Mechanism by which Tungsten Oxide Promotes the Activity of Supported V2O5/TiO2 Catalysts for NOX Abatement: Structural Effects Revealed by 51V MAS NMR Spectroscopy
The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2O5(‐WO3)/TiO2 catalysts is an industrial technology used to mitigate toxic emissions. Long‐standing uncertainties in the molecular structures of surface vanadia are clarified, whereby progressive addition of vanadia to Ti...
Saved in:
Published in | Angewandte Chemie (International ed.) Vol. 58; no. 36; pp. 12609 - 12616 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
02.09.2019
Wiley |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 |
DOI | 10.1002/anie.201904503 |
Cover
Loading…
Abstract | The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2O5(‐WO3)/TiO2 catalysts is an industrial technology used to mitigate toxic emissions. Long‐standing uncertainties in the molecular structures of surface vanadia are clarified, whereby progressive addition of vanadia to TiO2 forms oligomeric vanadia structures and reveals a proportional relationship of SCR reaction rate to [surface VOx concentration]2, implying a 2‐site mechanism. Unreactive surface tungsta (WO3) also promote the formation of oligomeric vanadia (V2O5) sites, showing that promoter incorporation enhances the SCR reaction by a structural effect generating adjacent surface sites and not from electronic effects as previously proposed. The findings outline a method to assess structural effects of promoter incorporation on catalysts and reveal both the dual‐site requirement for the SCR reaction and the important structural promotional effect that tungsten oxide offers for the SCR reaction by V2O5/TiO2 catalysts.
NOx effects: Molecular‐level structural details are revealed for supported vanadia (V2O5) catalysts. Tungsten oxide addition to V2O5/TiO2 catalysts used for the abatement of NOx emissions promotes their reactivity via a structural effect involving oligomerizing vanadia units. The resulting structure thus satisfies the 2‐site requirement revealed for the selective catalytic reduction (SCR) of NOx by vanadia catalysts. |
---|---|
AbstractList | The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2O5(‐WO3)/TiO2 catalysts is an industrial technology used to mitigate toxic emissions. Long‐standing uncertainties in the molecular structures of surface vanadia are clarified, whereby progressive addition of vanadia to TiO2 forms oligomeric vanadia structures and reveals a proportional relationship of SCR reaction rate to [surface VOx concentration]2, implying a 2‐site mechanism. Unreactive surface tungsta (WO3) also promote the formation of oligomeric vanadia (V2O5) sites, showing that promoter incorporation enhances the SCR reaction by a structural effect generating adjacent surface sites and not from electronic effects as previously proposed. The findings outline a method to assess structural effects of promoter incorporation on catalysts and reveal both the dual‐site requirement for the SCR reaction and the important structural promotional effect that tungsten oxide offers for the SCR reaction by V2O5/TiO2 catalysts. The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2O5(‐WO3)/TiO2 catalysts is an industrial technology used to mitigate toxic emissions. Long‐standing uncertainties in the molecular structures of surface vanadia are clarified, whereby progressive addition of vanadia to TiO2 forms oligomeric vanadia structures and reveals a proportional relationship of SCR reaction rate to [surface VOx concentration]2, implying a 2‐site mechanism. Unreactive surface tungsta (WO3) also promote the formation of oligomeric vanadia (V2O5) sites, showing that promoter incorporation enhances the SCR reaction by a structural effect generating adjacent surface sites and not from electronic effects as previously proposed. The findings outline a method to assess structural effects of promoter incorporation on catalysts and reveal both the dual‐site requirement for the SCR reaction and the important structural promotional effect that tungsten oxide offers for the SCR reaction by V2O5/TiO2 catalysts. NOx effects: Molecular‐level structural details are revealed for supported vanadia (V2O5) catalysts. Tungsten oxide addition to V2O5/TiO2 catalysts used for the abatement of NOx emissions promotes their reactivity via a structural effect involving oligomerizing vanadia units. The resulting structure thus satisfies the 2‐site requirement revealed for the selective catalytic reduction (SCR) of NOx by vanadia catalysts. Growing concern for environmental pollutants coupled with an expansion of energy demand has promoted significant interest in technologies to abate contaminating species. Nitrogen oxides are particularly alarming due to their numerous detrimental impacts to the environment and public health, where selective catalytic reduction to inert N2 is an industrially-relevant mitigation technology. Herein, we provide unique, molecular-level insight on the structure and reactivity of V2O5(-WO3)/TiO2 catalysts employed at stationary facilities for NOx removal. Detailed catalytic testing, spectroscopy (nuclear magnetic resonance, Raman, and electron paramagnetic resonance), and electronic structure-based predictions of 51V chemical shifts help clarify the promotional role of tungsten oxide and identify an active site requirement for SCR of NOx. We show that progressive addition of vanadia to the catalyst surface increases the catalytic SCR performance and promotes the formation of larger vanadium domains, demonstrating the proportional relationship of SCR reaction rate to [VOx loading]2 for supported V2O5/TiO2 catalysts with increasing surface vanadia coverage. Tungsten oxide incorporation enhances catalyst reactivity which is shown to stem not from electronic effects, but from changes to the vanadium structure as observed spectroscopically. The progressive addition of tungsten oxide to the catalyst surface also increases the catalytic performance and promotes the formation of larger vanadium domains, which are beneficial for catalytic turnover in a two-site model. Further, unique monomeric species are confidently ascribed to distorted tetrahedral and square pyramidal structures, resolving a long-standing uncertainty in literature assignments for the signals. These findings provide strong support for both the dual-site requirement for the SCR reaction and the important structural promotional effect that tungsten offers for mitigation of these harmful pollutants. |
Author | Walter, Eric Mueller, Karl T. Wachs, Israel E. Chen, Ying Jaegers, Nicholas R. Lai, Jun‐Kun Wang, Chongmin Wang, Yong Vasiliu, Monica Hu, Mary Y. Hu, Jian Zhi He, Yang Dixon, David A. |
Author_xml | – sequence: 1 givenname: Nicholas R. orcidid: 0000-0002-9930-7672 surname: Jaegers fullname: Jaegers, Nicholas R. organization: Washington State University – sequence: 2 givenname: Jun‐Kun surname: Lai fullname: Lai, Jun‐Kun organization: Lehigh University – sequence: 3 givenname: Yang surname: He fullname: He, Yang organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Eric surname: Walter fullname: Walter, Eric organization: Pacific Northwest National Laboratory – sequence: 5 givenname: David A. surname: Dixon fullname: Dixon, David A. organization: The University of Alabama – sequence: 6 givenname: Monica surname: Vasiliu fullname: Vasiliu, Monica organization: The University of Alabama – sequence: 7 givenname: Ying surname: Chen fullname: Chen, Ying organization: Pacific Northwest National Laboratory – sequence: 8 givenname: Chongmin surname: Wang fullname: Wang, Chongmin organization: Pacific Northwest National Laboratory – sequence: 9 givenname: Mary Y. surname: Hu fullname: Hu, Mary Y. organization: Pacific Northwest National Laboratory – sequence: 10 givenname: Karl T. surname: Mueller fullname: Mueller, Karl T. organization: Pacific Northwest National Laboratory – sequence: 11 givenname: Israel E. surname: Wachs fullname: Wachs, Israel E. email: iew0@lehigh.edu organization: Lehigh University – sequence: 12 givenname: Yong surname: Wang fullname: Wang, Yong email: yong.wang@pnnl.gov organization: Washington State University – sequence: 13 givenname: Jian Zhi orcidid: 0000-0001-8879-747X surname: Hu fullname: Hu, Jian Zhi email: Jianzhi.hu@pnnl.gov organization: Pacific Northwest National Laboratory |
BackLink | https://www.osti.gov/servlets/purl/1572978$$D View this record in Osti.gov |
BookMark | eNo9kUtv1DAQxyNUJNrClfMIzmn9iPPgFq0WqNTdoO5ScbMcZ9J1lY2D7bTk8_BFcbWoc_GM5zcPzf8iORvtiEnykZIrSgi7VqPBK0ZoRTJB-JvknApGU14U_Cz6GedpUQr6Lrnw_jHyZUny8-TvBvUhVvojtAs8H4w-wH4eH3zAEZo_pkP44ezRBvQQDgi1DubJhAVsD7t5mqwL2ME9a8T13jQMViqoYfHBQ28dbJtfULcq4BHH8AV2wc06zE4NsO571JG6wydUQ2wRpwt6D5t6B9vNHeymmHbWazst75O3vRo8fvj_XiY_v673q-_pbfPtZlXfpg88WoqdVoLkFWFUc1W1fc5KUfU9i59Y5m1e0F4RgoXqGG-7ijPUWVFgrrNMM9Xyy-TTqa_1wUivTYi30XYc4yqSioJVRRmhzydocvb3jD7IRzu7Me4lGSspYZXIaKSqE_VsBlzk5MxRuUVSIl-kki9SyVepZL29Wb9G_B865ov_ |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME) Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) – name: Energy Frontier Research Centers (EFRC) (United States). Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME) |
DBID | 7TM K9. OIOZB OTOTI |
DOI | 10.1002/anie.201904503 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 12616 |
ExternalDocumentID | 1572978 ANIE201904503 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Basic Energy Sciences (US DOE) funderid: DE-AC05-RL01830, DE-SC0012577, 66628 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 OIOZB OTOTI |
ID | FETCH-LOGICAL-g3333-edca5069021c3a9bf62859ff2506e86b671fa00e7ad23bd932ec477e6c44c2ab3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Wed Nov 29 06:11:13 EST 2023 Sun Jul 13 04:22:03 EDT 2025 Wed Jan 22 16:38:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3333-edca5069021c3a9bf62859ff2506e86b671fa00e7ad23bd932ec477e6c44c2ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC05-76RL01830; SC0012577; 66628 PNNL-SA-141251 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0002-9930-7672 0000-0001-8879-747X 0000000299307672 000000018879747X |
OpenAccessLink | https://www.osti.gov/servlets/purl/1572978 |
PQID | 2281029541 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1572978 proquest_journals_2281029541 wiley_primary_10_1002_anie_201904503_ANIE201904503 |
PublicationCentury | 2000 |
PublicationDate | September 2, 2019 |
PublicationDateYYYYMMDD | 2019-09-02 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2, 2019 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: United States |
PublicationTitle | Angewandte Chemie (International ed.) |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 7 2017; 8 2012; 286 2004; 126 2015; 221 1991; 95 2016; 146 2012; 606 2016; 188 2013; 283 1996; 35 2007; 76 2016; 263 1996; 106 1994; 146 1998; 18 1992; 8 2018; 8 1994; 265 2018; 39 1994; 149 1997; 93 2018; 4 2000; 56 2000; 12 2018 2018; 57 130 2000; 11 2013; 117 1999; 181 2007; 8 1999; 53 2017; 121 2000; 200 2016; 193 2001; 16–17 2003; 44 1992; 80 2010; 408 2015; 5 1987; 91 2013; 225 1995; 99 2013; 42 2016; 10 1996; 161 2006; 110 1995; 155 2016; 18 1995; 151 2017; 139 1989; 93 2016 2016; 55 128 2017; 19 2015; 119 1996; 110 |
References_xml | – volume: 5 start-page: 3945 year: 2015 end-page: 3952 publication-title: ACS Catal. – volume: 8 start-page: 1744 year: 1992 end-page: 1749 publication-title: Langmuir – volume: 57 130 start-page: 16672 16914 year: 2018 2018 end-page: 16677 16919 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 39 start-page: 1347 year: 2018 end-page: 1365 publication-title: Chin. J. Catal. – volume: 55 128 start-page: 11989 12168 year: 2016 2016 end-page: 11994 12173 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 225 start-page: 520 year: 2013 end-page: 527 publication-title: Chem. Eng. J. – volume: 91 start-page: 6633 year: 1987 end-page: 6638 publication-title: J. Phys. Chem. – volume: 110 start-page: 9593 year: 2006 end-page: 9600 publication-title: J. Phys. Chem. B – volume: 19 start-page: 160 year: 2017 end-page: 166 publication-title: Global NEST J. – volume: 93 start-page: 2195 year: 1997 end-page: 2202 publication-title: J. Chem. Soc. Faraday Trans. – volume: 263 start-page: 84 year: 2016 end-page: 90 publication-title: Catal. Today – volume: 155 start-page: 117 year: 1995 end-page: 130 publication-title: J. Catal. – volume: 7 start-page: 8358 year: 2017 end-page: 8361 publication-title: ACS Catal. – volume: 42 start-page: 11762 year: 2013 end-page: 11769 publication-title: Dalton Trans. – volume: 117 start-page: 24397 year: 2013 end-page: 24406 publication-title: J. Phys. Chem. C – volume: 8 start-page: 203 year: 2007 end-page: 207 publication-title: J. Ceram. Process. Res. – volume: 146 start-page: 2242 year: 2016 end-page: 2251 publication-title: Catal. Lett. – volume: 193 start-page: 141 year: 2016 end-page: 150 publication-title: Appl. Catal. B – volume: 161 start-page: 211 year: 1996 end-page: 221 publication-title: J. Catal. – volume: 95 start-page: 9928 year: 1991 end-page: 9937 publication-title: J. Phys. Chem. – volume: 181 start-page: 233 year: 1999 end-page: 243 publication-title: J. Catal. – volume: 106 start-page: 93 year: 1996 end-page: 102 publication-title: J. Mol. Catal. A – volume: 11 start-page: 111 year: 2000 end-page: 122 publication-title: Top. Catal. – volume: 35 start-page: 978 year: 1996 end-page: 981 publication-title: Ind. Eng. Chem. Res. – volume: 4 start-page: 4637 year: 2018 publication-title: Sci. Adv. – volume: 139 start-page: 15624 year: 2017 end-page: 15627 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 543 year: 1999 end-page: 556 publication-title: Catal. Today – volume: 8 start-page: 6537 year: 2018 end-page: 6551 publication-title: ACS Catal. – volume: 5 start-page: 1704 year: 2015 end-page: 1720 publication-title: Catalysts – volume: 35 start-page: 3884 year: 1996 end-page: 3892 publication-title: Ind. Eng. Chem. Res. – volume: 8 start-page: 305 year: 2017 publication-title: Nat. Commun. – volume: 76 start-page: 123 year: 2007 end-page: 134 publication-title: Appl. Catal. B – volume: 93 start-page: 6796 year: 1989 end-page: 6805 publication-title: J. Phys. Chem. – volume: 265 start-page: 1217 year: 1994 publication-title: Science – volume: 221 start-page: 49 year: 2015 end-page: 56 publication-title: J. Solid State Chem. – volume: 286 start-page: 237 year: 2012 end-page: 247 publication-title: J. Catal. – volume: 200 start-page: 177 year: 2000 end-page: 188 publication-title: Appl. Catal. A – volume: 99 start-page: 2363 year: 1995 end-page: 2371 publication-title: J. Phys. Chem. – volume: 10 start-page: 413 year: 2016 end-page: 427 publication-title: Front. Environ. Sci. Eng. – volume: 149 start-page: 390 year: 1994 end-page: 403 publication-title: J. Catal. – volume: 110 start-page: 41 year: 1996 end-page: 54 publication-title: J. Mol. Catal. A – volume: 149 start-page: 375 year: 1994 end-page: 389 publication-title: J. Catal. – volume: 18 start-page: 1 year: 1998 end-page: 36 publication-title: Appl. Catal. B – volume: 80 start-page: 135 year: 1992 end-page: 148 publication-title: Appl. Catal. A – volume: 283 start-page: 209 year: 2013 end-page: 214 publication-title: Appl. Surf. Sci. – volume: 606 start-page: 956 year: 2012 end-page: 964 publication-title: Surf. Sci. – volume: 146 start-page: 323 year: 1994 end-page: 334 publication-title: J. Catal. – volume: 44 start-page: 710 year: 2003 end-page: 717 publication-title: Kinet. Catal. – volume: 408 start-page: 3976 year: 2010 end-page: 3989 publication-title: Sci. Total Environ. – volume: 188 start-page: 123 year: 2016 end-page: 133 publication-title: Appl. Catal. B – volume: 16–17 start-page: 369 year: 2001 end-page: 375 publication-title: Top. Catal. – volume: 119 start-page: 23445 year: 2015 end-page: 23452 publication-title: J. Phys. Chem. C – volume: 18 start-page: 17071 year: 2016 end-page: 17080 publication-title: Phys. Chem. Chem. Phys. – volume: 119 start-page: 15094 year: 2015 end-page: 15102 publication-title: J. Phys. Chem. C – volume: 126 start-page: 4926 year: 2004 end-page: 4933 publication-title: J. Am. Chem. Soc. – volume: 151 start-page: 241 year: 1995 end-page: 252 publication-title: J. Catal. – volume: 121 start-page: 6246 year: 2017 end-page: 6254 publication-title: J. Phys. Chem. C – volume: 12 start-page: 682 year: 2000 end-page: 685 publication-title: Chem. Mater. – volume: 56 start-page: 379 year: 2000 end-page: 387 publication-title: Catal. Today |
SSID | ssj0028806 |
Score | 2.619347 |
Snippet | The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2O5(‐WO3)/TiO2 catalysts is an industrial technology used to mitigate toxic... Growing concern for environmental pollutants coupled with an expansion of energy demand has promoted significant interest in technologies to abate... |
SourceID | osti proquest wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 12609 |
SubjectTerms | Ammonia Catalysis Catalysts heterogeneous catalysis Industrial applications INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Magnetic resonance spectroscopy Nitrogen oxides NMR NMR spectroscopy NOx Nuclear magnetic resonance Selective catalytic reduction selective catalytic reduction (SCR) Titanium dioxide Tungsten Tungsten oxide Tungsten oxides vanadium Vanadium pentoxide Vanadium pentoxide-Titanium dioxide |
Title | Mechanism by which Tungsten Oxide Promotes the Activity of Supported V2O5/TiO2 Catalysts for NOX Abatement: Structural Effects Revealed by 51V MAS NMR Spectroscopy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201904503 https://www.proquest.com/docview/2281029541 https://www.osti.gov/servlets/purl/1572978 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT-MwELVWXNjLLsvuagssmgPX0MZJnIRbVIEKUlvUFtSbZTv2Uq22RUr5KH-HP8qM05bCcckpOVhxMjP28-jNG8aOcEeNnXAuUEbYIC5VFKg0N4FwoYkynYvMeJZvT3Su4otxMt6o4q_1IdYJN4oMv15TgCtdNV9FQ6kCm6hZOYISL_dJhC1CRYO1fhRH56zLi6IooC70K9XGFm--HY4L8gxD6g3M3ASrfrc5-8rUap41yeTv8d1cH5undxKOH_mQHfZlCUWhqH3nG_tkp7tsu73qAPedPXct1QVPqn-gF_BwMzE3MMLFAR1jCv3HSWnh0rP5bAWII6EwdSsKmDmgbqHE4y3hmveT5mjS59CmVNGimleASBl6_TEUGqEu5SdPYOiFbEkEBGpF5QoG9p5gbElvT8Jr6BZD6HUHMLz1rXuooGbxg12dnY7anWDZ1CH4E-EV2JKaMOCZnKMzqFw7quHMnUMoJmwmtEhDp1otm6qSR7pEeGlNnKZWmDg2XOnoJ9uazqb2FwPjTJY4YVQr0rEphQ5ThfMTWWKzFEc32D4ZVSKWIEFcQ8whM5dhggeKNGuwg5Wt5TJuK8l5hogrT-Kwwbg3mrytVT9kre_MJZlLrs0li9756fpp738G7bPPdO-Ja_yAbeHvtr8R6cz1offmF02m95w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYQe2AvY-yH1sHYPfAa2jiJk-wtqkBl0HRqC-LNsh17VNNapJRt3b-zf3R3TlNgjyxviWTFyd3Zn0_ffcfYEe6osRPOBcoIG8SVigKV5iYQLjRRpnORGc_yLcXgMv58nbRsQqqFafQhNgk3igy_XlOAU0K6e68aSiXYxM3KEZWQ3uczauvtT1XjjYIUR_dsCoyiKKA-9K1uY493H4_HJXmBQfUIaD6Eq36_Od1lup1pQzP5dny31Mfm9z8ijv_1KS_ZizUahaJxnz22Zeev2E6_bQL3mv0ZWioNntXfQa_g583M3MAU1wf0jTmMfs0qC188oc_WgFASCtN0o4CFA2oYSlTeCq74KOlOZyMOfcoWreplDQiWoRxdQ6ER7VKK8hNMvJYt6YBAI6pcw9j-ICRb0duT8AqGxQTK4Rgmt757D9XUrN6wy9OTaX8QrPs6BF8jvAJbUR8GPJZz9AeVa0dlnLlziMaEzYQWaehUr2dTVfFIV4gwrYnT1AoTx4YrHb1l2_PF3L5jYJzJEieM6kU6NpXQYapwfiJLbJbi6A7bJ6tKhBOkiWuIPGSWMkzwTJFmHXbQGluuQ7eWnGcIuvIkDjuMe6vJ20b4QzYSz1ySueTGXLIoz042d--fMugj2xlMhxfy4qw832fP6bnnsfEDto2_3n5A4LPUh961_wLHsvu3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF2hIgEXvhFpC8yBqxt7ba9tblbaqAXiVEla5bbazzZCJJGcAuHv8EeZsZPQcgTfbGnltWdm9-1o5j3G3uOOmnjhfaCMcEFiVRyorDCB8JGJc12I3DRVvpU4vUg-TtPprS7-lh9il3CjyGjWawrwpfXdP6Sh1IFNpVkFghKi-7yfiDAnvz4e7QikOHpn218UxwHJ0G9pG0PevTseV-QFxtQdnHkbrTbbTf8JU9uJtlUmX45uVvrI_PyLw_F_vuQpe7zBolC2zvOM3XPz5-xhbysB94L9GjhqDJ7VX0Gv4fv1zFzDBFcH9Iw5DH_MrIPzppzP1YBAEkrTalHAwgPJhVIhr4VLPky7k9mQQ49yRet6VQNCZaiGUyg1Yl1KUH6AccNkSywg0FIq1zBy3wjHWnp7Gl3CoBxDNRjBeNlo91BHzfolu-ifTHqnwUbVIbiK8QqcJRUGPJRz9AZVaE9NnIX3iMWEy4UWWeRVGLpMWR5ri_jSmSTLnDBJYrjS8Su2N1_M3WsGxps89cKoMNaJsUJHmcL5iTx1eYajO-yAjCoRTBAjrqHSIbOSUYoniizvsMOtreUmcGvJeY6Qq0iTqMN4YzS5bGk_ZEvwzCWZS-7MJcvq7GR3t_8vg96xB-fHffn5rPp0wB7R46aIjR-yPfzz7g2inpV-2zj2b_IW-m8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+by+which+Tungsten+Oxide+Promotes+the+Activity+of+Supported+V2O5%2FTiO2+Catalysts+for+NOX+Abatement%3A+Structural+Effects+Revealed+by+51V+MAS+NMR+Spectroscopy&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jaegers%2C+Nicholas+R&rft.au=Jun%E2%80%90Kun+Lai&rft.au=He%2C+Yang&rft.au=Walter%2C+Eric&rft.date=2019-09-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=36&rft.spage=12609&rft.epage=12616&rft_id=info:doi/10.1002%2Fanie.201904503&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |