Mechanism by which Tungsten Oxide Promotes the Activity of Supported V2O5/TiO2 Catalysts for NOX Abatement: Structural Effects Revealed by 51V MAS NMR Spectroscopy

The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2O5(‐WO3)/TiO2 catalysts is an industrial technology used to mitigate toxic emissions. Long‐standing uncertainties in the molecular structures of surface vanadia are clarified, whereby progressive addition of vanadia to Ti...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie (International ed.) Vol. 58; no. 36; pp. 12609 - 12616
Main Authors Jaegers, Nicholas R., Lai, Jun‐Kun, He, Yang, Walter, Eric, Dixon, David A., Vasiliu, Monica, Chen, Ying, Wang, Chongmin, Hu, Mary Y., Mueller, Karl T., Wachs, Israel E., Wang, Yong, Hu, Jian Zhi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 02.09.2019
Wiley
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
DOI10.1002/anie.201904503

Cover

Loading…
Abstract The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2O5(‐WO3)/TiO2 catalysts is an industrial technology used to mitigate toxic emissions. Long‐standing uncertainties in the molecular structures of surface vanadia are clarified, whereby progressive addition of vanadia to TiO2 forms oligomeric vanadia structures and reveals a proportional relationship of SCR reaction rate to [surface VOx concentration]2, implying a 2‐site mechanism. Unreactive surface tungsta (WO3) also promote the formation of oligomeric vanadia (V2O5) sites, showing that promoter incorporation enhances the SCR reaction by a structural effect generating adjacent surface sites and not from electronic effects as previously proposed. The findings outline a method to assess structural effects of promoter incorporation on catalysts and reveal both the dual‐site requirement for the SCR reaction and the important structural promotional effect that tungsten oxide offers for the SCR reaction by V2O5/TiO2 catalysts. NOx effects: Molecular‐level structural details are revealed for supported vanadia (V2O5) catalysts. Tungsten oxide addition to V2O5/TiO2 catalysts used for the abatement of NOx emissions promotes their reactivity via a structural effect involving oligomerizing vanadia units. The resulting structure thus satisfies the 2‐site requirement revealed for the selective catalytic reduction (SCR) of NOx by vanadia catalysts.
AbstractList The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2O5(‐WO3)/TiO2 catalysts is an industrial technology used to mitigate toxic emissions. Long‐standing uncertainties in the molecular structures of surface vanadia are clarified, whereby progressive addition of vanadia to TiO2 forms oligomeric vanadia structures and reveals a proportional relationship of SCR reaction rate to [surface VOx concentration]2, implying a 2‐site mechanism. Unreactive surface tungsta (WO3) also promote the formation of oligomeric vanadia (V2O5) sites, showing that promoter incorporation enhances the SCR reaction by a structural effect generating adjacent surface sites and not from electronic effects as previously proposed. The findings outline a method to assess structural effects of promoter incorporation on catalysts and reveal both the dual‐site requirement for the SCR reaction and the important structural promotional effect that tungsten oxide offers for the SCR reaction by V2O5/TiO2 catalysts.
The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2O5(‐WO3)/TiO2 catalysts is an industrial technology used to mitigate toxic emissions. Long‐standing uncertainties in the molecular structures of surface vanadia are clarified, whereby progressive addition of vanadia to TiO2 forms oligomeric vanadia structures and reveals a proportional relationship of SCR reaction rate to [surface VOx concentration]2, implying a 2‐site mechanism. Unreactive surface tungsta (WO3) also promote the formation of oligomeric vanadia (V2O5) sites, showing that promoter incorporation enhances the SCR reaction by a structural effect generating adjacent surface sites and not from electronic effects as previously proposed. The findings outline a method to assess structural effects of promoter incorporation on catalysts and reveal both the dual‐site requirement for the SCR reaction and the important structural promotional effect that tungsten oxide offers for the SCR reaction by V2O5/TiO2 catalysts. NOx effects: Molecular‐level structural details are revealed for supported vanadia (V2O5) catalysts. Tungsten oxide addition to V2O5/TiO2 catalysts used for the abatement of NOx emissions promotes their reactivity via a structural effect involving oligomerizing vanadia units. The resulting structure thus satisfies the 2‐site requirement revealed for the selective catalytic reduction (SCR) of NOx by vanadia catalysts.
Growing concern for environmental pollutants coupled with an expansion of energy demand has promoted significant interest in technologies to abate contaminating species. Nitrogen oxides are particularly alarming due to their numerous detrimental impacts to the environment and public health, where selective catalytic reduction to inert N2 is an industrially-relevant mitigation technology. Herein, we provide unique, molecular-level insight on the structure and reactivity of V2O5(-WO3)/TiO2 catalysts employed at stationary facilities for NOx removal. Detailed catalytic testing, spectroscopy (nuclear magnetic resonance, Raman, and electron paramagnetic resonance), and electronic structure-based predictions of 51V chemical shifts help clarify the promotional role of tungsten oxide and identify an active site requirement for SCR of NOx. We show that progressive addition of vanadia to the catalyst surface increases the catalytic SCR performance and promotes the formation of larger vanadium domains, demonstrating the proportional relationship of SCR reaction rate to [VOx loading]2 for supported V2O5/TiO2 catalysts with increasing surface vanadia coverage. Tungsten oxide incorporation enhances catalyst reactivity which is shown to stem not from electronic effects, but from changes to the vanadium structure as observed spectroscopically. The progressive addition of tungsten oxide to the catalyst surface also increases the catalytic performance and promotes the formation of larger vanadium domains, which are beneficial for catalytic turnover in a two-site model. Further, unique monomeric species are confidently ascribed to distorted tetrahedral and square pyramidal structures, resolving a long-standing uncertainty in literature assignments for the signals. These findings provide strong support for both the dual-site requirement for the SCR reaction and the important structural promotional effect that tungsten offers for mitigation of these harmful pollutants.
Author Walter, Eric
Mueller, Karl T.
Wachs, Israel E.
Chen, Ying
Jaegers, Nicholas R.
Lai, Jun‐Kun
Wang, Chongmin
Wang, Yong
Vasiliu, Monica
Hu, Mary Y.
Hu, Jian Zhi
He, Yang
Dixon, David A.
Author_xml – sequence: 1
  givenname: Nicholas R.
  orcidid: 0000-0002-9930-7672
  surname: Jaegers
  fullname: Jaegers, Nicholas R.
  organization: Washington State University
– sequence: 2
  givenname: Jun‐Kun
  surname: Lai
  fullname: Lai, Jun‐Kun
  organization: Lehigh University
– sequence: 3
  givenname: Yang
  surname: He
  fullname: He, Yang
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Eric
  surname: Walter
  fullname: Walter, Eric
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: David A.
  surname: Dixon
  fullname: Dixon, David A.
  organization: The University of Alabama
– sequence: 6
  givenname: Monica
  surname: Vasiliu
  fullname: Vasiliu, Monica
  organization: The University of Alabama
– sequence: 7
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  organization: Pacific Northwest National Laboratory
– sequence: 8
  givenname: Chongmin
  surname: Wang
  fullname: Wang, Chongmin
  organization: Pacific Northwest National Laboratory
– sequence: 9
  givenname: Mary Y.
  surname: Hu
  fullname: Hu, Mary Y.
  organization: Pacific Northwest National Laboratory
– sequence: 10
  givenname: Karl T.
  surname: Mueller
  fullname: Mueller, Karl T.
  organization: Pacific Northwest National Laboratory
– sequence: 11
  givenname: Israel E.
  surname: Wachs
  fullname: Wachs, Israel E.
  email: iew0@lehigh.edu
  organization: Lehigh University
– sequence: 12
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: yong.wang@pnnl.gov
  organization: Washington State University
– sequence: 13
  givenname: Jian Zhi
  orcidid: 0000-0001-8879-747X
  surname: Hu
  fullname: Hu, Jian Zhi
  email: Jianzhi.hu@pnnl.gov
  organization: Pacific Northwest National Laboratory
BackLink https://www.osti.gov/servlets/purl/1572978$$D View this record in Osti.gov
BookMark eNo9kUtv1DAQxyNUJNrClfMIzmn9iPPgFq0WqNTdoO5ScbMcZ9J1lY2D7bTk8_BFcbWoc_GM5zcPzf8iORvtiEnykZIrSgi7VqPBK0ZoRTJB-JvknApGU14U_Cz6GedpUQr6Lrnw_jHyZUny8-TvBvUhVvojtAs8H4w-wH4eH3zAEZo_pkP44ezRBvQQDgi1DubJhAVsD7t5mqwL2ME9a8T13jQMViqoYfHBQ28dbJtfULcq4BHH8AV2wc06zE4NsO571JG6wydUQ2wRpwt6D5t6B9vNHeymmHbWazst75O3vRo8fvj_XiY_v673q-_pbfPtZlXfpg88WoqdVoLkFWFUc1W1fc5KUfU9i59Y5m1e0F4RgoXqGG-7ijPUWVFgrrNMM9Xyy-TTqa_1wUivTYi30XYc4yqSioJVRRmhzydocvb3jD7IRzu7Me4lGSspYZXIaKSqE_VsBlzk5MxRuUVSIl-kki9SyVepZL29Wb9G_B865ov_
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
– name: Energy Frontier Research Centers (EFRC) (United States). Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)
DBID 7TM
K9.
OIOZB
OTOTI
DOI 10.1002/anie.201904503
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 12616
ExternalDocumentID 1572978
ANIE201904503
Genre reviewArticle
GrantInformation_xml – fundername: Basic Energy Sciences (US DOE)
  funderid: DE-AC05-RL01830, DE-SC0012577, 66628
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
AAPBV
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
B-7
OIOZB
OTOTI
ID FETCH-LOGICAL-g3333-edca5069021c3a9bf62859ff2506e86b671fa00e7ad23bd932ec477e6c44c2ab3
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Wed Nov 29 06:11:13 EST 2023
Sun Jul 13 04:22:03 EDT 2025
Wed Jan 22 16:38:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3333-edca5069021c3a9bf62859ff2506e86b671fa00e7ad23bd932ec477e6c44c2ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC05-76RL01830; SC0012577; 66628
PNNL-SA-141251
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0002-9930-7672
0000-0001-8879-747X
0000000299307672
000000018879747X
OpenAccessLink https://www.osti.gov/servlets/purl/1572978
PQID 2281029541
PQPubID 946352
PageCount 8
ParticipantIDs osti_scitechconnect_1572978
proquest_journals_2281029541
wiley_primary_10_1002_anie_201904503_ANIE201904503
PublicationCentury 2000
PublicationDate September 2, 2019
PublicationDateYYYYMMDD 2019-09-02
PublicationDate_xml – month: 09
  year: 2019
  text: September 2, 2019
  day: 02
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
PublicationTitle Angewandte Chemie (International ed.)
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 7
2017; 8
2012; 286
2004; 126
2015; 221
1991; 95
2016; 146
2012; 606
2016; 188
2013; 283
1996; 35
2007; 76
2016; 263
1996; 106
1994; 146
1998; 18
1992; 8
2018; 8
1994; 265
2018; 39
1994; 149
1997; 93
2018; 4
2000; 56
2000; 12
2018 2018; 57 130
2000; 11
2013; 117
1999; 181
2007; 8
1999; 53
2017; 121
2000; 200
2016; 193
2001; 16–17
2003; 44
1992; 80
2010; 408
2015; 5
1987; 91
2013; 225
1995; 99
2013; 42
2016; 10
1996; 161
2006; 110
1995; 155
2016; 18
1995; 151
2017; 139
1989; 93
2016 2016; 55 128
2017; 19
2015; 119
1996; 110
References_xml – volume: 5
  start-page: 3945
  year: 2015
  end-page: 3952
  publication-title: ACS Catal.
– volume: 8
  start-page: 1744
  year: 1992
  end-page: 1749
  publication-title: Langmuir
– volume: 57 130
  start-page: 16672 16914
  year: 2018 2018
  end-page: 16677 16919
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 39
  start-page: 1347
  year: 2018
  end-page: 1365
  publication-title: Chin. J. Catal.
– volume: 55 128
  start-page: 11989 12168
  year: 2016 2016
  end-page: 11994 12173
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 225
  start-page: 520
  year: 2013
  end-page: 527
  publication-title: Chem. Eng. J.
– volume: 91
  start-page: 6633
  year: 1987
  end-page: 6638
  publication-title: J. Phys. Chem.
– volume: 110
  start-page: 9593
  year: 2006
  end-page: 9600
  publication-title: J. Phys. Chem. B
– volume: 19
  start-page: 160
  year: 2017
  end-page: 166
  publication-title: Global NEST J.
– volume: 93
  start-page: 2195
  year: 1997
  end-page: 2202
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 263
  start-page: 84
  year: 2016
  end-page: 90
  publication-title: Catal. Today
– volume: 155
  start-page: 117
  year: 1995
  end-page: 130
  publication-title: J. Catal.
– volume: 7
  start-page: 8358
  year: 2017
  end-page: 8361
  publication-title: ACS Catal.
– volume: 42
  start-page: 11762
  year: 2013
  end-page: 11769
  publication-title: Dalton Trans.
– volume: 117
  start-page: 24397
  year: 2013
  end-page: 24406
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 203
  year: 2007
  end-page: 207
  publication-title: J. Ceram. Process. Res.
– volume: 146
  start-page: 2242
  year: 2016
  end-page: 2251
  publication-title: Catal. Lett.
– volume: 193
  start-page: 141
  year: 2016
  end-page: 150
  publication-title: Appl. Catal. B
– volume: 161
  start-page: 211
  year: 1996
  end-page: 221
  publication-title: J. Catal.
– volume: 95
  start-page: 9928
  year: 1991
  end-page: 9937
  publication-title: J. Phys. Chem.
– volume: 181
  start-page: 233
  year: 1999
  end-page: 243
  publication-title: J. Catal.
– volume: 106
  start-page: 93
  year: 1996
  end-page: 102
  publication-title: J. Mol. Catal. A
– volume: 11
  start-page: 111
  year: 2000
  end-page: 122
  publication-title: Top. Catal.
– volume: 35
  start-page: 978
  year: 1996
  end-page: 981
  publication-title: Ind. Eng. Chem. Res.
– volume: 4
  start-page: 4637
  year: 2018
  publication-title: Sci. Adv.
– volume: 139
  start-page: 15624
  year: 2017
  end-page: 15627
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 543
  year: 1999
  end-page: 556
  publication-title: Catal. Today
– volume: 8
  start-page: 6537
  year: 2018
  end-page: 6551
  publication-title: ACS Catal.
– volume: 5
  start-page: 1704
  year: 2015
  end-page: 1720
  publication-title: Catalysts
– volume: 35
  start-page: 3884
  year: 1996
  end-page: 3892
  publication-title: Ind. Eng. Chem. Res.
– volume: 8
  start-page: 305
  year: 2017
  publication-title: Nat. Commun.
– volume: 76
  start-page: 123
  year: 2007
  end-page: 134
  publication-title: Appl. Catal. B
– volume: 93
  start-page: 6796
  year: 1989
  end-page: 6805
  publication-title: J. Phys. Chem.
– volume: 265
  start-page: 1217
  year: 1994
  publication-title: Science
– volume: 221
  start-page: 49
  year: 2015
  end-page: 56
  publication-title: J. Solid State Chem.
– volume: 286
  start-page: 237
  year: 2012
  end-page: 247
  publication-title: J. Catal.
– volume: 200
  start-page: 177
  year: 2000
  end-page: 188
  publication-title: Appl. Catal. A
– volume: 99
  start-page: 2363
  year: 1995
  end-page: 2371
  publication-title: J. Phys. Chem.
– volume: 10
  start-page: 413
  year: 2016
  end-page: 427
  publication-title: Front. Environ. Sci. Eng.
– volume: 149
  start-page: 390
  year: 1994
  end-page: 403
  publication-title: J. Catal.
– volume: 110
  start-page: 41
  year: 1996
  end-page: 54
  publication-title: J. Mol. Catal. A
– volume: 149
  start-page: 375
  year: 1994
  end-page: 389
  publication-title: J. Catal.
– volume: 18
  start-page: 1
  year: 1998
  end-page: 36
  publication-title: Appl. Catal. B
– volume: 80
  start-page: 135
  year: 1992
  end-page: 148
  publication-title: Appl. Catal. A
– volume: 283
  start-page: 209
  year: 2013
  end-page: 214
  publication-title: Appl. Surf. Sci.
– volume: 606
  start-page: 956
  year: 2012
  end-page: 964
  publication-title: Surf. Sci.
– volume: 146
  start-page: 323
  year: 1994
  end-page: 334
  publication-title: J. Catal.
– volume: 44
  start-page: 710
  year: 2003
  end-page: 717
  publication-title: Kinet. Catal.
– volume: 408
  start-page: 3976
  year: 2010
  end-page: 3989
  publication-title: Sci. Total Environ.
– volume: 188
  start-page: 123
  year: 2016
  end-page: 133
  publication-title: Appl. Catal. B
– volume: 16–17
  start-page: 369
  year: 2001
  end-page: 375
  publication-title: Top. Catal.
– volume: 119
  start-page: 23445
  year: 2015
  end-page: 23452
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 17071
  year: 2016
  end-page: 17080
  publication-title: Phys. Chem. Chem. Phys.
– volume: 119
  start-page: 15094
  year: 2015
  end-page: 15102
  publication-title: J. Phys. Chem. C
– volume: 126
  start-page: 4926
  year: 2004
  end-page: 4933
  publication-title: J. Am. Chem. Soc.
– volume: 151
  start-page: 241
  year: 1995
  end-page: 252
  publication-title: J. Catal.
– volume: 121
  start-page: 6246
  year: 2017
  end-page: 6254
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 682
  year: 2000
  end-page: 685
  publication-title: Chem. Mater.
– volume: 56
  start-page: 379
  year: 2000
  end-page: 387
  publication-title: Catal. Today
SSID ssj0028806
Score 2.619347
Snippet The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2O5(‐WO3)/TiO2 catalysts is an industrial technology used to mitigate toxic...
Growing concern for environmental pollutants coupled with an expansion of energy demand has promoted significant interest in technologies to abate...
SourceID osti
proquest
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 12609
SubjectTerms Ammonia
Catalysis
Catalysts
heterogeneous catalysis
Industrial applications
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Magnetic resonance spectroscopy
Nitrogen oxides
NMR
NMR spectroscopy
NOx
Nuclear magnetic resonance
Selective catalytic reduction
selective catalytic reduction (SCR)
Titanium dioxide
Tungsten
Tungsten oxide
Tungsten oxides
vanadium
Vanadium pentoxide
Vanadium pentoxide-Titanium dioxide
Title Mechanism by which Tungsten Oxide Promotes the Activity of Supported V2O5/TiO2 Catalysts for NOX Abatement: Structural Effects Revealed by 51V MAS NMR Spectroscopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201904503
https://www.proquest.com/docview/2281029541
https://www.osti.gov/servlets/purl/1572978
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT-MwELVWXNjLLsvuagssmgPX0MZJnIRbVIEKUlvUFtSbZTv2Uq22RUr5KH-HP8qM05bCcckpOVhxMjP28-jNG8aOcEeNnXAuUEbYIC5VFKg0N4FwoYkynYvMeJZvT3Su4otxMt6o4q_1IdYJN4oMv15TgCtdNV9FQ6kCm6hZOYISL_dJhC1CRYO1fhRH56zLi6IooC70K9XGFm--HY4L8gxD6g3M3ASrfrc5-8rUap41yeTv8d1cH5undxKOH_mQHfZlCUWhqH3nG_tkp7tsu73qAPedPXct1QVPqn-gF_BwMzE3MMLFAR1jCv3HSWnh0rP5bAWII6EwdSsKmDmgbqHE4y3hmveT5mjS59CmVNGimleASBl6_TEUGqEu5SdPYOiFbEkEBGpF5QoG9p5gbElvT8Jr6BZD6HUHMLz1rXuooGbxg12dnY7anWDZ1CH4E-EV2JKaMOCZnKMzqFw7quHMnUMoJmwmtEhDp1otm6qSR7pEeGlNnKZWmDg2XOnoJ9uazqb2FwPjTJY4YVQr0rEphQ5ThfMTWWKzFEc32D4ZVSKWIEFcQ8whM5dhggeKNGuwg5Wt5TJuK8l5hogrT-Kwwbg3mrytVT9kre_MJZlLrs0li9756fpp738G7bPPdO-Ja_yAbeHvtr8R6cz1offmF02m95w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYQe2AvY-yH1sHYPfAa2jiJk-wtqkBl0HRqC-LNsh17VNNapJRt3b-zf3R3TlNgjyxviWTFyd3Zn0_ffcfYEe6osRPOBcoIG8SVigKV5iYQLjRRpnORGc_yLcXgMv58nbRsQqqFafQhNgk3igy_XlOAU0K6e68aSiXYxM3KEZWQ3uczauvtT1XjjYIUR_dsCoyiKKA-9K1uY493H4_HJXmBQfUIaD6Eq36_Od1lup1pQzP5dny31Mfm9z8ijv_1KS_ZizUahaJxnz22Zeev2E6_bQL3mv0ZWioNntXfQa_g583M3MAU1wf0jTmMfs0qC188oc_WgFASCtN0o4CFA2oYSlTeCq74KOlOZyMOfcoWreplDQiWoRxdQ6ER7VKK8hNMvJYt6YBAI6pcw9j-ICRb0duT8AqGxQTK4Rgmt757D9XUrN6wy9OTaX8QrPs6BF8jvAJbUR8GPJZz9AeVa0dlnLlziMaEzYQWaehUr2dTVfFIV4gwrYnT1AoTx4YrHb1l2_PF3L5jYJzJEieM6kU6NpXQYapwfiJLbJbi6A7bJ6tKhBOkiWuIPGSWMkzwTJFmHXbQGluuQ7eWnGcIuvIkDjuMe6vJ20b4QzYSz1ySueTGXLIoz042d--fMugj2xlMhxfy4qw832fP6bnnsfEDto2_3n5A4LPUh961_wLHsvu3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF2hIgEXvhFpC8yBqxt7ba9tblbaqAXiVEla5bbazzZCJJGcAuHv8EeZsZPQcgTfbGnltWdm9-1o5j3G3uOOmnjhfaCMcEFiVRyorDCB8JGJc12I3DRVvpU4vUg-TtPprS7-lh9il3CjyGjWawrwpfXdP6Sh1IFNpVkFghKi-7yfiDAnvz4e7QikOHpn218UxwHJ0G9pG0PevTseV-QFxtQdnHkbrTbbTf8JU9uJtlUmX45uVvrI_PyLw_F_vuQpe7zBolC2zvOM3XPz5-xhbysB94L9GjhqDJ7VX0Gv4fv1zFzDBFcH9Iw5DH_MrIPzppzP1YBAEkrTalHAwgPJhVIhr4VLPky7k9mQQ49yRet6VQNCZaiGUyg1Yl1KUH6AccNkSywg0FIq1zBy3wjHWnp7Gl3CoBxDNRjBeNlo91BHzfolu-ifTHqnwUbVIbiK8QqcJRUGPJRz9AZVaE9NnIX3iMWEy4UWWeRVGLpMWR5ri_jSmSTLnDBJYrjS8Su2N1_M3WsGxps89cKoMNaJsUJHmcL5iTx1eYajO-yAjCoRTBAjrqHSIbOSUYoniizvsMOtreUmcGvJeY6Qq0iTqMN4YzS5bGk_ZEvwzCWZS-7MJcvq7GR3t_8vg96xB-fHffn5rPp0wB7R46aIjR-yPfzz7g2inpV-2zj2b_IW-m8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+by+which+Tungsten+Oxide+Promotes+the+Activity+of+Supported+V2O5%2FTiO2+Catalysts+for+NOX+Abatement%3A+Structural+Effects+Revealed+by+51V+MAS+NMR+Spectroscopy&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jaegers%2C+Nicholas+R&rft.au=Jun%E2%80%90Kun+Lai&rft.au=He%2C+Yang&rft.au=Walter%2C+Eric&rft.date=2019-09-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=36&rft.spage=12609&rft.epage=12616&rft_id=info:doi/10.1002%2Fanie.201904503&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon