-page: 194
  publication-title: Z. Naturforsch. B
– volume: 36 109
  start-page: 1788 1873
  year: 1997 1997
  end-page: 1806 1891
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  publication-title: Phys. Rev. Lett.
– volume: 32A
  start-page: 751
  year: 1976
  end-page: 767
  publication-title: Acta Crystallogr.
– volume: 46 119
  start-page: 668 680
  year: 2007 2007
  end-page: 699 713
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 1994
– volume: 216
  start-page: 127
  year: 2001
  end-page: 145
  publication-title: Z. Kristallogr.
– year: 2010
– volume: 75
  start-page: 014202
  year: 2007
  publication-title: Phys. Rev. B
– volume: 61
  start-page: 1018
  year: 2013
  end-page: 1021
  publication-title: Nachr. Chem.
– volume: 334‐335
  start-page: 143
  year: 2004
  end-page: 150
  publication-title: J. Non‐Cryst. Solids
– volume: 15
  start-page: 1673
  year: 2009
  end-page: 1684
  publication-title: Chem. Eur. J.
– volume: 117
  start-page: 293
  year: 1962
  end-page: 300
  publication-title: Z. Kristallogr.
– volume: 61
  start-page: 26
  year: 2013
  end-page: 29
  publication-title: Nachr. Chem.
– year: 2006
– year: 2004
– volume: 48 121
  start-page: 8616 8768
  year: 2009 2009
  end-page: 8639 8792
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 16
  year: 2000
  end-page: 20
  publication-title: Wiss. Z. Tech. Univ. Dresden
– year: 1995
– volume: 11
  start-page: 690
  year: 2012
  end-page: 693
  publication-title: Nat. Mater.
– volume: 103
  start-page: 083534
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 21
  start-page: 4584
  year: 2009
  end-page: 4592
  publication-title: Adv. Mater.
– volume: 30 103
  start-page: 789 805
  year: 1991 1991
  end-page: 817 834
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 64
  start-page: 112
  year: 2008
  end-page: 122
  publication-title: Acta Crystallogr. Sect. A
– volume: 54
  start-page: 1192
  year: 1985
  end-page: 1195
  publication-title: Phys. Rev. Lett.
– volume: 37
  start-page: 2792
  year: 1988
  end-page: 2796
  publication-title: Phys. Rev. B
– volume: 135
  start-page: 43
  year: 2007
  end-page: 54
  publication-title: Faraday Discuss.
– volume: 13
  start-page: 5724
  year: 2007
  end-page: 5741
  publication-title: Chem. Eur. J.
– volume: 17
  start-page: 7560
  year: 2011
  end-page: 7568
  publication-title: Chem. Eur. J.
– volume: 19
  start-page: 1147
  year: 2007
  end-page: 1153
  publication-title: Chem. Mater.
– volume: 17
  start-page: 215
  year: 1961
  end-page: 221
  publication-title: J. Inorg. Nucl. Chem.
– volume: 57
  start-page: 14690
  year: 1998
  end-page: 14697
  publication-title: Phys. Rev. B
SSID ssj0009633
Score 2.2507274
Snippet Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1−xBaxGa2 is shown by means of X‐ray diffraction,...
Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1-xBaxGa2 is shown by means of X-ray diffraction,...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 13971
SubjectTerms Barium
Boundary conditions
chemical bonding
Chemical bonds
Chemistry
Data processing
Electric fields
Intermetallic phases
Magnetic resonance spectroscopy
Miscibility
NMR spectroscopy
Organic chemistry
Powder
quantum mechanical calculations
Quantum mechanics
Solid solutions
Spectroscopy
Spectrum analysis
Strontium
Substitutes
substitutional disorder
Superlattices
X-ray diffraction
Title The Solid Solution Sr1−xBaxGa2: Substitutional Disorder and Chemical Bonding Visited by NMR Spectroscopy and Quantum Mechanical Calculations
URI https://api.istex.fr/ark:/67375/WNG-CX58VJFN-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201501910
https://www.proquest.com/docview/1712614057
https://www.proquest.com/docview/2207891711
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFN2KhVD4gbmljO7ETbt0t26rSrkSXlr1ZflZVy7bah7TlF3DiwE_klzDjbLYt4gS3RMkosWdsf2PPfEPIO-nqPNpQZ7BWxqzgRchMKItM-rxQUXnPUrT7YCgPjovDcTm-lcXf8EOsN9xwZKT5Gge4sbOdG9JQaBNmkgOgAZcDnXYmFMZ07R3d8EeBdTW15AuVIQdry9qY85274gBNsVeXd3DmbbSalpv-Y2LaH22iTM63F3O77b79weH4Py15Qh6tsCjdbYznKbkXJs_Ig15bAu45-QFGREeXF2eetttndDRlv77_XHbNct_wDxQnnhRtkLYUaUvmSc3E05aMgGLtYlgi6ckZnlV7aq_pcHBER1epBA8mxlwngU8L0PPiKx0EzEdOoj1z4VYVxmYvyHH_4-feQbYq4JCdCiHzLPgQyxo6PuSu5I4JIytTOy8V89wJCR5sFaTLvagrVXtrK-6KOhrDWB1VZcVLsjG5nIRXhEZlefQmOhHBo6-4cTzCbCWVi4DZou2Q90mB-qoh6dBmeo4xa6rUX4b7ujcuq5PD_lCLDtlsNaxXw3WmmWLgSSJ2_etjzpGUH15iHcKTJtefaVifuUYd6rUONfJZrO9e_4vQG_IQrzE0hVebZGM-XYS3gH_mdovc3-3udftbydZ_A2veAPc
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU9RAEJ6y8IAXxVe5ijoHy1sgmUlmEm6yuqzIpkoWkNvUPCkKXKhlt2rhF3jiwE_0l9g92SxiedJjHl3JpHtmvu50f03IO2GrNBhfJbBXhiRnuU-0L_JEuDSXQTqXxWz3QS36-_n2YdFmE2ItTMMPsQi44cyI6zVOcAxIr9-yhsKgsJQcEA34HOC134c5z7GJwcfdWwYpsK-mm3wuE2RhbXkbU7Z-Vx7AKX7X2R2k-TtejRtO7xEx7as2eSYna9OJWbNXf7A4_tdYVsjDORylHxr7eUzu-dETstxtu8A9JddgR3R4dnrsaBtBo8Nx9vPHzWxTz7Y026C49sSEgxhVpC2fJ9UjR1s-Aorti2GXpAfH-LvaUXNJ68EuHZ7HLjxYG3MZBb5OQdXT73TgsSQ5inb1qZ03Gbt4RvZ7n_a6_WTewyE54lykiXc-FBV8eZ_agtmMa1HqyjohM8csF-DEll7Y1PGqlJUzpmQ2r4LWWVYFWRr-nCyNzkb-BaFBGhacDpYHcOpLpi0LsGAJaQPAtmA65H3UoDpveDqUHp9g2pos1Ld6S3UPi_Jgu1cr3iGrrYrVfMZeqExm4EwifP3rZcaQlx9uyjqERVUuHtMQPzOFOlQLHSqktFgcvfwXobdkub832FE7n-svr8gDPI-ZKqxcJUuT8dS_Bjg0MW-iwf8CV4wDnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQKwEXylMECviAuG27a-_au9wgJS2FrKChJTfLT1S1pFGaSCm_oKce-In8Ema82bRFnOC4j9GuPWP7G3vmG0JeClulwfgqgbUyJDnLfaJ9kSfCpbkM0rksRrv3a7Gzn-8Oi-GVLP6GH2K54YYjI87XOMDHLmxekoZCmzCTHAANuBzgtK_mgqcY1LW1d0kgBebVFJPPZYIkrC1tY8o2r8sDNsVunV8DmlfhalxvemtEt3_ahJkcbcymZsP--IPE8X-acpfcWYBR-qaxnnvkhh_dJ7e6bQ24B-QCrIgOTo4PHW33z-hgkv06_zl_q-fbmr2mOPPEcIO4p0hbNk-qR462bAQUixfDGkkPDvGw2lFzRuv-Hh2MYw0ezIw5iwKfZ6Do2Xfa95iQHEW7-tguSoydPiT7vXdfujvJooJD8o1zkSbe-VBU0PE-tQWzGdei1JV1QmaOWS7AhS29sKnjVSkrZ0zJbF4FrbOsCrI0_BFZGZ2M_GNCgzQsOB0sD-DSl0xbFmC6EtIGAG3BdMirqEA1blg6lJ4cYdCaLNTXelt1h0V5sNurFe-Q9VbDajFeT1UmM3AlEbz-9TFjyMoPL2UdwqIml59paJ-ZQh2qpQ4VElosr578i9ALcvPTVk99fF9_eEpu420MU2HlOlmZTmb-GWChqXkezf03S_UCTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Solid+Solution+Sr1%E2%88%92xBaxGa2%3A+Substitutional+Disorder+and+Chemical+Bonding+Visited+by+NMR+Spectroscopy+and+Quantum+Mechanical+Calculations&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Pecher%2C+Oliver&rft.au=Mausolf%2C+Bernhard&rft.au=Lamberts%2C+Kevin&rft.au=Oligschl%C3%A4ger%2C+Dirk&rft.date=2015-09-28&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=40&rft.spage=13971&rft.epage=13982&rft_id=info:doi/10.1002%2Fchem.201501910&rft.externalDBID=10.1002%252Fchem.201501910&rft.externalDocID=CHEM201501910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon