The Solid Solution Sr1−xBaxGa2: Substitutional Disorder and Chemical Bonding Visited by NMR Spectroscopy and Quantum Mechanical Calculations
Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1−xBaxGa2 is shown by means of X‐ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centr...
Saved in:
Published in | Chemistry : a European journal Vol. 21; no. 40; pp. 13971 - 13982 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
28.09.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1−xBaxGa2 is shown by means of X‐ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10 % cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation‐dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs.
Disorderly conduct: Intermetallic phases were investigated by combining solid‐state synthesis with elaborate experimental and theoretical techniques. Synthesis of Sr1‐xBaxGa2 solid solution samples provides crystalline material (see structure). Alignment of the crystallites in the magnetic field combined with NMR spectroscopy experiments and computational modelling prove different Ga bonding situations depending on substitutional disorder of the cations. |
---|---|
AbstractList | Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1−xBaxGa2 is shown by means of X‐ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10 % cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation‐dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs. Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1-xBaxGa2 is shown by means of X-ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10% cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation-dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs. Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1−xBaxGa2 is shown by means of X‐ray diffraction, thermoanalytical and metallographic studies. Regarding the distances of Sr/Ba sites versus substitution degree, a model of isolated substitution centres (ISC) for up to 10 % cation substitution is explored to study the influence on the Ga bonding situation. A combined application of NMR spectroscopy and quantum mechanical (QM) calculations proves the electric field gradient (EFG) to be a sensitive measure of different bonding situations. The experimental resolution is boosted by orientation‐dependent NMR on magnetically aligned powder samples, revealing in first approximation two different Ga species in the ISC regimes. EFG calculations using superlattice structures within periodic boundary conditions are in fair agreement with the NMR spectroscopy data and are discussed in detail regarding their application on disordered IPs. Disorderly conduct: Intermetallic phases were investigated by combining solid‐state synthesis with elaborate experimental and theoretical techniques. Synthesis of Sr1‐xBaxGa2 solid solution samples provides crystalline material (see structure). Alignment of the crystallites in the magnetic field combined with NMR spectroscopy experiments and computational modelling prove different Ga bonding situations depending on substitutional disorder of the cations. |
Author | Oligschläger, Dirk Lamberts, Kevin Niewieszol (née Merkens), Carina Haarmann, Frank Mausolf, Bernhard Pecher, Oliver Englert, Ulli |
Author_xml | – sequence: 1 givenname: Oliver surname: Pecher fullname: Pecher, Oliver organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany) – sequence: 2 givenname: Bernhard surname: Mausolf fullname: Mausolf, Bernhard organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany) – sequence: 3 givenname: Kevin surname: Lamberts fullname: Lamberts, Kevin organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany) – sequence: 4 givenname: Dirk surname: Oligschläger fullname: Oligschläger, Dirk organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany) – sequence: 5 givenname: Carina surname: Niewieszol (née Merkens) fullname: Niewieszol (née Merkens), Carina organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany) – sequence: 6 givenname: Ulli surname: Englert fullname: Englert, Ulli organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany) – sequence: 7 givenname: Frank surname: Haarmann fullname: Haarmann, Frank email: frank.haarmann@ac.rwth-aachen.de organization: RWTH Aachen University, Institut für Anorganische Chemie (IAC), Landoltweg 1, 52074 Aachen (Germany) |
BookMark | eNp9kcFuEzEQhi1UJNLClbMlzls8dmyvudGlTUFNEKQUbpbXdhqXzTq1d0XyBpw48Ig8CZsE5chlRjPzfzMa_afopI2tR-glkHMghL62S786pwQ4AQXkCRoBp1AwKfgJGhE1loXgTD1Dpzk_EEKUYGyEft0uPZ7HJrhd7LsQWzxP8Ofn782F2UwMfYPnfZ270O1npsHvQo7J-YRN63A13Ax26F7E1oX2Ht-FHDrvcL3Fs-lnPF9726WYbVxv98Cn3rRdv8JTb5em3aOVaWzfmN36_Bw9XZgm-xf_8hn6cnV5W10XNx8n76u3N8U9Y4IU3vkFV8M7nlhOLTAjSqOsExIctUwoWZZeWOKYKqVydV1SO1YLYwDUQpY1O0OvDnvXKT72Pnf6IfZpeC9rSoksFUiA_6mGORUwJlwOKnVQ_QiN3-p1CiuTthqI3tmid7booy26ur6cHquBLQ5syJ3fHFmTvmshmeT662yiq2-8vPtwNdOM_QVZg5XX |
CODEN | CEUJED |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Copyright Wiley Subscription Services, Inc. Sep 2015 |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright Wiley Subscription Services, Inc. Sep 2015 |
DBID | BSCLL 7SR 8BQ 8FD JG9 K9. |
DOI | 10.1002/chem.201501910 |
DatabaseName | Istex Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 13982 |
ExternalDocumentID | 3808217901 CHEM201501910 ark_67375_WNG_CX58VJFN_3 |
Genre | article |
GrantInformation_xml | – fundername: Excellence Initiative |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT 7SR 8BQ 8FD JG9 K9. |
ID | FETCH-LOGICAL-g3360-edef59653e0c52c13a68a9cd671d2c369788e6c0d39879dbb82c49faa119f78b3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 |
IngestDate | Thu Oct 10 18:21:19 EDT 2024 Thu Oct 10 18:51:41 EDT 2024 Sat Aug 24 01:08:19 EDT 2024 Wed Oct 30 09:56:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3360-edef59653e0c52c13a68a9cd671d2c369788e6c0d39879dbb82c49faa119f78b3 |
Notes | istex:D41658D688396E0DCCA0F3DE190F9D8C1ABA092C ark:/67375/WNG-CX58VJFN-3 ArticleID:CHEM201501910 Excellence Initiative |
PQID | 1712614057 |
PQPubID | 986340 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2207891711 proquest_journals_1712614057 wiley_primary_10_1002_chem_201501910_CHEM201501910 istex_primary_ark_67375_WNG_CX58VJFN_3 |
PublicationCentury | 2000 |
PublicationDate | September 28, 2015 |
PublicationDateYYYYMMDD | 2015-09-28 |
PublicationDate_xml | – month: 09 year: 2015 text: September 28, 2015 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | F. Haarmann, M. Armbrüster, Yu. Grin, Chem. Mater. 2007, 19, 1147-1153. Normausschuß Materialprüfung (NMP) im DIN Deutsches Institut für Normung e. V., Deutsche Norm DIN 51007, Thermische Analyse (TA), Differenzthermoanalyse (DTA), Grundlagen, Beuth, Berlin, 1994 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396. P. Blaha, K. Schwarz, P. Herzig, Phys. Rev. Lett. 1985, 54, 1192-1195. H. Bärnighausen, Mathematical Chemistry 1980, 9, 139-175. H. Wondratschek, U. Müller, International Tables for Crystallography, Volume A1: Symmetry Relations Between Space Groups, The International Union of Crystallography, Kluwer, Dordrecht, 2004. H. M. Petrilli, P. E. Blöchl, P. Blaha, K. Schwarz, Phys. Rev. B 1998, 57, 14690-14697. J. H. Westbrook, R. L. Fleischer, Intermetallic Compounds, Volume 4: Magnetic, Electrical and Optical Properties and Applications of Intermetallic Compounds, Wiley, Chichester, 2000. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868. M. Armbrüster, K. Kovnir, M. Friedrich, D. Teschner, G. Wowsnick, M. Hahne, P. Gille, L. Szentmiklósi, M. Feuerbacher, M. Heggen, F. Girgsdies, R. Rosenthal, R. Schlögl, Yu. Grin, Nat. Mater. 2012, 11, 690-693. J. Sootsman, D. Chung, M. Kanatzidis, Angew. Chem. Int. Ed. 2009, 48, 8616-8639 F. Haarmann, K. Koch, D. Grüner, W. Schnelle, O. Pecher, R. Cardoso-Gil, H. Borrmann, H. Rosner, Yu. Grin, Chem. Eur. J. 2009, 15, 1673-1684. Normausschuß Materialprüfung (NMP) im DIN Deutsches Institut für Normung e. V., Deutsche Norm DIN 51005, Thermische Analyse (TA), Begriffe, Beuth, Berlin, 2005. L. Vegard, Z. Phys. 1921, 5, 17-26. G. Sauthoff, Intermetallics, Wiley-VCH, Weinheim, 1995. A. L. Allred, J. Inorg. Nucl. Chem. 1961, 17, 215-221. V. M. Goldschmidt, Ber. Dtsch. Chem. Ges. 1927, 60, 1263-1296. G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122. P. Jeglič, M. Komelj, M. Klanjšek, U. Tkalec, S. Vrtnik, M. Feuerbacher, J. Dolinšek, Phys. Rev. B 2007, 75, 014202. R. Pöttgen, D. Johrendt, Z. Naturforsch. 2008, 63b, 1135-1148. P. Herzig, Z. Fojud, O. J. Żogał, A. Pietraszko, A. Dukhnenko, S. Jurga, N. Shitsevalova, J. Appl. Phys. 2008, 103, 083534. A. Simon, Angew. Chem. Int. Ed. Engl. 1997, 36, 1788-1806 Angew. Chem. 2009, 121, 8768-8792. Angew. Chem. 2007, 119, 680-713. A. D. Sharma, J. Donohue, Z. Kristallogr. 1962, 117, 293-300. O. Pecher, F. Haarmann, Nachr. Chem. 2013, 61, 1018-1021 R. D. Shannon, Acta Crystallogr. 1976, 32A, 751-767. C. Felser, G. Fecher, B. Balke, Angew. Chem. Int. Ed. 2007, 46, 668-699 Z.-A. Ren, Z.-X. Zhao, Adv. Mater. 2009, 21, 4584-4592. Angew. Chem. 1997, 109, 1873-1891. O. Pecher, F. Haarmann, Z. Kristallogr. 2012, Suppl. 32, 24. G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169-11186. G. S. Nolas, Thermoelectrics: Basic Principles and New Materials Developments, Springer, Berlin, 2001. J.- M. Dubois, E. Belin-Ferré, M. Feuerbacher, Introduction to the Science of Complex Metallic Alloys, in Complex Metallic Alloys: Fundamentals and Applications (Eds.: J.- M. Dubois, E. Belin-Ferré), Wiley-VCH, Weinheim, 2010. Yu. Grin, U. Schwarz, W. Steurer Alloy Physics: A Comprehensive Reference, chapter 2: Crystal Structure and Chemical Bonding, Wiley-VCH, Weinheim, 2007. Z. Fojud, P. Herzig, O. J. Żogał, A. Pietraszko, A. Dukhnenko, S. Jurga, N. Shitsevalova, Phys. Rev. B 2007, 75, 184102. L. Akselrud, Yu. Grin, J. Appl. Crystallogr. 2014, 47, 803-805. Angew. Chem. 1991, 103, 805-834. M. F. Groh, M. Heise, M. Kaiser, M. Ruck, Nachr. Chem. 2013, 61, 26-29. R. Nesper, Angew. Chem. Int. Ed. Engl. 1991, 30, 789-817 W. J. Boettinger, U. R. Kattner, K.-W. Moon, J. H. Perepezko, DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing, NIST Recommended Practice Guide, Special Publication 960-15, National Institute of Standards and Technology, Washington (DC, USA), 2006. F. Haarmann, K. Koch, P. Jeglič, O. Pecher, H. Rosner, Yu. Grin, Chem. Eur. J. 2011, 17, 7560-7568. F. R. Wagner, V. Bezugly, M. Kohout, Yu. Grin, Chem. Eur. J. 2007, 13, 5724-5741. Yu. Grin, Wiss. Z. Tech. Univ. Dresden 2000, 49, 16-20. R.-D. Hoffmann, R. Pöttgen, Z. Kristallogr. 2001, 216, 127-145. U. Müller, Symmetriebeziehungen zwischen verwandten Kristallstrukturen, Vieweg & Teubner, Wiesbaden, 2011. K. Urban, M. Feuerbacher, J. Non-Cryst. Solids 2004, 334-335, 143-150. P. Blaha, K. Schwarz, P. H. Dederichs, Phys. Rev. B 1988, 37, 2792-2796. M. Kohout, Faraday Discuss. 2007, 135, 43-54. F. Haarmann, Quadrupolar NMR of Intermetallic Compounds, in Encyclopedia of Magnetic Resonance (Eds.: R. K. Harris, R. E. Wasylishen), Wiley, Chichester, 2011. R. Ang, Z. C. Wang, C. L. Chen, J. Tang, N. Liu, Y. Liu, W. J. Lu, Y. P. Sun, T. Mori, Y. Ikuhara, Nat. Commun. 2015, 6, 6091. W. Harms, M. Wendorff, C. Röhr, Z. Naturforsch. B 2006, 62, 177-194. 2004; 334‐335 2007; 19 2015; 6 2008; 63b 2009; 21 2000; 49 2012 2009 2009; 48 121 2011 2010 2013; 61 1988; 37 1976; 32A 2007 2014; 47 1995 2006 1994 2005 2004 2008; 103 2007; 75 2011; 17 2012; 11 2007; 13 1996; 54 1961; 17 1996; 77 1991 1991; 30 103 2007; 135 1962; 117 1921; 5 2006; 62 2001 2000 2007 2007; 46 119 1997; 78 1997 1997; 36 109 1980; 9 2008; 64 1985; 54 2009; 15 1927; 60 2001; 216 1998; 57 |
References_xml | – year: 2011 – volume: 78 start-page: 1396 year: 1997 publication-title: Phys. Rev. Lett. – volume: 63b start-page: 1135 year: 2008 end-page: 1148 publication-title: Z. Naturforsch. – volume: 60 start-page: 1263 year: 1927 end-page: 1296 publication-title: Ber. Dtsch. Chem. Ges. – volume: 5 start-page: 17 year: 1921 end-page: 26 publication-title: Z. Phys. – year: 2005 – volume: 9 start-page: 139 year: 1980 end-page: 175 publication-title: Mathematical Chemistry – volume: 6 start-page: 6091 year: 2015 publication-title: Nat. Commun. – year: 2001 – year: 2007 – start-page: 24 year: 2012 publication-title: Z. Kristallogr. – volume: 47 start-page: 803 year: 2014 end-page: 805 publication-title: J. Appl. Crystallogr. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 publication-title: Phys. Rev. B – year: 2000 – volume: 75 start-page: 184102 year: 2007 publication-title: Phys. Rev. B – volume: 62 start-page: 177 year: 2006 end-page: 194 publication-title: Z. Naturforsch. B – volume: 36 109 start-page: 1788 1873 year: 1997 1997 end-page: 1806 1891 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 publication-title: Phys. Rev. Lett. – volume: 32A start-page: 751 year: 1976 end-page: 767 publication-title: Acta Crystallogr. – volume: 46 119 start-page: 668 680 year: 2007 2007 end-page: 699 713 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 1994 – volume: 216 start-page: 127 year: 2001 end-page: 145 publication-title: Z. Kristallogr. – year: 2010 – volume: 75 start-page: 014202 year: 2007 publication-title: Phys. Rev. B – volume: 61 start-page: 1018 year: 2013 end-page: 1021 publication-title: Nachr. Chem. – volume: 334‐335 start-page: 143 year: 2004 end-page: 150 publication-title: J. Non‐Cryst. Solids – volume: 15 start-page: 1673 year: 2009 end-page: 1684 publication-title: Chem. Eur. J. – volume: 117 start-page: 293 year: 1962 end-page: 300 publication-title: Z. Kristallogr. – volume: 61 start-page: 26 year: 2013 end-page: 29 publication-title: Nachr. Chem. – year: 2006 – year: 2004 – volume: 48 121 start-page: 8616 8768 year: 2009 2009 end-page: 8639 8792 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 16 year: 2000 end-page: 20 publication-title: Wiss. Z. Tech. Univ. Dresden – year: 1995 – volume: 11 start-page: 690 year: 2012 end-page: 693 publication-title: Nat. Mater. – volume: 103 start-page: 083534 year: 2008 publication-title: J. Appl. Phys. – volume: 21 start-page: 4584 year: 2009 end-page: 4592 publication-title: Adv. Mater. – volume: 30 103 start-page: 789 805 year: 1991 1991 end-page: 817 834 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 64 start-page: 112 year: 2008 end-page: 122 publication-title: Acta Crystallogr. Sect. A – volume: 54 start-page: 1192 year: 1985 end-page: 1195 publication-title: Phys. Rev. Lett. – volume: 37 start-page: 2792 year: 1988 end-page: 2796 publication-title: Phys. Rev. B – volume: 135 start-page: 43 year: 2007 end-page: 54 publication-title: Faraday Discuss. – volume: 13 start-page: 5724 year: 2007 end-page: 5741 publication-title: Chem. Eur. J. – volume: 17 start-page: 7560 year: 2011 end-page: 7568 publication-title: Chem. Eur. J. – volume: 19 start-page: 1147 year: 2007 end-page: 1153 publication-title: Chem. Mater. – volume: 17 start-page: 215 year: 1961 end-page: 221 publication-title: J. Inorg. Nucl. Chem. – volume: 57 start-page: 14690 year: 1998 end-page: 14697 publication-title: Phys. Rev. B |
SSID | ssj0009633 |
Score | 2.2507274 |
Snippet | Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1−xBaxGa2 is shown by means of X‐ray diffraction,... Complete miscibility of the intermetallic phases (IPs) SrGa2 and BaGa2 forming the solid solution Sr1-xBaxGa2 is shown by means of X-ray diffraction,... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 13971 |
SubjectTerms | Barium Boundary conditions chemical bonding Chemical bonds Chemistry Data processing Electric fields Intermetallic phases Magnetic resonance spectroscopy Miscibility NMR spectroscopy Organic chemistry Powder quantum mechanical calculations Quantum mechanics Solid solutions Spectroscopy Spectrum analysis Strontium Substitutes substitutional disorder Superlattices X-ray diffraction |
Title | The Solid Solution Sr1−xBaxGa2: Substitutional Disorder and Chemical Bonding Visited by NMR Spectroscopy and Quantum Mechanical Calculations |
URI | https://api.istex.fr/ark:/67375/WNG-CX58VJFN-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201501910 https://www.proquest.com/docview/1712614057 https://www.proquest.com/docview/2207891711 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFN2KhVD4gbmljO7ETbt0t26rSrkSXlr1ZflZVy7bah7TlF3DiwE_klzDjbLYt4gS3RMkosWdsf2PPfEPIO-nqPNpQZ7BWxqzgRchMKItM-rxQUXnPUrT7YCgPjovDcTm-lcXf8EOsN9xwZKT5Gge4sbOdG9JQaBNmkgOgAZcDnXYmFMZ07R3d8EeBdTW15AuVIQdry9qY85274gBNsVeXd3DmbbSalpv-Y2LaH22iTM63F3O77b79weH4Py15Qh6tsCjdbYznKbkXJs_Ig15bAu45-QFGREeXF2eetttndDRlv77_XHbNct_wDxQnnhRtkLYUaUvmSc3E05aMgGLtYlgi6ckZnlV7aq_pcHBER1epBA8mxlwngU8L0PPiKx0EzEdOoj1z4VYVxmYvyHH_4-feQbYq4JCdCiHzLPgQyxo6PuSu5I4JIytTOy8V89wJCR5sFaTLvagrVXtrK-6KOhrDWB1VZcVLsjG5nIRXhEZlefQmOhHBo6-4cTzCbCWVi4DZou2Q90mB-qoh6dBmeo4xa6rUX4b7ujcuq5PD_lCLDtlsNaxXw3WmmWLgSSJ2_etjzpGUH15iHcKTJtefaVifuUYd6rUONfJZrO9e_4vQG_IQrzE0hVebZGM-XYS3gH_mdovc3-3udftbydZ_A2veAPc |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU9RAEJ6y8IAXxVe5ijoHy1sgmUlmEm6yuqzIpkoWkNvUPCkKXKhlt2rhF3jiwE_0l9g92SxiedJjHl3JpHtmvu50f03IO2GrNBhfJbBXhiRnuU-0L_JEuDSXQTqXxWz3QS36-_n2YdFmE2ItTMMPsQi44cyI6zVOcAxIr9-yhsKgsJQcEA34HOC134c5z7GJwcfdWwYpsK-mm3wuE2RhbXkbU7Z-Vx7AKX7X2R2k-TtejRtO7xEx7as2eSYna9OJWbNXf7A4_tdYVsjDORylHxr7eUzu-dETstxtu8A9JddgR3R4dnrsaBtBo8Nx9vPHzWxTz7Y026C49sSEgxhVpC2fJ9UjR1s-Aorti2GXpAfH-LvaUXNJ68EuHZ7HLjxYG3MZBb5OQdXT73TgsSQ5inb1qZ03Gbt4RvZ7n_a6_WTewyE54lykiXc-FBV8eZ_agtmMa1HqyjohM8csF-DEll7Y1PGqlJUzpmQ2r4LWWVYFWRr-nCyNzkb-BaFBGhacDpYHcOpLpi0LsGAJaQPAtmA65H3UoDpveDqUHp9g2pos1Ld6S3UPi_Jgu1cr3iGrrYrVfMZeqExm4EwifP3rZcaQlx9uyjqERVUuHtMQPzOFOlQLHSqktFgcvfwXobdkub832FE7n-svr8gDPI-ZKqxcJUuT8dS_Bjg0MW-iwf8CV4wDnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQKwEXylMECviAuG27a-_au9wgJS2FrKChJTfLT1S1pFGaSCm_oKce-In8Ema82bRFnOC4j9GuPWP7G3vmG0JeClulwfgqgbUyJDnLfaJ9kSfCpbkM0rksRrv3a7Gzn-8Oi-GVLP6GH2K54YYjI87XOMDHLmxekoZCmzCTHAANuBzgtK_mgqcY1LW1d0kgBebVFJPPZYIkrC1tY8o2r8sDNsVunV8DmlfhalxvemtEt3_ahJkcbcymZsP--IPE8X-acpfcWYBR-qaxnnvkhh_dJ7e6bQ24B-QCrIgOTo4PHW33z-hgkv06_zl_q-fbmr2mOPPEcIO4p0hbNk-qR462bAQUixfDGkkPDvGw2lFzRuv-Hh2MYw0ezIw5iwKfZ6Do2Xfa95iQHEW7-tguSoydPiT7vXdfujvJooJD8o1zkSbe-VBU0PE-tQWzGdei1JV1QmaOWS7AhS29sKnjVSkrZ0zJbF4FrbOsCrI0_BFZGZ2M_GNCgzQsOB0sD-DSl0xbFmC6EtIGAG3BdMirqEA1blg6lJ4cYdCaLNTXelt1h0V5sNurFe-Q9VbDajFeT1UmM3AlEbz-9TFjyMoPL2UdwqIml59paJ-ZQh2qpQ4VElosr578i9ALcvPTVk99fF9_eEpu420MU2HlOlmZTmb-GWChqXkezf03S_UCTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Solid+Solution+Sr1%E2%88%92xBaxGa2%3A+Substitutional+Disorder+and+Chemical+Bonding+Visited+by+NMR+Spectroscopy+and+Quantum+Mechanical+Calculations&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Pecher%2C+Oliver&rft.au=Mausolf%2C+Bernhard&rft.au=Lamberts%2C+Kevin&rft.au=Oligschl%C3%A4ger%2C+Dirk&rft.date=2015-09-28&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=40&rft.spage=13971&rft.epage=13982&rft_id=info:doi/10.1002%2Fchem.201501910&rft.externalDBID=10.1002%252Fchem.201501910&rft.externalDocID=CHEM201501910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |